annotate matlab/bmm/carfac/CARFAC_Design.m @ 455:f8ba7ad93fa9

Added MATLAB code for Lyon's CAR-FAC filter cascade.
author tom@acousticscale.org
date Wed, 15 Feb 2012 21:26:40 +0000
parents
children 87699cb4cf71
rev   line source
tom@455 1 % Copyright 2012, Google, Inc.
tom@455 2 % Author: Richard F. Lyon
tom@455 3 %
tom@455 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@455 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@455 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@455 7 %
tom@455 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@455 9 % you may not use this file except in compliance with the License.
tom@455 10 % You may obtain a copy of the License at
tom@455 11 %
tom@455 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@455 13 %
tom@455 14 % Unless required by applicable law or agreed to in writing, software
tom@455 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@455 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@455 17 % See the License for the specific language governing permissions and
tom@455 18 % limitations under the License.
tom@455 19
tom@455 20 function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@455 21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@455 22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@455 23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@455 24 %
tom@455 25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@455 26 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@455 27 % computes all the filter coefficients needed to run it.
tom@455 28 %
tom@455 29 % fs is sample rate (per second)
tom@455 30 % CF_filter_params bundles all the pole-zero filter cascade parameters
tom@455 31 % CF_AGC_params bundles all the automatic gain control parameters
tom@455 32 % CF_IHC_params bundles all the inner hair cell parameters
tom@455 33 %
tom@455 34 % See other functions for designing and characterizing the CARFAC:
tom@455 35 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@455 36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@455 37 %
tom@455 38 % Defaults to Glasberg & Moore's ERB curve:
tom@455 39 % ERB_break_freq = 1000/4.37; % 228.833
tom@455 40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@455 41 %
tom@455 42 % All args are defaultable; for sample/default args see the code; they
tom@455 43 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@455 44
tom@455 45 if nargin < 6
tom@455 46 % HACK: these constant control the defaults
tom@455 47 one_cap = 0; % bool; 0 for new two-cap hack
tom@455 48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@455 49 if just_hwr
tom@455 50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
tom@455 51 else
tom@455 52 if one_cap
tom@455 53 CF_IHC_params = struct( ...
tom@455 54 'just_hwr', 0, ... % not just a simple HWR
tom@455 55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@455 56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@455 57 'tau_out', 0.0005, ... % depletion tau is pretty fast
tom@455 58 'tau_in', 0.010 ); % recovery tau is slower
tom@455 59 else
tom@455 60 CF_IHC_params = struct( ...
tom@455 61 'just_hwr', 0, ... % not just a simple HWR
tom@455 62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@455 63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@455 64 'tau1_out', 0.020, ... % depletion tau is pretty fast
tom@455 65 'tau1_in', 0.020, ... % recovery tau is slower
tom@455 66 'tau2_out', 0.005, ... % depletion tau is pretty fast
tom@455 67 'tau2_in', 0.005 ); % recovery tau is slower
tom@455 68 end
tom@455 69 end
tom@455 70 end
tom@455 71
tom@455 72 if nargin < 5
tom@455 73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
tom@455 74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
tom@455 75 ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@455 76 if nargin < 4
tom@455 77 ERB_break_freq = 1000/4.37; % 228.833
tom@455 78 end
tom@455 79 end
tom@455 80
tom@455 81 if nargin < 3
tom@455 82 CF_AGC_params = struct( ...
tom@455 83 'n_stages', 4, ...
tom@455 84 'time_constants', [1, 4, 16, 64]*0.002, ...
tom@455 85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
tom@455 86 'decimation', 16, ... % how often to update the AGC states
tom@455 87 'AGC1_scales', [1, 2, 3, 4]*1, ... % in units of channels
tom@455 88 'AGC2_scales', [1, 2, 3, 4]*1.25, ... % spread more toward base
tom@455 89 'detect_scale', 0.15, ... % the desired damping range
tom@455 90 'AGC_mix_coeff', 0.25);
tom@455 91 end
tom@455 92
tom@455 93 if nargin < 2
tom@455 94 CF_filter_params = struct( ...
tom@455 95 'velocity_scale', 0.2, ... % for the cubic nonlinearity
tom@455 96 'min_zeta', 0.12, ...
tom@455 97 'first_pole_theta', 0.78*pi, ...
tom@455 98 'zero_ratio', sqrt(2), ...
tom@455 99 'ERB_per_step', 0.3333, ... % assume G&M's ERB formula
tom@455 100 'min_pole_Hz', 40 );
tom@455 101 end
tom@455 102
tom@455 103 if nargin < 1
tom@455 104 fs = 22050;
tom@455 105 end
tom@455 106
tom@455 107 % first figure out how many filter stages (PZFC/CARFAC channels):
tom@455 108 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@455 109 n_ch = 0;
tom@455 110 while pole_Hz > CF_filter_params.min_pole_Hz
tom@455 111 n_ch = n_ch + 1;
tom@455 112 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@455 113 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@455 114 end
tom@455 115 % Now we have n_ch, the number of channels, so can make the array
tom@455 116 % and compute all the frequencies again to put into it:
tom@455 117 pole_freqs = zeros(n_ch, 1);
tom@455 118 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@455 119 for ch = 1:n_ch
tom@455 120 pole_freqs(ch) = pole_Hz;
tom@455 121 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@455 122 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@455 123 end
tom@455 124 % now we have n_ch, the number of channels, and pole_freqs array
tom@455 125
tom@455 126 CF = struct( ...
tom@455 127 'fs', fs, ...
tom@455 128 'filter_params', CF_filter_params, ...
tom@455 129 'AGC_params', CF_AGC_params, ...
tom@455 130 'IHC_params', CF_IHC_params, ...
tom@455 131 'n_ch', n_ch, ...
tom@455 132 'pole_freqs', pole_freqs, ...
tom@455 133 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
tom@455 134 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
tom@455 135 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
tom@455 136 'n_mics', 0 );
tom@455 137
tom@455 138 % adjust the AGC_coeffs to account for IHC saturation level to get right
tom@455 139 % damping change as specified in CF.AGC_params.detect_scale
tom@455 140 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
tom@455 141 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
tom@455 142
tom@455 143 %% Design the filter coeffs:
tom@455 144 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
tom@455 145
tom@455 146 n_ch = length(pole_freqs);
tom@455 147
tom@455 148 % the filter design coeffs:
tom@455 149
tom@455 150 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale);
tom@455 151
tom@455 152 filter_coeffs.r_coeffs = zeros(n_ch, 1);
tom@455 153 filter_coeffs.a_coeffs = zeros(n_ch, 1);
tom@455 154 filter_coeffs.c_coeffs = zeros(n_ch, 1);
tom@455 155 filter_coeffs.h_coeffs = zeros(n_ch, 1);
tom@455 156 filter_coeffs.g_coeffs = zeros(n_ch, 1);
tom@455 157
tom@455 158 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@455 159 % and that a is here 1 / (1+f) where h = f*c.
tom@455 160 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@455 161 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
tom@455 162 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@455 163
tom@455 164 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@455 165 % which mostly depend on the pole angle theta:
tom@455 166 theta = pole_freqs .* (2 * pi / fs);
tom@455 167
tom@455 168 % different possible interpretations for min-damping r:
tom@455 169 % r = exp(-theta * CF_filter_params.min_zeta).
tom@455 170 % Using sin gives somewhat higher Q at highest thetas.
tom@455 171 r = (1 - sin(theta) * filter_params.min_zeta);
tom@455 172 filter_coeffs.r_coeffs = r;
tom@455 173
tom@455 174 % undamped coupled-form coefficients:
tom@455 175 filter_coeffs.a_coeffs = cos(theta);
tom@455 176 filter_coeffs.c_coeffs = sin(theta);
tom@455 177
tom@455 178 % the zeros follow via the h_coeffs
tom@455 179 h = sin(theta) .* f;
tom@455 180 filter_coeffs.h_coeffs = h;
tom@455 181
tom@455 182 r2 = r; % aim for unity DC gain at min damping, here; or could try r^2
tom@455 183 filter_coeffs.g_coeffs = 1 ./ (1 + h .* r2 .* sin(theta) ./ ...
tom@455 184 (1 - 2 * r2 .* cos(theta) + r2 .^ 2));
tom@455 185
tom@455 186
tom@455 187 %% the AGC design coeffs:
tom@455 188 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
tom@455 189
tom@455 190 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain, ...
tom@455 191 'AGC_mix_coeff', AGC_params.AGC_mix_coeff);
tom@455 192
tom@455 193
tom@455 194 % AGC1 pass is smoothing from base toward apex;
tom@455 195 % AGC2 pass is back, which is done first now
tom@455 196 AGC1_scales = AGC_params.AGC1_scales;
tom@455 197 AGC2_scales = AGC_params.AGC2_scales;
tom@455 198
tom@455 199 n_AGC_stages = AGC_params.n_stages;
tom@455 200 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
tom@455 201 decim = AGC_params.decimation;
tom@455 202 gain = 0;
tom@455 203 for stage = 1:n_AGC_stages
tom@455 204 tau = AGC_params.time_constants(stage);
tom@455 205 % epsilon is how much new input to take at each update step:
tom@455 206 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
tom@455 207 % and these are the smoothing scales and poles for decimated rate:
tom@455 208 ntimes = tau * (fs / decim); % effective number of smoothings
tom@455 209 % divide the spatial variance by effective number of smoothings:
tom@455 210 t = (AGC1_scales(stage)^2) / ntimes; % adjust scale for diffusion
tom@455 211 AGC_coeffs.AGC1_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1);
tom@455 212 t = (AGC2_scales(stage)^2) / ntimes; % adjust scale for diffusion
tom@455 213 AGC_coeffs.AGC2_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1);
tom@455 214 gain = gain + AGC_params.AGC_stage_gain^(stage-1);
tom@455 215 end
tom@455 216
tom@455 217 AGC_coeffs.AGC_gain = gain;
tom@455 218
tom@455 219 %% the IHC design coeffs:
tom@455 220 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
tom@455 221
tom@455 222 if IHC_params.just_hwr
tom@455 223 IHC_coeffs = struct('just_hwr', 1);
tom@455 224 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
tom@455 225 else
tom@455 226 if IHC_params.one_cap
tom@455 227 IHC_coeffs = struct(...
tom@455 228 'just_hwr', 0, ...
tom@455 229 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@455 230 'out_rate', 1 / (IHC_params.tau_out * fs), ...
tom@455 231 'in_rate', 1 / (IHC_params.tau_in * fs), ...
tom@455 232 'one_cap', IHC_params.one_cap);
tom@455 233 else
tom@455 234 IHC_coeffs = struct(...
tom@455 235 'just_hwr', 0, ...
tom@455 236 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@455 237 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@455 238 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
tom@455 239 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
tom@455 240 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
tom@455 241 'one_cap', IHC_params.one_cap);
tom@455 242 end
tom@455 243
tom@455 244 % run one channel to convergence to get rest state:
tom@455 245 IHC_coeffs.rest_output = 0;
tom@455 246 IHC_state = struct( ...
tom@455 247 'cap_voltage', 0, ...
tom@455 248 'cap1_voltage', 0, ...
tom@455 249 'cap2_voltage', 0, ...
tom@455 250 'lpf1_state', 0, ...
tom@455 251 'lpf2_state', 0, ...
tom@455 252 'ihc_accum', 0);
tom@455 253
tom@455 254 IHC_in = 0;
tom@455 255 for k = 1:30000
tom@455 256 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@455 257 end
tom@455 258
tom@455 259 IHC_coeffs.rest_output = IHC_out;
tom@455 260 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
tom@455 261 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
tom@455 262 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
tom@455 263
tom@455 264 LARGE = 2;
tom@455 265 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
tom@455 266 for k = 1:30000
tom@455 267 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@455 268 prev_IHC_out = IHC_out;
tom@455 269 IHC_in = -IHC_in;
tom@455 270 end
tom@455 271
tom@455 272 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
tom@455 273 end
tom@455 274
tom@455 275 %%
tom@455 276 % default design result, running this function with no args, should look
tom@455 277 % like this, before CARFAC_Init puts state storage into it:
tom@455 278 %
tom@455 279 % CF = CARFAC_Design
tom@455 280 % CF.filter_params
tom@455 281 % CF.AGC_params
tom@455 282 % CF.filter_coeffs
tom@455 283 % CF.AGC_coeffs
tom@455 284 % CF.IHC_coeffs
tom@455 285 %
tom@455 286 % CF =
tom@455 287 % fs: 22050
tom@455 288 % filter_params: [1x1 struct]
tom@455 289 % AGC_params: [1x1 struct]
tom@455 290 % IHC_params: [1x1 struct]
tom@455 291 % n_ch: 96
tom@455 292 % pole_freqs: [96x1 double]
tom@455 293 % filter_coeffs: [1x1 struct]
tom@455 294 % AGC_coeffs: [1x1 struct]
tom@455 295 % IHC_coeffs: [1x1 struct]
tom@455 296 % n_mics: 0
tom@455 297 % ans =
tom@455 298 % velocity_scale: 0.2000
tom@455 299 % min_zeta: 0.1200
tom@455 300 % first_pole_theta: 2.4504
tom@455 301 % zero_ratio: 1.4142
tom@455 302 % ERB_per_step: 0.3333
tom@455 303 % min_pole_Hz: 40
tom@455 304 % ans =
tom@455 305 % n_stages: 4
tom@455 306 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@455 307 % AGC_stage_gain: 2
tom@455 308 % decimation: 16
tom@455 309 % AGC1_scales: [1 2 3 4]
tom@455 310 % AGC2_scales: [1.2500 2.5000 3.7500 5]
tom@455 311 % detect_scale: 0.1500
tom@455 312 % AGC_mix_coeff: 0.2500
tom@455 313 % ans =
tom@455 314 % velocity_scale: 0.2000
tom@455 315 % r_coeffs: [96x1 double]
tom@455 316 % a_coeffs: [96x1 double]
tom@455 317 % c_coeffs: [96x1 double]
tom@455 318 % h_coeffs: [96x1 double]
tom@455 319 % g_coeffs: [96x1 double]
tom@455 320 % ans =
tom@455 321 % AGC_stage_gain: 2
tom@455 322 % AGC_mix_coeff: 0.2500
tom@455 323 % AGC_epsilon: [0.3043 0.0867 0.0224 0.0057]
tom@455 324 % AGC1_polez: [0.1356 0.1356 0.0854 0.0417]
tom@455 325 % AGC2_polez: [0.1872 0.1872 0.1227 0.0623]
tom@455 326 % AGC_gain: 15
tom@455 327 % detect_scale: 0.0630
tom@455 328 % ans =
tom@455 329 % lpf_coeff: 0.4327
tom@455 330 % out1_rate: 0.0023
tom@455 331 % in1_rate: 0.0023
tom@455 332 % out2_rate: 0.0091
tom@455 333 % in2_rate: 0.0091
tom@455 334 % one_cap: 0
tom@455 335 % rest_output: 0.0365
tom@455 336 % rest_cap: 0
tom@455 337 % rest_cap1: 0.9635
tom@455 338 % rest_cap2: 0.9269
tom@455 339 % saturation_output: 0.1587
tom@455 340
tom@455 341
tom@455 342