Mercurial > hg > aimc
comparison src/Modules/BMM/ModuleGammatone_test.py @ 5:3c782dec2fc0
- Ported over HTK file output
- Added some more meat to the Slaney IIR gammatone implementation
- Ported over the AIM-MAT sf2003 parabola strobe algorithm
- Finished making the SAI implementation compile
- Ported over the strobe list class (now uses STL deques internally)
author | tomwalters |
---|---|
date | Thu, 18 Feb 2010 16:55:40 +0000 |
parents | |
children | 2a5354042241 |
comparison
equal
deleted
inserted
replaced
4:eb0449575bb9 | 5:3c782dec2fc0 |
---|---|
1 #!/usr/bin/env python | |
2 # encoding: utf-8 | |
3 # | |
4 # AIM-C: A C++ implementation of the Auditory Image Model | |
5 # http://www.acousticscale.org/AIMC | |
6 # | |
7 # This program is free software: you can redistribute it and/or modify | |
8 # it under the terms of the GNU General Public License as published by | |
9 # the Free Software Foundation, either version 3 of the License, or | |
10 # (at your option) any later version. | |
11 # | |
12 # This program is distributed in the hope that it will be useful, | |
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 # GNU General Public License for more details. | |
16 # | |
17 # You should have received a copy of the GNU General Public License | |
18 # along with this program. If not, see <http://www.gnu.org/licenses/>. | |
19 """ | |
20 ModuleGammatone_test.py | |
21 | |
22 Created by Thomas Walters on 2010-02-15. | |
23 Copyright 2010 Thomas Walters <tom@acousticscale.org> | |
24 Test for the Slaney IIR gammatone. | |
25 """ | |
26 | |
27 import aimc | |
28 from scipy import io | |
29 | |
30 def main(): | |
31 data_file = "src/Modules/BMM/testdata/gammatone.mat" | |
32 data = io.loadmat(data_file) | |
33 | |
34 # The margin of error allowed between the returned values from AIM-C and | |
35 # the stored MATLAB values. | |
36 epsilon = 0.000001; | |
37 | |
38 input_wave = data["input_wave"] | |
39 sample_rate = data["sample_rate"] | |
40 centre_frequencies = data["centre_frequencies"] | |
41 expected_output = data["expected_output"] | |
42 | |
43 (channel_count, buffer_length, frame_count) = expected_output.shape | |
44 | |
45 input_sig = aimc.SignalBank() | |
46 input_sig.Initialize(1, buffer_length, 44100) | |
47 parameters = aimc.Parameters() | |
48 mod_gt = aimc.ModuleGammatone(parameters) | |
49 mod_gt.Initialize(input_sig) | |
50 | |
51 correct_count = 0; | |
52 incorrect_count = 0; | |
53 for p in range(0, profile_count): | |
54 profile = given_profiles[p] | |
55 features = matlab_features[p] | |
56 for i in range(0, channel_count): | |
57 profile_sig.set_sample(i, 0, profile[i]) | |
58 mod_gauss.Process(profile_sig) | |
59 out_sig = mod_gauss.GetOutputBank() | |
60 error = False; | |
61 for j in range(0, out_sig.channel_count()): | |
62 if (abs(out_sig.sample(j, 0) - features[j]) > epsilon): | |
63 error = True; | |
64 incorrect_count += 1; | |
65 else: | |
66 correct_count += 1; | |
67 if error: | |
68 print("Mismatch at profile %d" % (p)) | |
69 print("AIM-C values: %f %f %f %f" % (out_sig.sample(0, 0), out_sig.sample(1, 0), out_sig.sample(2, 0), out_sig.sample(3, 0))) | |
70 print("MATLAB values: %f %f %f %f" % (features[0], features[1], features[2], features[3])) | |
71 print("") | |
72 percent_correct = 100 * correct_count / (correct_count + incorrect_count) | |
73 print("Total correct: %f percent" % (percent_correct)) | |
74 if percent_correct == 100: | |
75 print("=== TEST PASSED ===") | |
76 else: | |
77 print("=== TEST FAILED! ===") | |
78 | |
79 pass | |
80 | |
81 | |
82 if __name__ == '__main__': | |
83 main() |