Mercurial > hg > aimc
comparison trunk/experiments/scripts/cnbh-syllables/results_plotting/plot_munged_results.py @ 423:b36762259dc6
- Scripts for plotting summary performance graphs.
author | tomwalters |
---|---|
date | Mon, 01 Nov 2010 00:31:00 +0000 |
parents | |
children | f405ead2736f |
comparison
equal
deleted
inserted
replaced
422:ebed9c3fc63b | 423:b36762259dc6 |
---|---|
1 #!/usr/bin/python | |
2 """ | |
3 plot_munged_results.py | |
4 | |
5 """ | |
6 | |
7 import numpy as np | |
8 import pylab as p | |
9 import matplotlib.pyplot as plt | |
10 | |
11 f=open("results_test_all.csv","r") | |
12 results = dict() | |
13 for line in f: | |
14 if line[0] != "#": | |
15 values = line.strip().split(",") | |
16 results.setdefault(values[3],dict()) | |
17 results[values[3]].setdefault(values[0], dict()) | |
18 results[values[3]][values[0]].setdefault(values[1], dict()) | |
19 if values[2] == 'clean': | |
20 snr = 40 | |
21 else: | |
22 snr = int(values[2]) | |
23 results[values[3]][values[0]][values[1]][snr] = float(values[4]) | |
24 # results[values[3]].append((values[1],values[2],values[2],values[4])) | |
25 | |
26 ax = plt.subplot(111) | |
27 | |
28 train_set = 'inner' | |
29 lines = [] | |
30 labels = [] | |
31 for feature_type in ('mfcc', 'mfcc_vtln', 'aim'): | |
32 for feature_subtype in results[train_set][feature_type].keys(): | |
33 this_line = results[train_set][feature_type][feature_subtype].items() | |
34 this_line.sort(cmp=lambda x,y: x[0] - y[0]) | |
35 xs, ys = zip(*this_line) | |
36 xs = list(xs) | |
37 ys = list(ys) | |
38 line, = ax.plot(xs,ys,'-o',linewidth=2) | |
39 lines.append(line) | |
40 labels.append(feature_type + "_" + feature_subtype) | |
41 p.legend(lines, labels, 'upper left', shadow=True) | |
42 p.xlabel('SNR/dB') | |
43 p.ylabel('Recognition performance %') | |
44 plt.show() |