annotate trunk/experiments/scripts/master.sh @ 335:71c438f9daf7

- Scripts for running recognition experiments using AIM-C and HTK to compare MFCCs against features generated with AIM-C
author tomwalters
date Wed, 04 Aug 2010 06:41:56 +0000
parents
children b6b6b2082760
rev   line source
tomwalters@335 1 #!/bin/bash
tomwalters@335 2 # Copyright 2010 Thomas Walters <tom@acousticscale.org>
tomwalters@335 3 #
tomwalters@335 4 # Run a series of experiments which compare MFCC features generated by HTK to
tomwalters@335 5 # AIM features generated using AIM-C using a series of syllable recogntiton
tomwalters@335 6 # tasks.
tomwalters@335 7 # This script expects the HTK binaries and AIM-C AIMCopy binary to be present
tomwalters@335 8 # in the PATH.
tomwalters@335 9
tomwalters@335 10 # Set these to be the location of your input database, and desired output
tomwalters@335 11 # locations.
tomwalters@335 12 SYLLABLES_DATABASE_TAR=/media/sounds/cnbh-syllables.tar
tomwalters@335 13 SOUNDS_ROOT=/mnt/experiments/sounds/
tomwalters@335 14 FEATURES_ROOT=/mnt/experiments/features/
tomwalters@335 15 HMMS_ROOT=/mnt/experiments/hmms/
tomwalters@335 16
tomwalters@335 17 # Number of cores on the experimental machine. Various scripts will try to use
tomwalters@335 18 # this if it's set.
tomwalters@335 19 NUMBER_OF_CORES=2
tomwalters@335 20
tomwalters@335 21 # Fail if any command fails
tomwalters@335 22 set -e
tomwalters@335 23
tomwalters@335 24 # Fail if any variable is unset
tomwalters@335 25 set -u
tomwalters@335 26
tomwalters@335 27 if [ ! -d $SOUNDS_ROOT ]; then
tomwalters@335 28 mkdir -p $SOUNDS_ROOT
tomwalters@335 29 fi
tomwalters@335 30
tomwalters@335 31 # Untar the CNBH syllables database, and convert the files from FLAC to WAV
tomwalters@335 32 if [ ! -e $SOUNDS_ROOT/.untar_db_success ]; then
tomwalters@335 33 tar -x -C $SOUNDS_ROOT -f $SYLLABLES_DATABASE_TAR
tomwalters@335 34 touch $SOUNDS_ROOT/.untar_db_success
tomwalters@335 35 fi
tomwalters@335 36
tomwalters@335 37 # Convert the database to .WAV format and place it in $SOUNDS_ROOT/clean
tomwalters@335 38 ./cnbh-syllables/convert_flac_to_wave.sh $SOUNDS_ROOT
tomwalters@335 39
tomwalters@335 40 # Generate versions of the CNBH syllables spoke pattern with a range of
tomwalters@335 41 # signal-to-noise ratios (SNRs). The versions are put in the directory
tomwalters@335 42 # ${SOUNDS_ROOT}/${SNR}_dB/ for each SNR in $SNRS.
tomwalters@335 43 SNRS="30 27 24 21 18 15 12 9 6 3 0"
tomwalters@335 44 ./cnbh-syllables/pink_noise.sh $SOUNDS_ROOT/clean/ $SNRS
tomwalters@335 45
tomwalters@335 46 # Make the list of all feature drectories
tomwalters@335 47 FEATURE_DIRS="clean"
tomwalters@335 48 for SNR in $SNRS; do
tomwalters@335 49 FEATURE_DIRS="$FEATURE_DIRS snr_${SNR}dB"
tomwalters@335 50 done
tomwalters@335 51
tomwalters@335 52 # Generate feature sets (for the full range of SNRs in $FEATURE_DIRS)
tomwalters@335 53 # 1. Standard MFCC features
tomwalters@335 54 # 2. AIM features
tomwalters@335 55 # 3. MFCC features with optimal VTLN
tomwalters@335 56 for SOURCE_SNR in $FEATURE_DIRS; do
tomwalters@335 57
tomwalters@335 58 if [ ! -e $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success]
tomwalters@335 59 then
tomwalters@335 60 mkdir -p $FEATURES_ROOT/mfcc/$SOURCE_SNR/
tomwalters@335 61 # Generate the list of files to convert
tomwalters@335 62 ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/
tomwalters@335 63 # Run the conversion
tomwalters@335 64 ./cnbh-syllables/feature_generation/run_hcopy.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $NUMBER_OF_CORES
tomwalters@335 65 touch $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success
tomwalters@335 66 done
tomwalters@335 67
tomwalters@335 68 if [ ! -e $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success]
tomwalters@335 69 then
tomwalters@335 70 mkdir -p $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/
tomwalters@335 71 # Generate the file list and run the conversion (all one step, since this
tomwalters@335 72 # version uses a different configuraiton for each talker)
tomwalters@335 73 ./cnbh-syllables/feature_generation/run_mfcc_vtln_conversion.sh $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/
tomwalters@335 74 touch $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success
tomwalters@335 75 done
tomwalters@335 76
tomwalters@335 77 if [ ! -e $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success]
tomwalters@335 78 then
tomwalters@335 79 mkdir -p $FEATURES_ROOT/aim/$SOURCE_SNR/
tomwalters@335 80 ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/
tomwalters@335 81 # Run the conversion
tomwalters@335 82 ./cnbh-syllables/feature_generation/run_aimcopy.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $NUMBER_OF_CORES
tomwalters@335 83 touch $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success
tomwalters@335 84 done
tomwalters@335 85 done
tomwalters@335 86
tomwalters@335 87 # Now run a bunch of experiments.
tomwalters@335 88 # For each of the feature types, we want to run HMMs with a bunch of
tomwalters@335 89 # parameters.
tomwalters@335 90 TRAINING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"
tomwalters@335 91 TESTING_ITERATIONS="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"
tomwalters@335 92 HMM_STATES="3 4 5 6 7 8"
tomwalters@335 93 HMM_OUTPUT_COMPONENTS=""
tomwalters@335 94
tomwalters@335 95