Mercurial > hg > aimc
comparison trunk/experiments/scripts/master.sh @ 335:71c438f9daf7
- Scripts for running recognition experiments using AIM-C and HTK to compare MFCCs against features generated with AIM-C
author | tomwalters |
---|---|
date | Wed, 04 Aug 2010 06:41:56 +0000 |
parents | |
children | b6b6b2082760 |
comparison
equal
deleted
inserted
replaced
334:4ee5bb246f60 | 335:71c438f9daf7 |
---|---|
1 #!/bin/bash | |
2 # Copyright 2010 Thomas Walters <tom@acousticscale.org> | |
3 # | |
4 # Run a series of experiments which compare MFCC features generated by HTK to | |
5 # AIM features generated using AIM-C using a series of syllable recogntiton | |
6 # tasks. | |
7 # This script expects the HTK binaries and AIM-C AIMCopy binary to be present | |
8 # in the PATH. | |
9 | |
10 # Set these to be the location of your input database, and desired output | |
11 # locations. | |
12 SYLLABLES_DATABASE_TAR=/media/sounds/cnbh-syllables.tar | |
13 SOUNDS_ROOT=/mnt/experiments/sounds/ | |
14 FEATURES_ROOT=/mnt/experiments/features/ | |
15 HMMS_ROOT=/mnt/experiments/hmms/ | |
16 | |
17 # Number of cores on the experimental machine. Various scripts will try to use | |
18 # this if it's set. | |
19 NUMBER_OF_CORES=2 | |
20 | |
21 # Fail if any command fails | |
22 set -e | |
23 | |
24 # Fail if any variable is unset | |
25 set -u | |
26 | |
27 if [ ! -d $SOUNDS_ROOT ]; then | |
28 mkdir -p $SOUNDS_ROOT | |
29 fi | |
30 | |
31 # Untar the CNBH syllables database, and convert the files from FLAC to WAV | |
32 if [ ! -e $SOUNDS_ROOT/.untar_db_success ]; then | |
33 tar -x -C $SOUNDS_ROOT -f $SYLLABLES_DATABASE_TAR | |
34 touch $SOUNDS_ROOT/.untar_db_success | |
35 fi | |
36 | |
37 # Convert the database to .WAV format and place it in $SOUNDS_ROOT/clean | |
38 ./cnbh-syllables/convert_flac_to_wave.sh $SOUNDS_ROOT | |
39 | |
40 # Generate versions of the CNBH syllables spoke pattern with a range of | |
41 # signal-to-noise ratios (SNRs). The versions are put in the directory | |
42 # ${SOUNDS_ROOT}/${SNR}_dB/ for each SNR in $SNRS. | |
43 SNRS="30 27 24 21 18 15 12 9 6 3 0" | |
44 ./cnbh-syllables/pink_noise.sh $SOUNDS_ROOT/clean/ $SNRS | |
45 | |
46 # Make the list of all feature drectories | |
47 FEATURE_DIRS="clean" | |
48 for SNR in $SNRS; do | |
49 FEATURE_DIRS="$FEATURE_DIRS snr_${SNR}dB" | |
50 done | |
51 | |
52 # Generate feature sets (for the full range of SNRs in $FEATURE_DIRS) | |
53 # 1. Standard MFCC features | |
54 # 2. AIM features | |
55 # 3. MFCC features with optimal VTLN | |
56 for SOURCE_SNR in $FEATURE_DIRS; do | |
57 | |
58 if [ ! -e $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success] | |
59 then | |
60 mkdir -p $FEATURES_ROOT/mfcc/$SOURCE_SNR/ | |
61 # Generate the list of files to convert | |
62 ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ | |
63 # Run the conversion | |
64 ./cnbh-syllables/feature_generation/run_hcopy.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $NUMBER_OF_CORES | |
65 touch $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success | |
66 done | |
67 | |
68 if [ ! -e $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success] | |
69 then | |
70 mkdir -p $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ | |
71 # Generate the file list and run the conversion (all one step, since this | |
72 # version uses a different configuraiton for each talker) | |
73 ./cnbh-syllables/feature_generation/run_mfcc_vtln_conversion.sh $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ | |
74 touch $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success | |
75 done | |
76 | |
77 if [ ! -e $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success] | |
78 then | |
79 mkdir -p $FEATURES_ROOT/aim/$SOURCE_SNR/ | |
80 ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ | |
81 # Run the conversion | |
82 ./cnbh-syllables/feature_generation/run_aimcopy.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $NUMBER_OF_CORES | |
83 touch $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success | |
84 done | |
85 done | |
86 | |
87 # Now run a bunch of experiments. | |
88 # For each of the feature types, we want to run HMMs with a bunch of | |
89 # parameters. | |
90 TRAINING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20" | |
91 TESTING_ITERATIONS="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20" | |
92 HMM_STATES="3 4 5 6 7 8" | |
93 HMM_OUTPUT_COMPONENTS="" | |
94 | |
95 |