Mercurial > hg > aimc
diff matlab/bmm/carfac/CARFAC_Design.m @ 455:f8ba7ad93fa9
Added MATLAB code for Lyon's CAR-FAC filter cascade.
author | tom@acousticscale.org |
---|---|
date | Wed, 15 Feb 2012 21:26:40 +0000 |
parents | |
children | 87699cb4cf71 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/bmm/carfac/CARFAC_Design.m Wed Feb 15 21:26:40 2012 +0000 @@ -0,0 +1,342 @@ +% Copyright 2012, Google, Inc. +% Author: Richard F. Lyon +% +% This Matlab file is part of an implementation of Lyon's cochlear model: +% "Cascade of Asymmetric Resonators with Fast-Acting Compression" +% to supplement Lyon's upcoming book "Human and Machine Hearing" +% +% Licensed under the Apache License, Version 2.0 (the "License"); +% you may not use this file except in compliance with the License. +% You may obtain a copy of the License at +% +% http://www.apache.org/licenses/LICENSE-2.0 +% +% Unless required by applicable law or agreed to in writing, software +% distributed under the License is distributed on an "AS IS" BASIS, +% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +% See the License for the specific language governing permissions and +% limitations under the License. + +function CF = CARFAC_Design(fs, CF_filter_params, ... + CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params) +% function CF = CARFAC_Design(fs, CF_filter_params, ... +% CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params) +% +% This function designs the CARFAC (Cascade of Asymmetric Resonators with +% Fast-Acting Compression); that is, it take bundles of parameters and +% computes all the filter coefficients needed to run it. +% +% fs is sample rate (per second) +% CF_filter_params bundles all the pole-zero filter cascade parameters +% CF_AGC_params bundles all the automatic gain control parameters +% CF_IHC_params bundles all the inner hair cell parameters +% +% See other functions for designing and characterizing the CARFAC: +% [naps, CF] = CARFAC_Run(CF, input_waves) +% transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels) +% +% Defaults to Glasberg & Moore's ERB curve: +% ERB_break_freq = 1000/4.37; % 228.833 +% ERB_Q = 1000/(24.7*4.37); % 9.2645 +% +% All args are defaultable; for sample/default args see the code; they +% make 96 channels at default fs = 22050, 114 channels at 44100. + +if nargin < 6 + % HACK: these constant control the defaults + one_cap = 0; % bool; 0 for new two-cap hack + just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR + if just_hwr + CF_IHC_params = struct('just_hwr', 1); % just a simple HWR + else + if one_cap + CF_IHC_params = struct( ... + 'just_hwr', 0, ... % not just a simple HWR + 'one_cap', one_cap, ... % bool; 0 for new two-cap hack + 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice + 'tau_out', 0.0005, ... % depletion tau is pretty fast + 'tau_in', 0.010 ); % recovery tau is slower + else + CF_IHC_params = struct( ... + 'just_hwr', 0, ... % not just a simple HWR + 'one_cap', one_cap, ... % bool; 0 for new two-cap hack + 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice + 'tau1_out', 0.020, ... % depletion tau is pretty fast + 'tau1_in', 0.020, ... % recovery tau is slower + 'tau2_out', 0.005, ... % depletion tau is pretty fast + 'tau2_in', 0.005 ); % recovery tau is slower + end + end +end + +if nargin < 5 + % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138 + % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000); + ERB_Q = 1000/(24.7*4.37); % 9.2645 + if nargin < 4 + ERB_break_freq = 1000/4.37; % 228.833 + end +end + +if nargin < 3 + CF_AGC_params = struct( ... + 'n_stages', 4, ... + 'time_constants', [1, 4, 16, 64]*0.002, ... + 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage + 'decimation', 16, ... % how often to update the AGC states + 'AGC1_scales', [1, 2, 3, 4]*1, ... % in units of channels + 'AGC2_scales', [1, 2, 3, 4]*1.25, ... % spread more toward base + 'detect_scale', 0.15, ... % the desired damping range + 'AGC_mix_coeff', 0.25); +end + +if nargin < 2 + CF_filter_params = struct( ... + 'velocity_scale', 0.2, ... % for the cubic nonlinearity + 'min_zeta', 0.12, ... + 'first_pole_theta', 0.78*pi, ... + 'zero_ratio', sqrt(2), ... + 'ERB_per_step', 0.3333, ... % assume G&M's ERB formula + 'min_pole_Hz', 40 ); +end + +if nargin < 1 + fs = 22050; +end + +% first figure out how many filter stages (PZFC/CARFAC channels): +pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi); +n_ch = 0; +while pole_Hz > CF_filter_params.min_pole_Hz + n_ch = n_ch + 1; + pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ... + ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q); +end +% Now we have n_ch, the number of channels, so can make the array +% and compute all the frequencies again to put into it: +pole_freqs = zeros(n_ch, 1); +pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi); +for ch = 1:n_ch + pole_freqs(ch) = pole_Hz; + pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ... + ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q); +end +% now we have n_ch, the number of channels, and pole_freqs array + +CF = struct( ... + 'fs', fs, ... + 'filter_params', CF_filter_params, ... + 'AGC_params', CF_AGC_params, ... + 'IHC_params', CF_IHC_params, ... + 'n_ch', n_ch, ... + 'pole_freqs', pole_freqs, ... + 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ... + 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ... + 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ... + 'n_mics', 0 ); + +% adjust the AGC_coeffs to account for IHC saturation level to get right +% damping change as specified in CF.AGC_params.detect_scale +CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ... + (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain); + +%% Design the filter coeffs: +function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs) + +n_ch = length(pole_freqs); + +% the filter design coeffs: + +filter_coeffs = struct('velocity_scale', filter_params.velocity_scale); + +filter_coeffs.r_coeffs = zeros(n_ch, 1); +filter_coeffs.a_coeffs = zeros(n_ch, 1); +filter_coeffs.c_coeffs = zeros(n_ch, 1); +filter_coeffs.h_coeffs = zeros(n_ch, 1); +filter_coeffs.g_coeffs = zeros(n_ch, 1); + +% zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a), +% and that a is here 1 / (1+f) where h = f*c. +% solve for f: 1/zero_ratio^2 = 1 / (1+f) +% zero_ratio^2 = 1+f => f = zero_ratio^2 - 1 +f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave + +% Make pole positions, s and c coeffs, h and g coeffs, etc., +% which mostly depend on the pole angle theta: +theta = pole_freqs .* (2 * pi / fs); + +% different possible interpretations for min-damping r: +% r = exp(-theta * CF_filter_params.min_zeta). +% Using sin gives somewhat higher Q at highest thetas. +r = (1 - sin(theta) * filter_params.min_zeta); +filter_coeffs.r_coeffs = r; + +% undamped coupled-form coefficients: +filter_coeffs.a_coeffs = cos(theta); +filter_coeffs.c_coeffs = sin(theta); + +% the zeros follow via the h_coeffs +h = sin(theta) .* f; +filter_coeffs.h_coeffs = h; + +r2 = r; % aim for unity DC gain at min damping, here; or could try r^2 +filter_coeffs.g_coeffs = 1 ./ (1 + h .* r2 .* sin(theta) ./ ... + (1 - 2 * r2 .* cos(theta) + r2 .^ 2)); + + +%% the AGC design coeffs: +function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs) + +AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain, ... + 'AGC_mix_coeff', AGC_params.AGC_mix_coeff); + + +% AGC1 pass is smoothing from base toward apex; +% AGC2 pass is back, which is done first now +AGC1_scales = AGC_params.AGC1_scales; +AGC2_scales = AGC_params.AGC2_scales; + +n_AGC_stages = AGC_params.n_stages; +AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly +decim = AGC_params.decimation; +gain = 0; +for stage = 1:n_AGC_stages + tau = AGC_params.time_constants(stage); + % epsilon is how much new input to take at each update step: + AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs)); + % and these are the smoothing scales and poles for decimated rate: + ntimes = tau * (fs / decim); % effective number of smoothings + % divide the spatial variance by effective number of smoothings: + t = (AGC1_scales(stage)^2) / ntimes; % adjust scale for diffusion + AGC_coeffs.AGC1_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1); + t = (AGC2_scales(stage)^2) / ntimes; % adjust scale for diffusion + AGC_coeffs.AGC2_polez(stage) = 1 + 1/t - sqrt((1+1/t)^2 - 1); + gain = gain + AGC_params.AGC_stage_gain^(stage-1); +end + +AGC_coeffs.AGC_gain = gain; + +%% the IHC design coeffs: +function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs) + +if IHC_params.just_hwr + IHC_coeffs = struct('just_hwr', 1); + IHC_coeffs.saturation_output = 10; % HACK: assume some max out +else + if IHC_params.one_cap + IHC_coeffs = struct(... + 'just_hwr', 0, ... + 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ... + 'out_rate', 1 / (IHC_params.tau_out * fs), ... + 'in_rate', 1 / (IHC_params.tau_in * fs), ... + 'one_cap', IHC_params.one_cap); + else + IHC_coeffs = struct(... + 'just_hwr', 0, ... + 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ... + 'out1_rate', 1 / (IHC_params.tau1_out * fs), ... + 'in1_rate', 1 / (IHC_params.tau1_in * fs), ... + 'out2_rate', 1 / (IHC_params.tau2_out * fs), ... + 'in2_rate', 1 / (IHC_params.tau2_in * fs), ... + 'one_cap', IHC_params.one_cap); + end + + % run one channel to convergence to get rest state: + IHC_coeffs.rest_output = 0; + IHC_state = struct( ... + 'cap_voltage', 0, ... + 'cap1_voltage', 0, ... + 'cap2_voltage', 0, ... + 'lpf1_state', 0, ... + 'lpf2_state', 0, ... + 'ihc_accum', 0); + + IHC_in = 0; + for k = 1:30000 + [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state); + end + + IHC_coeffs.rest_output = IHC_out; + IHC_coeffs.rest_cap = IHC_state.cap_voltage; + IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage; + IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage; + + LARGE = 2; + IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate + for k = 1:30000 + [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state); + prev_IHC_out = IHC_out; + IHC_in = -IHC_in; + end + + IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2; +end + +%% +% default design result, running this function with no args, should look +% like this, before CARFAC_Init puts state storage into it: +% +% CF = CARFAC_Design +% CF.filter_params +% CF.AGC_params +% CF.filter_coeffs +% CF.AGC_coeffs +% CF.IHC_coeffs +% +% CF = +% fs: 22050 +% filter_params: [1x1 struct] +% AGC_params: [1x1 struct] +% IHC_params: [1x1 struct] +% n_ch: 96 +% pole_freqs: [96x1 double] +% filter_coeffs: [1x1 struct] +% AGC_coeffs: [1x1 struct] +% IHC_coeffs: [1x1 struct] +% n_mics: 0 +% ans = +% velocity_scale: 0.2000 +% min_zeta: 0.1200 +% first_pole_theta: 2.4504 +% zero_ratio: 1.4142 +% ERB_per_step: 0.3333 +% min_pole_Hz: 40 +% ans = +% n_stages: 4 +% time_constants: [0.0020 0.0080 0.0320 0.1280] +% AGC_stage_gain: 2 +% decimation: 16 +% AGC1_scales: [1 2 3 4] +% AGC2_scales: [1.2500 2.5000 3.7500 5] +% detect_scale: 0.1500 +% AGC_mix_coeff: 0.2500 +% ans = +% velocity_scale: 0.2000 +% r_coeffs: [96x1 double] +% a_coeffs: [96x1 double] +% c_coeffs: [96x1 double] +% h_coeffs: [96x1 double] +% g_coeffs: [96x1 double] +% ans = +% AGC_stage_gain: 2 +% AGC_mix_coeff: 0.2500 +% AGC_epsilon: [0.3043 0.0867 0.0224 0.0057] +% AGC1_polez: [0.1356 0.1356 0.0854 0.0417] +% AGC2_polez: [0.1872 0.1872 0.1227 0.0623] +% AGC_gain: 15 +% detect_scale: 0.0630 +% ans = +% lpf_coeff: 0.4327 +% out1_rate: 0.0023 +% in1_rate: 0.0023 +% out2_rate: 0.0091 +% in2_rate: 0.0091 +% one_cap: 0 +% rest_output: 0.0365 +% rest_cap: 0 +% rest_cap1: 0.9635 +% rest_cap2: 0.9269 +% saturation_output: 0.1587 + + +