tom@455
|
1 % Copyright 2012, Google, Inc.
|
tom@455
|
2 % Author: Richard F. Lyon
|
tom@455
|
3 %
|
tom@455
|
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
|
tom@455
|
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
tom@455
|
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
|
tom@455
|
7 %
|
tom@455
|
8 % Licensed under the Apache License, Version 2.0 (the "License");
|
tom@455
|
9 % you may not use this file except in compliance with the License.
|
tom@455
|
10 % You may obtain a copy of the License at
|
tom@455
|
11 %
|
tom@455
|
12 % http://www.apache.org/licenses/LICENSE-2.0
|
tom@455
|
13 %
|
tom@455
|
14 % Unless required by applicable law or agreed to in writing, software
|
tom@455
|
15 % distributed under the License is distributed on an "AS IS" BASIS,
|
tom@455
|
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tom@455
|
17 % See the License for the specific language governing permissions and
|
tom@455
|
18 % limitations under the License.
|
tom@455
|
19
|
tom@455
|
20 function CF = CARFAC_Design(fs, CF_filter_params, ...
|
tom@455
|
21 CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
|
tom@455
|
22 % function CF = CARFAC_Design(fs, CF_filter_params, ...
|
tom@455
|
23 % CF_AGC_params, ERB_break_freq, ERB_Q, CF_IHC_params)
|
tom@455
|
24 %
|
tom@455
|
25 % This function designs the CARFAC (Cascade of Asymmetric Resonators with
|
tom@455
|
26 % Fast-Acting Compression); that is, it take bundles of parameters and
|
tom@455
|
27 % computes all the filter coefficients needed to run it.
|
tom@455
|
28 %
|
tom@455
|
29 % fs is sample rate (per second)
|
tom@455
|
30 % CF_filter_params bundles all the pole-zero filter cascade parameters
|
tom@455
|
31 % CF_AGC_params bundles all the automatic gain control parameters
|
tom@455
|
32 % CF_IHC_params bundles all the inner hair cell parameters
|
tom@455
|
33 %
|
tom@455
|
34 % See other functions for designing and characterizing the CARFAC:
|
tom@455
|
35 % [naps, CF] = CARFAC_Run(CF, input_waves)
|
tom@455
|
36 % transfns = CARFAC_Transfer_Functions(CF, to_channels, from_channels)
|
tom@455
|
37 %
|
tom@455
|
38 % Defaults to Glasberg & Moore's ERB curve:
|
tom@455
|
39 % ERB_break_freq = 1000/4.37; % 228.833
|
tom@455
|
40 % ERB_Q = 1000/(24.7*4.37); % 9.2645
|
tom@455
|
41 %
|
tom@455
|
42 % All args are defaultable; for sample/default args see the code; they
|
tom@455
|
43 % make 96 channels at default fs = 22050, 114 channels at 44100.
|
tom@455
|
44
|
tom@455
|
45 if nargin < 6
|
tom@455
|
46 % HACK: these constant control the defaults
|
tom@455
|
47 one_cap = 0; % bool; 0 for new two-cap hack
|
tom@455
|
48 just_hwr = 0; % book; 0 for normal/fancy IHC; 1 for HWR
|
tom@455
|
49 if just_hwr
|
tom@455
|
50 CF_IHC_params = struct('just_hwr', 1); % just a simple HWR
|
tom@455
|
51 else
|
tom@455
|
52 if one_cap
|
tom@455
|
53 CF_IHC_params = struct( ...
|
dicklyon@462
|
54 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@455
|
55 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@455
|
56 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@455
|
57 'tau_out', 0.0005, ... % depletion tau is pretty fast
|
tom@455
|
58 'tau_in', 0.010 ); % recovery tau is slower
|
tom@455
|
59 else
|
tom@455
|
60 CF_IHC_params = struct( ...
|
dicklyon@462
|
61 'just_hwr', just_hwr, ... % not just a simple HWR
|
tom@455
|
62 'one_cap', one_cap, ... % bool; 0 for new two-cap hack
|
tom@455
|
63 'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
|
tom@455
|
64 'tau1_out', 0.020, ... % depletion tau is pretty fast
|
tom@455
|
65 'tau1_in', 0.020, ... % recovery tau is slower
|
tom@455
|
66 'tau2_out', 0.005, ... % depletion tau is pretty fast
|
tom@455
|
67 'tau2_in', 0.005 ); % recovery tau is slower
|
tom@455
|
68 end
|
tom@455
|
69 end
|
tom@455
|
70 end
|
tom@455
|
71
|
tom@455
|
72 if nargin < 5
|
tom@455
|
73 % Ref: Glasberg and Moore: Hearing Research, 47 (1990), 103-138
|
tom@455
|
74 % ERB = 24.7 * (1 + 4.37 * CF_Hz / 1000);
|
tom@455
|
75 ERB_Q = 1000/(24.7*4.37); % 9.2645
|
tom@455
|
76 if nargin < 4
|
tom@455
|
77 ERB_break_freq = 1000/4.37; % 228.833
|
tom@455
|
78 end
|
tom@455
|
79 end
|
tom@455
|
80
|
tom@455
|
81 if nargin < 3
|
tom@455
|
82 CF_AGC_params = struct( ...
|
tom@455
|
83 'n_stages', 4, ...
|
tom@455
|
84 'time_constants', [1, 4, 16, 64]*0.002, ...
|
tom@455
|
85 'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
|
dicklyon@462
|
86 'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
|
dicklyon@463
|
87 'AGC1_scales', [1, 2, 4, 6]*1, ... % in units of channels
|
dicklyon@463
|
88 'AGC2_scales', [1, 2, 4, 6]*1.5, ... % spread more toward base
|
tom@455
|
89 'detect_scale', 0.15, ... % the desired damping range
|
dicklyon@462
|
90 'AGC_mix_coeff', 0.5);
|
tom@455
|
91 end
|
tom@455
|
92
|
tom@455
|
93 if nargin < 2
|
tom@455
|
94 CF_filter_params = struct( ...
|
dicklyon@462
|
95 'velocity_scale', 0.2, ... % for the "cubic" velocity nonlinearity
|
dicklyon@462
|
96 'v_offset', 0.01, ... % offset gives a quadratic part
|
dicklyon@462
|
97 'v2_corner', 0.2, ... % corner for essential nonlin
|
dicklyon@462
|
98 'v_damp_max', 0.01, ... % damping delta damping from velocity nonlin
|
tom@455
|
99 'min_zeta', 0.12, ...
|
dicklyon@467
|
100 'first_pole_theta', 0.85*pi, ...
|
dicklyon@467
|
101 'zero_ratio', sqrt(2), ... % how far zero is above pole
|
dicklyon@467
|
102 'ERB_per_step', 0.5, ... % assume G&M's ERB formula
|
dicklyon@467
|
103 'min_pole_Hz', 30 );
|
tom@455
|
104 end
|
tom@455
|
105
|
tom@455
|
106 if nargin < 1
|
tom@455
|
107 fs = 22050;
|
tom@455
|
108 end
|
tom@455
|
109
|
tom@455
|
110 % first figure out how many filter stages (PZFC/CARFAC channels):
|
tom@455
|
111 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
|
tom@455
|
112 n_ch = 0;
|
tom@455
|
113 while pole_Hz > CF_filter_params.min_pole_Hz
|
tom@455
|
114 n_ch = n_ch + 1;
|
tom@455
|
115 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
|
tom@455
|
116 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
|
tom@455
|
117 end
|
tom@455
|
118 % Now we have n_ch, the number of channels, so can make the array
|
tom@455
|
119 % and compute all the frequencies again to put into it:
|
tom@455
|
120 pole_freqs = zeros(n_ch, 1);
|
tom@455
|
121 pole_Hz = CF_filter_params.first_pole_theta * fs / (2*pi);
|
tom@455
|
122 for ch = 1:n_ch
|
tom@455
|
123 pole_freqs(ch) = pole_Hz;
|
tom@455
|
124 pole_Hz = pole_Hz - CF_filter_params.ERB_per_step * ...
|
tom@455
|
125 ERB_Hz(pole_Hz, ERB_break_freq, ERB_Q);
|
tom@455
|
126 end
|
tom@455
|
127 % now we have n_ch, the number of channels, and pole_freqs array
|
tom@455
|
128
|
dicklyon@467
|
129 max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
|
dicklyon@467
|
130
|
tom@455
|
131 CF = struct( ...
|
tom@455
|
132 'fs', fs, ...
|
dicklyon@467
|
133 'max_channels_per_octave', max_channels_per_octave, ...
|
tom@455
|
134 'filter_params', CF_filter_params, ...
|
tom@455
|
135 'AGC_params', CF_AGC_params, ...
|
tom@455
|
136 'IHC_params', CF_IHC_params, ...
|
tom@455
|
137 'n_ch', n_ch, ...
|
tom@455
|
138 'pole_freqs', pole_freqs, ...
|
tom@455
|
139 'filter_coeffs', CARFAC_DesignFilters(CF_filter_params, fs, pole_freqs), ...
|
tom@455
|
140 'AGC_coeffs', CARFAC_DesignAGC(CF_AGC_params, fs), ...
|
tom@455
|
141 'IHC_coeffs', CARFAC_DesignIHC(CF_IHC_params, fs), ...
|
tom@455
|
142 'n_mics', 0 );
|
tom@455
|
143
|
tom@455
|
144 % adjust the AGC_coeffs to account for IHC saturation level to get right
|
tom@455
|
145 % damping change as specified in CF.AGC_params.detect_scale
|
tom@455
|
146 CF.AGC_coeffs.detect_scale = CF.AGC_params.detect_scale / ...
|
tom@455
|
147 (CF.IHC_coeffs.saturation_output * CF.AGC_coeffs.AGC_gain);
|
tom@455
|
148
|
tom@455
|
149 %% Design the filter coeffs:
|
tom@455
|
150 function filter_coeffs = CARFAC_DesignFilters(filter_params, fs, pole_freqs)
|
tom@455
|
151
|
tom@455
|
152 n_ch = length(pole_freqs);
|
tom@455
|
153
|
tom@455
|
154 % the filter design coeffs:
|
tom@455
|
155
|
dicklyon@462
|
156 filter_coeffs = struct('velocity_scale', filter_params.velocity_scale, ...
|
dicklyon@462
|
157 'v_offset', filter_params.v_offset, ...
|
dicklyon@462
|
158 'v2_corner', filter_params.v2_corner, ...
|
dicklyon@462
|
159 'v_damp_max', filter_params.v_damp_max ...
|
dicklyon@462
|
160 );
|
tom@455
|
161
|
tom@455
|
162 filter_coeffs.r_coeffs = zeros(n_ch, 1);
|
tom@455
|
163 filter_coeffs.a_coeffs = zeros(n_ch, 1);
|
tom@455
|
164 filter_coeffs.c_coeffs = zeros(n_ch, 1);
|
tom@455
|
165 filter_coeffs.h_coeffs = zeros(n_ch, 1);
|
tom@455
|
166 filter_coeffs.g_coeffs = zeros(n_ch, 1);
|
tom@455
|
167
|
tom@455
|
168 % zero_ratio comes in via h. In book's circuit D, zero_ratio is 1/sqrt(a),
|
tom@455
|
169 % and that a is here 1 / (1+f) where h = f*c.
|
tom@455
|
170 % solve for f: 1/zero_ratio^2 = 1 / (1+f)
|
tom@455
|
171 % zero_ratio^2 = 1+f => f = zero_ratio^2 - 1
|
tom@455
|
172 f = filter_params.zero_ratio^2 - 1; % nominally 1 for half-octave
|
tom@455
|
173
|
tom@455
|
174 % Make pole positions, s and c coeffs, h and g coeffs, etc.,
|
tom@455
|
175 % which mostly depend on the pole angle theta:
|
tom@455
|
176 theta = pole_freqs .* (2 * pi / fs);
|
tom@455
|
177
|
tom@455
|
178 % different possible interpretations for min-damping r:
|
tom@455
|
179 % r = exp(-theta * CF_filter_params.min_zeta).
|
tom@455
|
180 % Using sin gives somewhat higher Q at highest thetas.
|
dicklyon@467
|
181 ff = 5; % fudge factor for theta distortion; at least 1.0
|
dicklyon@467
|
182 r = (1 - ff*sin(theta/ff) * filter_params.min_zeta);
|
tom@455
|
183 filter_coeffs.r_coeffs = r;
|
tom@455
|
184
|
tom@455
|
185 % undamped coupled-form coefficients:
|
tom@455
|
186 filter_coeffs.a_coeffs = cos(theta);
|
tom@455
|
187 filter_coeffs.c_coeffs = sin(theta);
|
tom@455
|
188
|
tom@455
|
189 % the zeros follow via the h_coeffs
|
tom@455
|
190 h = sin(theta) .* f;
|
tom@455
|
191 filter_coeffs.h_coeffs = h;
|
tom@455
|
192
|
dicklyon@467
|
193 % % unity gain at min damping, radius r:
|
dicklyon@467
|
194 g = (1 - 2*r.*cos(theta) + r.^2) ./ ...
|
dicklyon@463
|
195 (1 - 2*r .* cos(theta) + h .* r .* sin(theta) + r.^2);
|
dicklyon@467
|
196 % or assume r is 1, for the zero-damping gain g0:
|
dicklyon@467
|
197 g0 = (2 - 2*cos(theta)) ./ ...
|
dicklyon@467
|
198 (2 - 2 * cos(theta) + h .* sin(theta));
|
tom@455
|
199
|
dicklyon@467
|
200 filter_coeffs.g_coeffs = g0;
|
dicklyon@467
|
201 % make coeffs that can correct g0 to make g based on (1 - r).^2:
|
dicklyon@467
|
202 filter_coeffs.gr_coeffs = ((g ./ g0) - 1) ./ ((1 - r).^2);
|
tom@455
|
203
|
tom@455
|
204 %% the AGC design coeffs:
|
tom@455
|
205 function AGC_coeffs = CARFAC_DesignAGC(AGC_params, fs)
|
tom@455
|
206
|
dicklyon@462
|
207 AGC_coeffs = struct('AGC_stage_gain', AGC_params.AGC_stage_gain);
|
tom@455
|
208
|
tom@455
|
209 % AGC1 pass is smoothing from base toward apex;
|
tom@455
|
210 % AGC2 pass is back, which is done first now
|
tom@455
|
211 AGC1_scales = AGC_params.AGC1_scales;
|
tom@455
|
212 AGC2_scales = AGC_params.AGC2_scales;
|
tom@455
|
213
|
tom@455
|
214 n_AGC_stages = AGC_params.n_stages;
|
tom@455
|
215 AGC_coeffs.AGC_epsilon = zeros(1, n_AGC_stages); % the 1/(tau*fs) roughly
|
dicklyon@462
|
216 decim = 1;
|
dicklyon@462
|
217 AGC_coeffs.decimation = AGC_params.decimation;
|
dicklyon@462
|
218
|
dicklyon@462
|
219 total_DC_gain = 0;
|
tom@455
|
220 for stage = 1:n_AGC_stages
|
dicklyon@464
|
221 tau = AGC_params.time_constants(stage); % time constant in seconds
|
dicklyon@464
|
222 decim = decim * AGC_params.decimation(stage); % net decim to this stage
|
tom@455
|
223 % epsilon is how much new input to take at each update step:
|
tom@455
|
224 AGC_coeffs.AGC_epsilon(stage) = 1 - exp(-decim / (tau * fs));
|
dicklyon@462
|
225 % effective number of smoothings in a time constant:
|
dicklyon@464
|
226 ntimes = tau * (fs / decim); % typically 5 to 50
|
dicklyon@463
|
227
|
dicklyon@463
|
228 % decide on target spread (variance) and delay (mean) of impulse
|
dicklyon@463
|
229 % response as a distribution to be convolved ntimes:
|
dicklyon@464
|
230 % TODO (dicklyon): specify spread and delay instead of scales???
|
dicklyon@463
|
231 delay = (AGC2_scales(stage) - AGC1_scales(stage)) / ntimes;
|
dicklyon@463
|
232 spread_sq = (AGC1_scales(stage)^2 + AGC2_scales(stage)^2) / ntimes;
|
dicklyon@463
|
233
|
dicklyon@464
|
234 % get pole positions to better match intended spread and delay of
|
dicklyon@464
|
235 % [[geometric distribution]] in each direction (see wikipedia)
|
dicklyon@463
|
236 u = 1 + 1 / spread_sq; % these are based on off-line algebra hacking.
|
dicklyon@463
|
237 p = u - sqrt(u^2 - 1); % pole that would give spread if used twice.
|
dicklyon@463
|
238 dp = delay * (1 - 2*p +p^2)/2;
|
dicklyon@463
|
239 polez1 = p - dp;
|
dicklyon@463
|
240 polez2 = p + dp;
|
dicklyon@462
|
241 AGC_coeffs.AGC_polez1(stage) = polez1;
|
dicklyon@462
|
242 AGC_coeffs.AGC_polez2(stage) = polez2;
|
dicklyon@462
|
243
|
dicklyon@464
|
244 % try a 3- or 5-tap FIR as an alternative to the double exponential:
|
dicklyon@464
|
245 n_taps = 0;
|
dicklyon@464
|
246 FIR_OK = 0;
|
dicklyon@464
|
247 n_iterations = 1;
|
dicklyon@464
|
248 while ~FIR_OK
|
dicklyon@464
|
249 switch n_taps
|
dicklyon@464
|
250 case 0
|
dicklyon@464
|
251 % first attempt a 3-point FIR to apply once:
|
dicklyon@464
|
252 n_taps = 3;
|
dicklyon@464
|
253 case 3
|
dicklyon@464
|
254 % second time through, go wider but stick to 1 iteration
|
dicklyon@464
|
255 n_taps = 5;
|
dicklyon@464
|
256 case 5
|
dicklyon@464
|
257 % apply FIR multiple times instead of going wider:
|
dicklyon@464
|
258 n_iterations = n_iterations + 1;
|
dicklyon@464
|
259 if n_iterations > 16
|
dicklyon@464
|
260 error('Too many n_iterations in CARFAC_DesignAGC');
|
dicklyon@464
|
261 end
|
dicklyon@464
|
262 otherwise
|
dicklyon@464
|
263 % to do other n_taps would need changes in CARFAC_Spatial_Smooth
|
dicklyon@464
|
264 % and in Design_FIR_coeffs
|
dicklyon@464
|
265 error('Bad n_taps in CARFAC_DesignAGC');
|
dicklyon@462
|
266 end
|
dicklyon@464
|
267 [AGC_spatial_FIR, FIR_OK] = Design_FIR_coeffs( ...
|
dicklyon@464
|
268 n_taps, spread_sq, delay, n_iterations);
|
dicklyon@462
|
269 end
|
dicklyon@464
|
270 % when FIR_OK, store the resulting FIR design in coeffs:
|
dicklyon@462
|
271 AGC_coeffs.AGC_spatial_iterations(stage) = n_iterations;
|
dicklyon@462
|
272 AGC_coeffs.AGC_spatial_FIR(:,stage) = AGC_spatial_FIR;
|
dicklyon@462
|
273 AGC_coeffs.AGC_n_taps(stage) = n_taps;
|
dicklyon@462
|
274
|
dicklyon@464
|
275 % accumulate DC gains from all the stages, accounting for stage_gain:
|
dicklyon@462
|
276 total_DC_gain = total_DC_gain + AGC_params.AGC_stage_gain^(stage-1);
|
dicklyon@462
|
277
|
dicklyon@464
|
278 % TODO (dicklyon) -- is this the best binaural mixing plan?
|
dicklyon@462
|
279 if stage == 1
|
dicklyon@462
|
280 AGC_coeffs.AGC_mix_coeffs(stage) = 0;
|
dicklyon@462
|
281 else
|
dicklyon@462
|
282 AGC_coeffs.AGC_mix_coeffs(stage) = AGC_params.AGC_mix_coeff / ...
|
dicklyon@462
|
283 (tau * (fs / decim));
|
dicklyon@462
|
284 end
|
tom@455
|
285 end
|
tom@455
|
286
|
dicklyon@463
|
287 AGC_coeffs.AGC_gain = total_DC_gain;
|
dicklyon@462
|
288
|
dicklyon@464
|
289 % % print some results
|
dicklyon@464
|
290 % AGC_coeffs
|
dicklyon@464
|
291 % AGC_spatial_FIR = AGC_coeffs.AGC_spatial_FIR
|
dicklyon@464
|
292
|
dicklyon@464
|
293
|
dicklyon@464
|
294 %%
|
dicklyon@464
|
295 function [FIR, OK] = Design_FIR_coeffs(n_taps, var, mn, n_iter)
|
dicklyon@464
|
296 % function [FIR, OK] = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iter)
|
dicklyon@464
|
297
|
dicklyon@464
|
298 % reduce mean and variance of smoothing distribution by n_iterations:
|
dicklyon@464
|
299 mn = mn / n_iter;
|
dicklyon@464
|
300 var = var / n_iter;
|
dicklyon@464
|
301 switch n_taps
|
dicklyon@464
|
302 case 3
|
dicklyon@464
|
303 % based on solving to match mean and variance of [a, 1-a-b, b]:
|
dicklyon@464
|
304 a = (var + mn*mn - mn) / 2;
|
dicklyon@464
|
305 b = (var + mn*mn + mn) / 2;
|
dicklyon@464
|
306 FIR = [a, 1 - a - b, b];
|
dicklyon@464
|
307 OK = FIR(2) >= 0.2;
|
dicklyon@464
|
308 case 5
|
dicklyon@464
|
309 % based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
|
dicklyon@464
|
310 a = ((var + mn*mn)*2/5 - mn*2/3) / 2;
|
dicklyon@464
|
311 b = ((var + mn*mn)*2/5 + mn*2/3) / 2;
|
dicklyon@464
|
312 % first and last coeffs are implicitly duplicated to make 5-point FIR:
|
dicklyon@464
|
313 FIR = [a/2, 1 - a - b, b/2];
|
dicklyon@464
|
314 OK = FIR(2) >= 0.1;
|
dicklyon@464
|
315 otherwise
|
dicklyon@464
|
316 error('Bad n_taps in AGC_spatial_FIR');
|
dicklyon@464
|
317 end
|
dicklyon@462
|
318
|
tom@455
|
319
|
tom@455
|
320 %% the IHC design coeffs:
|
tom@455
|
321 function IHC_coeffs = CARFAC_DesignIHC(IHC_params, fs)
|
tom@455
|
322
|
tom@455
|
323 if IHC_params.just_hwr
|
tom@455
|
324 IHC_coeffs = struct('just_hwr', 1);
|
tom@455
|
325 IHC_coeffs.saturation_output = 10; % HACK: assume some max out
|
tom@455
|
326 else
|
tom@455
|
327 if IHC_params.one_cap
|
tom@455
|
328 IHC_coeffs = struct(...
|
tom@455
|
329 'just_hwr', 0, ...
|
tom@455
|
330 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@455
|
331 'out_rate', 1 / (IHC_params.tau_out * fs), ...
|
tom@455
|
332 'in_rate', 1 / (IHC_params.tau_in * fs), ...
|
tom@455
|
333 'one_cap', IHC_params.one_cap);
|
tom@455
|
334 else
|
tom@455
|
335 IHC_coeffs = struct(...
|
tom@455
|
336 'just_hwr', 0, ...
|
tom@455
|
337 'lpf_coeff', 1 - exp(-1/(IHC_params.tau_lpf * fs)), ...
|
tom@455
|
338 'out1_rate', 1 / (IHC_params.tau1_out * fs), ...
|
tom@455
|
339 'in1_rate', 1 / (IHC_params.tau1_in * fs), ...
|
tom@455
|
340 'out2_rate', 1 / (IHC_params.tau2_out * fs), ...
|
tom@455
|
341 'in2_rate', 1 / (IHC_params.tau2_in * fs), ...
|
tom@455
|
342 'one_cap', IHC_params.one_cap);
|
tom@455
|
343 end
|
tom@455
|
344
|
tom@455
|
345 % run one channel to convergence to get rest state:
|
tom@455
|
346 IHC_coeffs.rest_output = 0;
|
tom@455
|
347 IHC_state = struct( ...
|
tom@455
|
348 'cap_voltage', 0, ...
|
tom@455
|
349 'cap1_voltage', 0, ...
|
tom@455
|
350 'cap2_voltage', 0, ...
|
tom@455
|
351 'lpf1_state', 0, ...
|
tom@455
|
352 'lpf2_state', 0, ...
|
tom@455
|
353 'ihc_accum', 0);
|
tom@455
|
354
|
tom@455
|
355 IHC_in = 0;
|
tom@455
|
356 for k = 1:30000
|
tom@455
|
357 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
|
tom@455
|
358 end
|
tom@455
|
359
|
tom@455
|
360 IHC_coeffs.rest_output = IHC_out;
|
tom@455
|
361 IHC_coeffs.rest_cap = IHC_state.cap_voltage;
|
tom@455
|
362 IHC_coeffs.rest_cap1 = IHC_state.cap1_voltage;
|
tom@455
|
363 IHC_coeffs.rest_cap2 = IHC_state.cap2_voltage;
|
tom@455
|
364
|
tom@455
|
365 LARGE = 2;
|
tom@455
|
366 IHC_in = LARGE; % "Large" saturating input to IHC; make it alternate
|
tom@455
|
367 for k = 1:30000
|
tom@455
|
368 [IHC_out, IHC_state] = CARFAC_IHCStep(IHC_in, IHC_coeffs, IHC_state);
|
tom@455
|
369 prev_IHC_out = IHC_out;
|
tom@455
|
370 IHC_in = -IHC_in;
|
tom@455
|
371 end
|
tom@455
|
372
|
tom@455
|
373 IHC_coeffs.saturation_output = (IHC_out + prev_IHC_out) / 2;
|
tom@455
|
374 end
|
tom@455
|
375
|
tom@455
|
376 %%
|
tom@455
|
377 % default design result, running this function with no args, should look
|
tom@455
|
378 % like this, before CARFAC_Init puts state storage into it:
|
tom@455
|
379 %
|
dicklyon@462
|
380 %
|
tom@455
|
381 % CF = CARFAC_Design
|
tom@455
|
382 % CF.filter_params
|
tom@455
|
383 % CF.AGC_params
|
tom@455
|
384 % CF.filter_coeffs
|
tom@455
|
385 % CF.AGC_coeffs
|
tom@455
|
386 % CF.IHC_coeffs
|
tom@455
|
387 %
|
tom@455
|
388 % CF =
|
tom@455
|
389 % fs: 22050
|
tom@455
|
390 % filter_params: [1x1 struct]
|
tom@455
|
391 % AGC_params: [1x1 struct]
|
tom@455
|
392 % IHC_params: [1x1 struct]
|
tom@455
|
393 % n_ch: 96
|
tom@455
|
394 % pole_freqs: [96x1 double]
|
tom@455
|
395 % filter_coeffs: [1x1 struct]
|
tom@455
|
396 % AGC_coeffs: [1x1 struct]
|
tom@455
|
397 % IHC_coeffs: [1x1 struct]
|
tom@455
|
398 % n_mics: 0
|
tom@455
|
399 % ans =
|
tom@455
|
400 % velocity_scale: 0.2000
|
dicklyon@462
|
401 % v_offset: 0.0100
|
dicklyon@462
|
402 % v2_corner: 0.2000
|
dicklyon@462
|
403 % v_damp_max: 0.0100
|
tom@455
|
404 % min_zeta: 0.1200
|
tom@455
|
405 % first_pole_theta: 2.4504
|
tom@455
|
406 % zero_ratio: 1.4142
|
tom@455
|
407 % ERB_per_step: 0.3333
|
tom@455
|
408 % min_pole_Hz: 40
|
tom@455
|
409 % ans =
|
tom@455
|
410 % n_stages: 4
|
tom@455
|
411 % time_constants: [0.0020 0.0080 0.0320 0.1280]
|
tom@455
|
412 % AGC_stage_gain: 2
|
dicklyon@462
|
413 % decimation: [8 2 2 2]
|
dicklyon@462
|
414 % AGC1_scales: [1 2 4 8]
|
dicklyon@462
|
415 % AGC2_scales: [1.5000 3 6 12]
|
tom@455
|
416 % detect_scale: 0.1500
|
dicklyon@462
|
417 % AGC_mix_coeff: 0.3500
|
tom@455
|
418 % ans =
|
tom@455
|
419 % velocity_scale: 0.2000
|
dicklyon@462
|
420 % v_offset: 0.0100
|
dicklyon@462
|
421 % v2_corner: 0.2000
|
dicklyon@462
|
422 % v_damp_max: 0.0100
|
tom@455
|
423 % r_coeffs: [96x1 double]
|
tom@455
|
424 % a_coeffs: [96x1 double]
|
tom@455
|
425 % c_coeffs: [96x1 double]
|
tom@455
|
426 % h_coeffs: [96x1 double]
|
tom@455
|
427 % g_coeffs: [96x1 double]
|
tom@455
|
428 % ans =
|
dicklyon@462
|
429 % AGC_stage_gain: 2
|
dicklyon@462
|
430 % AGC_epsilon: [0.1659 0.0867 0.0443 0.0224]
|
dicklyon@462
|
431 % decimation: [8 2 2 2]
|
dicklyon@462
|
432 % AGC_spatial_iterations: [1 1 2 3]
|
dicklyon@462
|
433 % AGC_spatial_FIR: [3x4 double]
|
dicklyon@462
|
434 % AGC_n_taps: [3 5 5 5]
|
dicklyon@462
|
435 % AGC_mix_coeffs: [0 0.0317 0.0159 0.0079]
|
dicklyon@462
|
436 % AGC_gain: 15
|
dicklyon@462
|
437 % detect_scale: 0.0664
|
tom@455
|
438 % ans =
|
dicklyon@462
|
439 % just_hwr: 0
|
tom@455
|
440 % lpf_coeff: 0.4327
|
tom@455
|
441 % out1_rate: 0.0023
|
tom@455
|
442 % in1_rate: 0.0023
|
tom@455
|
443 % out2_rate: 0.0091
|
tom@455
|
444 % in2_rate: 0.0091
|
tom@455
|
445 % one_cap: 0
|
tom@455
|
446 % rest_output: 0.0365
|
tom@455
|
447 % rest_cap: 0
|
tom@455
|
448 % rest_cap1: 0.9635
|
tom@455
|
449 % rest_cap2: 0.9269
|
dicklyon@462
|
450 % saturation_output: 0.1507
|
tom@455
|
451
|
tom@455
|
452
|