annotate matlab/bmm/carfac/CARFAC_Design.m @ 467:a2e184f0a7b4

More updates
author dicklyon@google.com
date Sat, 10 Mar 2012 05:05:35 +0000
parents 7b57ab0d0126
children bc0618485ad4
rev   line source
tom@455 1 % Copyright 2012, Google, Inc.
tom@455 2 % Author: Richard F. Lyon
tom@455 3 %
tom@455 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@455 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@455 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@455 7 %
tom@455 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@455 9 % you may not use this file except in compliance with the License.
tom@455 10 % You may obtain a copy of the License at
tom@455 11 %
tom@455 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@455 13 %
tom@455 14 % Unless required by applicable law or agreed to in writing, software
tom@455 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@455 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@455 17 % See the License for the specific language governing permissions and
tom@455 18 % limitations under the License.
tom@455 19
tom@455 20 function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@455 21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@455 22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
tom@455 23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
tom@455 24 %
tom@455 25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
tom@455 26 % Fast-Acting Compression); that is, it take bundles of parameters and
tom@455 27 % computes all the filter coefficients needed to run it.
tom@455 28 %
tom@455 29 % fs is sample rate (per second)
tom@455 30 % CF_filter_params bundles all the pole-zero filter cascade parameters
tom@455 31 % CF_AGC_params bundles all the automatic gain control parameters
tom@455 32 % CF_IHC_params bundles all the inner hair cell parameters
tom@455 33 %
tom@455 34 % See other functions for designing and characterizing the CARFAC:
tom@455 35 % [naps, CF] = CARFAC_Run(CF, input_waves)
tom@455 36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
tom@455 37 %
tom@455 38 % Defaults to Glasberg & Moore's ERB curve:
tom@455 39 % ERB_break_freq = 1000/4.37; % 228.833
tom@455 40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@455 41 %
tom@455 42 % All args are defaultable; for sample/default args see the code; they
tom@455 43 % make 96 channels at default fs = 22050, 114 channels at 44100.
tom@455 44
tom@455 45 if nargin < 6
tom@455 46 % HACK: these constant control the defaults
tom@455 47 one_cap = 0; % bool; 0 for new two-cap hack
tom@455 48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
tom@455 49 if just_hwr
tom@455 50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
tom@455 51 else
tom@455 52 if one_cap
tom@455 53 CF_IHC_params = struct( ...
dicklyon@462 54 'just_hwr', just_hwr, ... % not just a simple HWR
tom@455 55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@455 56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@455 57 'tau_out', 0.0005, ... % depletion tau is pretty fast
tom@455 58 'tau_in', 0.010 ); % recovery tau is slower
tom@455 59 else
tom@455 60 CF_IHC_params = struct( ...
dicklyon@462 61 'just_hwr', just_hwr, ... % not just a simple HWR
tom@455 62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
tom@455 63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
tom@455 64 'tau1_out', 0.020, ... % depletion tau is pretty fast
tom@455 65 'tau1_in', 0.020, ... % recovery tau is slower
tom@455 66 'tau2_out', 0.005, ... % depletion tau is pretty fast
tom@455 67 'tau2_in', 0.005 ); % recovery tau is slower
tom@455 68 end
tom@455 69 end
tom@455 70 end
tom@455 71
tom@455 72 if nargin < 5
tom@455 73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
tom@455 74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
tom@455 75 ERB_Q = 1000/(24.7*4.37); % 9.2645
tom@455 76 if nargin < 4
tom@455 77 ERB_break_freq = 1000/4.37; % 228.833
tom@455 78 end
tom@455 79 end
tom@455 80
tom@455 81 if nargin < 3
tom@455 82 CF_AGC_params = struct( ...
tom@455 83 'n_stages', 4, ...
tom@455 84 'time_constants', [1, 4, 16, 64]*0.002, ...
tom@455 85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
dicklyon@462 86 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
dicklyon@463 87 'AGC1_scales', [1, 2, 4, 6]*1, ... % in units of channels
dicklyon@463 88 'AGC2_scales', [1, 2, 4, 6]*1.5, ... % spread more toward base
tom@455 89 'detect_scale', 0.15, ... % the desired damping range
dicklyon@462 90 'AGC_mix_coeff', 0.5);
tom@455 91 end
tom@455 92
tom@455 93 if nargin < 2
tom@455 94 CF_filter_params = struct( ...
dicklyon@462 95 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
dicklyon@462 96 'v_offset', 0.01, ... % offset gives a quadratic part
dicklyon@462 97 'v2_corner', 0.2, ... % corner for essential nonlin
dicklyon@462 98 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
tom@455 99 'min_zeta', 0.12, ...
dicklyon@467 100 'first_pole_theta', 0.85*pi, ...
dicklyon@467 101 'zero_ratio', sqrt(2), ... % how far zero is above pole
dicklyon@467 102 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
dicklyon@467 103 'min_pole_Hz', 30 );
tom@455 104 end
tom@455 105
tom@455 106 if nargin < 1
tom@455 107 fs = 22050;
tom@455 108 end
tom@455 109
tom@455 110 % first figure out how many filter stages (PZFC/CARFAC channels):
tom@455 111 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@455 112 n_ch = 0;
tom@455 113 while pole_Hz > CF_filter_params.min_pole_Hz
tom@455 114 n_ch = n_ch + 1;
tom@455 115 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@455 116 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@455 117 end
tom@455 118 % Now we have n_ch, the number of channels, so can make the array
tom@455 119 % and compute all the frequencies again to put into it:
tom@455 120 pole_freqs = zeros(n_ch, 1);
tom@455 121 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
tom@455 122 for ch = 1:n_ch
tom@455 123 pole_freqs(ch) = pole_Hz;
tom@455 124 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
tom@455 125 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
tom@455 126 end
tom@455 127 % now we have n_ch, the number of channels, and pole_freqs array
tom@455 128
dicklyon@467 129 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
dicklyon@467 130
tom@455 131 CF = struct( ...
tom@455 132 'fs', fs, ...
dicklyon@467 133 'max_channels_per_octave', max_channels_per_octave, ...
tom@455 134 'filter_params', CF_filter_params, ...
tom@455 135 'AGC_params', CF_AGC_params, ...
tom@455 136 'IHC_params', CF_IHC_params, ...
tom@455 137 'n_ch', n_ch, ...
tom@455 138 'pole_freqs', pole_freqs, ...
tom@455 139 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
tom@455 140 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
tom@455 141 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
tom@455 142 'n_mics', 0 );
tom@455 143
tom@455 144 % adjust the AGC_coeffs to account for IHC saturation level to get right
tom@455 145 % damping change as specified in CF.AGC_params.detect_scale
tom@455 146 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
tom@455 147 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
tom@455 148
tom@455 149 %% Design the filter coeffs:
tom@455 150 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
tom@455 151
tom@455 152 n_ch = length(pole_freqs);
tom@455 153
tom@455 154 % the filter design coeffs:
tom@455 155
dicklyon@462 156 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale, ...
dicklyon@462 157 'v_offset', filter_params.v_offset, ...
dicklyon@462 158 'v2_corner', filter_params.v2_corner, ...
dicklyon@462 159 'v_damp_max', filter_params.v_damp_max ...
dicklyon@462 160 );
tom@455 161
tom@455 162 filter_coeffs.r_coeffs = zeros(n_ch, 1);
tom@455 163 filter_coeffs.a_coeffs = zeros(n_ch, 1);
tom@455 164 filter_coeffs.c_coeffs = zeros(n_ch, 1);
tom@455 165 filter_coeffs.h_coeffs = zeros(n_ch, 1);
tom@455 166 filter_coeffs.g_coeffs = zeros(n_ch, 1);
tom@455 167
tom@455 168 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
tom@455 169 % and that a is here 1 / (1+f) where h = f*c.
tom@455 170 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
tom@455 171 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
tom@455 172 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
tom@455 173
tom@455 174 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
tom@455 175 % which mostly depend on the pole angle theta:
tom@455 176 theta = pole_freqs .* (2 * pi / fs);
tom@455 177
tom@455 178 % different possible interpretations for min-damping r:
tom@455 179 % r = exp(-theta * CF_filter_params.min_zeta).
tom@455 180 % Using sin gives somewhat higher Q at highest thetas.
dicklyon@467 181 ff = 5; % fudge factor for theta distortion; at least 1.0
dicklyon@467 182 r = (1 - ff*sin(theta/ff) * filter_params.min_zeta);
tom@455 183 filter_coeffs.r_coeffs = r;
tom@455 184
tom@455 185 % undamped coupled-form coefficients:
tom@455 186 filter_coeffs.a_coeffs = cos(theta);
tom@455 187 filter_coeffs.c_coeffs = sin(theta);
tom@455 188
tom@455 189 % the zeros follow via the h_coeffs
tom@455 190 h = sin(theta) .* f;
tom@455 191 filter_coeffs.h_coeffs = h;
tom@455 192
dicklyon@467 193 % % unity gain at min damping, radius r:
dicklyon@467 194 g = (1 - 2*r.*cos(theta) + r.^2) ./ ...
dicklyon@463 195 (1 - 2*r .* cos(theta) + h .* r .* sin(theta) + r.^2);
dicklyon@467 196 % or assume r is 1, for the zero-damping gain g0:
dicklyon@467 197 g0 = (2 - 2*cos(theta)) ./ ...
dicklyon@467 198 (2 - 2 * cos(theta) + h .* sin(theta));
tom@455 199
dicklyon@467 200 filter_coeffs.g_coeffs = g0;
dicklyon@467 201 % make coeffs that can correct g0 to make g based on (1 - r).^2:
dicklyon@467 202 filter_coeffs.gr_coeffs = ((g ./ g0) - 1) ./ ((1 - r).^2);
tom@455 203
tom@455 204 %% the AGC design coeffs:
tom@455 205 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
tom@455 206
dicklyon@462 207 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain);
tom@455 208
tom@455 209 % AGC1 pass is smoothing from base toward apex;
tom@455 210 % AGC2 pass is back, which is done first now
tom@455 211 AGC1_scales = AGC_params.AGC1_scales;
tom@455 212 AGC2_scales = AGC_params.AGC2_scales;
tom@455 213
tom@455 214 n_AGC_stages = AGC_params.n_stages;
tom@455 215 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
dicklyon@462 216 decim = 1;
dicklyon@462 217 AGC_coeffs.decimation = AGC_params.decimation;
dicklyon@462 218
dicklyon@462 219 total_DC_gain = 0;
tom@455 220 for stage = 1:n_AGC_stages
dicklyon@464 221 tau = AGC_params.time_constants(stage); % time constant in seconds
dicklyon@464 222 decim = decim * AGC_params.decimation(stage); % net decim to this stage
tom@455 223 % epsilon is how much new input to take at each update step:
tom@455 224 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
dicklyon@462 225 % effective number of smoothings in a time constant:
dicklyon@464 226 ntimes = tau * (fs / decim); % typically 5 to 50
dicklyon@463 227
dicklyon@463 228 % decide on target spread (variance) and delay (mean) of impulse
dicklyon@463 229 % response as a distribution to be convolved ntimes:
dicklyon@464 230 % TODO (dicklyon): specify spread and delay instead of scales???
dicklyon@463 231 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
dicklyon@463 232 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
dicklyon@463 233
dicklyon@464 234 % get pole positions to better match intended spread and delay of
dicklyon@464 235 % [[geometric distribution]] in each direction (see wikipedia)
dicklyon@463 236 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
dicklyon@463 237 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
dicklyon@463 238 dp = delay * (1 - 2*p +p^2)/2;
dicklyon@463 239 polez1 = p - dp;
dicklyon@463 240 polez2 = p + dp;
dicklyon@462 241 AGC_coeffs.AGC_polez1(stage) = polez1;
dicklyon@462 242 AGC_coeffs.AGC_polez2(stage) = polez2;
dicklyon@462 243
dicklyon@464 244 % try a 3- or 5-tap FIR as an alternative to the double exponential:
dicklyon@464 245 n_taps = 0;
dicklyon@464 246 FIR_OK = 0;
dicklyon@464 247 n_iterations = 1;
dicklyon@464 248 while ~FIR_OK
dicklyon@464 249 switch n_taps
dicklyon@464 250 case 0
dicklyon@464 251 % first attempt a 3-point FIR to apply once:
dicklyon@464 252 n_taps = 3;
dicklyon@464 253 case 3
dicklyon@464 254 % second time through, go wider but stick to 1 iteration
dicklyon@464 255 n_taps = 5;
dicklyon@464 256 case 5
dicklyon@464 257 % apply FIR multiple times instead of going wider:
dicklyon@464 258 n_iterations = n_iterations + 1;
dicklyon@464 259 if n_iterations > 16
dicklyon@464 260 error('Too many n_iterations in CARFAC_DesignAGC');
dicklyon@464 261 end
dicklyon@464 262 otherwise
dicklyon@464 263 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
dicklyon@464 264 % and in Design_FIR_coeffs
dicklyon@464 265 error('Bad n_taps in CARFAC_DesignAGC');
dicklyon@462 266 end
dicklyon@464 267 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
dicklyon@464 268 n_taps, spread_sq, delay, n_iterations);
dicklyon@462 269 end
dicklyon@464 270 % when FIR_OK, store the resulting FIR design in coeffs:
dicklyon@462 271 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
dicklyon@462 272 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
dicklyon@462 273 AGC_coeffs.AGC_n_taps(stage) = n_taps;
dicklyon@462 274
dicklyon@464 275 % accumulate DC gains from all the stages, accounting for stage_gain:
dicklyon@462 276 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
dicklyon@462 277
dicklyon@464 278 % TODO (dicklyon) -- is this the best binaural mixing plan?
dicklyon@462 279 if stage == 1
dicklyon@462 280 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
dicklyon@462 281 else
dicklyon@462 282 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
dicklyon@462 283 (tau * (fs / decim));
dicklyon@462 284 end
tom@455 285 end
tom@455 286
dicklyon@463 287 AGC_coeffs.AGC_gain = total_DC_gain;
dicklyon@462 288
dicklyon@464 289 % % print some results
dicklyon@464 290 % AGC_coeffs
dicklyon@464 291 % AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
dicklyon@464 292
dicklyon@464 293
dicklyon@464 294 %%
dicklyon@464 295 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
dicklyon@464 296 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
dicklyon@464 297
dicklyon@464 298 % reduce mean and variance of smoothing distribution by n_iterations:
dicklyon@464 299 mn = mn / n_iter;
dicklyon@464 300 var = var / n_iter;
dicklyon@464 301 switch n_taps
dicklyon@464 302 case 3
dicklyon@464 303 % based on solving to match mean and variance of [a, 1-a-b, b]:
dicklyon@464 304 a = (var + mn*mn - mn) / 2;
dicklyon@464 305 b = (var + mn*mn + mn) / 2;
dicklyon@464 306 FIR = [a, 1 - a - b, b];
dicklyon@464 307 OK = FIR(2) >= 0.2;
dicklyon@464 308 case 5
dicklyon@464 309 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
dicklyon@464 310 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
dicklyon@464 311 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
dicklyon@464 312 % first and last coeffs are implicitly duplicated to make 5-point FIR:
dicklyon@464 313 FIR = [a/2, 1 - a - b, b/2];
dicklyon@464 314 OK = FIR(2) >= 0.1;
dicklyon@464 315 otherwise
dicklyon@464 316 error('Bad n_taps in AGC_spatial_FIR');
dicklyon@464 317 end
dicklyon@462 318
tom@455 319
tom@455 320 %% the IHC design coeffs:
tom@455 321 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
tom@455 322
tom@455 323 if IHC_params.just_hwr
tom@455 324 IHC_coeffs = struct('just_hwr', 1);
tom@455 325 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
tom@455 326 else
tom@455 327 if IHC_params.one_cap
tom@455 328 IHC_coeffs = struct(...
tom@455 329 'just_hwr', 0, ...
tom@455 330 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@455 331 'out_rate', 1 / (IHC_params.tau_out * fs), ...
tom@455 332 'in_rate', 1 / (IHC_params.tau_in * fs), ...
tom@455 333 'one_cap', IHC_params.one_cap);
tom@455 334 else
tom@455 335 IHC_coeffs = struct(...
tom@455 336 'just_hwr', 0, ...
tom@455 337 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
tom@455 338 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
tom@455 339 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
tom@455 340 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
tom@455 341 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
tom@455 342 'one_cap', IHC_params.one_cap);
tom@455 343 end
tom@455 344
tom@455 345 % run one channel to convergence to get rest state:
tom@455 346 IHC_coeffs.rest_output = 0;
tom@455 347 IHC_state = struct( ...
tom@455 348 'cap_voltage', 0, ...
tom@455 349 'cap1_voltage', 0, ...
tom@455 350 'cap2_voltage', 0, ...
tom@455 351 'lpf1_state', 0, ...
tom@455 352 'lpf2_state', 0, ...
tom@455 353 'ihc_accum', 0);
tom@455 354
tom@455 355 IHC_in = 0;
tom@455 356 for k = 1:30000
tom@455 357 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@455 358 end
tom@455 359
tom@455 360 IHC_coeffs.rest_output = IHC_out;
tom@455 361 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
tom@455 362 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
tom@455 363 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
tom@455 364
tom@455 365 LARGE = 2;
tom@455 366 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
tom@455 367 for k = 1:30000
tom@455 368 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
tom@455 369 prev_IHC_out = IHC_out;
tom@455 370 IHC_in = -IHC_in;
tom@455 371 end
tom@455 372
tom@455 373 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
tom@455 374 end
tom@455 375
tom@455 376 %%
tom@455 377 % default design result, running this function with no args, should look
tom@455 378 % like this, before CARFAC_Init puts state storage into it:
tom@455 379 %
dicklyon@462 380 %
tom@455 381 % CF = CARFAC_Design
tom@455 382 % CF.filter_params
tom@455 383 % CF.AGC_params
tom@455 384 % CF.filter_coeffs
tom@455 385 % CF.AGC_coeffs
tom@455 386 % CF.IHC_coeffs
tom@455 387 %
tom@455 388 % CF =
tom@455 389 % fs: 22050
tom@455 390 % filter_params: [1x1 struct]
tom@455 391 % AGC_params: [1x1 struct]
tom@455 392 % IHC_params: [1x1 struct]
tom@455 393 % n_ch: 96
tom@455 394 % pole_freqs: [96x1 double]
tom@455 395 % filter_coeffs: [1x1 struct]
tom@455 396 % AGC_coeffs: [1x1 struct]
tom@455 397 % IHC_coeffs: [1x1 struct]
tom@455 398 % n_mics: 0
tom@455 399 % ans =
tom@455 400 % velocity_scale: 0.2000
dicklyon@462 401 % v_offset: 0.0100
dicklyon@462 402 % v2_corner: 0.2000
dicklyon@462 403 % v_damp_max: 0.0100
tom@455 404 % min_zeta: 0.1200
tom@455 405 % first_pole_theta: 2.4504
tom@455 406 % zero_ratio: 1.4142
tom@455 407 % ERB_per_step: 0.3333
tom@455 408 % min_pole_Hz: 40
tom@455 409 % ans =
tom@455 410 % n_stages: 4
tom@455 411 % time_constants: [0.0020 0.0080 0.0320 0.1280]
tom@455 412 % AGC_stage_gain: 2
dicklyon@462 413 % decimation: [8 2 2 2]
dicklyon@462 414 % AGC1_scales: [1 2 4 8]
dicklyon@462 415 % AGC2_scales: [1.5000 3 6 12]
tom@455 416 % detect_scale: 0.1500
dicklyon@462 417 % AGC_mix_coeff: 0.3500
tom@455 418 % ans =
tom@455 419 % velocity_scale: 0.2000
dicklyon@462 420 % v_offset: 0.0100
dicklyon@462 421 % v2_corner: 0.2000
dicklyon@462 422 % v_damp_max: 0.0100
tom@455 423 % r_coeffs: [96x1 double]
tom@455 424 % a_coeffs: [96x1 double]
tom@455 425 % c_coeffs: [96x1 double]
tom@455 426 % h_coeffs: [96x1 double]
tom@455 427 % g_coeffs: [96x1 double]
tom@455 428 % ans =
dicklyon@462 429 % AGC_stage_gain: 2
dicklyon@462 430 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
dicklyon@462 431 % decimation: [8 2 2 2]
dicklyon@462 432 % AGC_spatial_iterations: [1 1 2 3]
dicklyon@462 433 % AGC_spatial_FIR: [3x4 double]
dicklyon@462 434 % AGC_n_taps: [3 5 5 5]
dicklyon@462 435 % AGC_mix_coeffs: [0 0.0317 0.0159 0.0079]
dicklyon@462 436 % AGC_gain: 15
dicklyon@462 437 % detect_scale: 0.0664
tom@455 438 % ans =
dicklyon@462 439 % just_hwr: 0
tom@455 440 % lpf_coeff: 0.4327
tom@455 441 % out1_rate: 0.0023
tom@455 442 % in1_rate: 0.0023
tom@455 443 % out2_rate: 0.0091
tom@455 444 % in2_rate: 0.0091
tom@455 445 % one_cap: 0
tom@455 446 % rest_output: 0.0365
tom@455 447 % rest_cap: 0
tom@455 448 % rest_cap1: 0.9635
tom@455 449 % rest_cap2: 0.9269
dicklyon@462 450 % saturation_output: 0.1507
tom@455 451
tom@455 452