annotate trunk/experiments/scripts/cnbh-syllables/results_plotting/plot_munged_results.py @ 423:b36762259dc6

- Scripts for plotting summary performance graphs.
author tomwalters
date Mon, 01 Nov 2010 00:31:00 +0000
parents
children f405ead2736f
rev   line source
tomwalters@423 1 #!/usr/bin/python
tomwalters@423 2 """
tomwalters@423 3 plot_munged_results.py
tomwalters@423 4
tomwalters@423 5 """
tomwalters@423 6
tomwalters@423 7 import numpy as np
tomwalters@423 8 import pylab as p
tomwalters@423 9 import matplotlib.pyplot as plt
tomwalters@423 10
tomwalters@423 11 f=open("results_test_all.csv","r")
tomwalters@423 12 results = dict()
tomwalters@423 13 for line in f:
tomwalters@423 14 if line[0] != "#":
tomwalters@423 15 values = line.strip().split(",")
tomwalters@423 16 results.setdefault(values[3],dict())
tomwalters@423 17 results[values[3]].setdefault(values[0], dict())
tomwalters@423 18 results[values[3]][values[0]].setdefault(values[1], dict())
tomwalters@423 19 if values[2] == 'clean':
tomwalters@423 20 snr = 40
tomwalters@423 21 else:
tomwalters@423 22 snr = int(values[2])
tomwalters@423 23 results[values[3]][values[0]][values[1]][snr] = float(values[4])
tomwalters@423 24 # results[values[3]].append((values[1],values[2],values[2],values[4]))
tomwalters@423 25
tomwalters@423 26 ax = plt.subplot(111)
tomwalters@423 27
tomwalters@423 28 train_set = 'inner'
tomwalters@423 29 lines = []
tomwalters@423 30 labels = []
tomwalters@423 31 for feature_type in ('mfcc', 'mfcc_vtln', 'aim'):
tomwalters@423 32 for feature_subtype in results[train_set][feature_type].keys():
tomwalters@423 33 this_line = results[train_set][feature_type][feature_subtype].items()
tomwalters@423 34 this_line.sort(cmp=lambda x,y: x[0] - y[0])
tomwalters@423 35 xs, ys = zip(*this_line)
tomwalters@423 36 xs = list(xs)
tomwalters@423 37 ys = list(ys)
tomwalters@423 38 line, = ax.plot(xs,ys,'-o',linewidth=2)
tomwalters@423 39 lines.append(line)
tomwalters@423 40 labels.append(feature_type + "_" + feature_subtype)
tomwalters@423 41 p.legend(lines, labels, 'upper left', shadow=True)
tomwalters@423 42 p.xlabel('SNR/dB')
tomwalters@423 43 p.ylabel('Recognition performance %')
tomwalters@423 44 plt.show()