annotate carfac/carfac.cc @ 645:3f01a136c537

DISALLOW_COPY_AND_ASSIGN in CARFAC classes and fix a few funny indentations.
author ronw@google.com
date Tue, 11 Jun 2013 17:59:08 +0000
parents 16dfff1de47a
children e76951e4da20
rev   line source
alexbrandmeyer@609 1 //
alexbrandmeyer@609 2 // carfac.cc
alexbrandmeyer@609 3 // CARFAC Open Source C++ Library
alexbrandmeyer@609 4 //
alexbrandmeyer@609 5 // Created by Alex Brandmeyer on 5/10/13.
alexbrandmeyer@609 6 //
alexbrandmeyer@609 7 // This C++ file is part of an implementation of Lyon's cochlear model:
alexbrandmeyer@609 8 // "Cascade of Asymmetric Resonators with Fast-Acting Compression"
alexbrandmeyer@609 9 // to supplement Lyon's upcoming book "Human and Machine Hearing"
alexbrandmeyer@609 10 //
alexbrandmeyer@609 11 // Licensed under the Apache License, Version 2.0 (the "License");
alexbrandmeyer@609 12 // you may not use this file except in compliance with the License.
alexbrandmeyer@609 13 // You may obtain a copy of the License at
alexbrandmeyer@609 14 //
alexbrandmeyer@609 15 // http://www.apache.org/licenses/LICENSE-2.0
alexbrandmeyer@609 16 //
alexbrandmeyer@609 17 // Unless required by applicable law or agreed to in writing, software
alexbrandmeyer@609 18 // distributed under the License is distributed on an "AS IS" BASIS,
alexbrandmeyer@609 19 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
alexbrandmeyer@609 20 // See the License for the specific language governing permissions and
alexbrandmeyer@609 21 // limitations under the License.
alexbrandmeyer@640 22
alexbrandmeyer@636 23 #include <assert.h>
alexbrandmeyer@643 24
alexbrandmeyer@609 25 #include "carfac.h"
alexbrandmeyer@643 26
alexbrandmeyer@636 27 using std::vector;
ronw@625 28
alexbrandmeyer@643 29 CARFAC::CARFAC(const int num_ears, const FPType sample_rate,
ronw@645 30 const CARParams& car_params, const IHCParams& ihc_params,
ronw@645 31 const AGCParams& agc_params) {
ronw@645 32 Reset(num_ears, sample_rate, car_params, ihc_params, agc_params);
ronw@645 33 }
ronw@645 34
ronw@645 35 void CARFAC::Reset(const int num_ears, const FPType sample_rate,
ronw@645 36 const CARParams& car_params, const IHCParams& ihc_params,
ronw@645 37 const AGCParams& agc_params) {
alexbrandmeyer@643 38 num_ears_ = num_ears;
alexbrandmeyer@643 39 sample_rate_ = sample_rate;
alexbrandmeyer@643 40 car_params_ = car_params;
alexbrandmeyer@643 41 ihc_params_ = ihc_params;
alexbrandmeyer@643 42 agc_params_ = agc_params;
alexbrandmeyer@643 43 num_channels_ = 0;
alexbrandmeyer@643 44 FPType pole_hz = car_params_.first_pole_theta * sample_rate_ / (2 * kPi);
alexbrandmeyer@643 45 while (pole_hz > car_params_.min_pole_hz) {
alexbrandmeyer@643 46 ++num_channels_;
alexbrandmeyer@643 47 pole_hz = pole_hz - car_params_.erb_per_step *
alexbrandmeyer@643 48 ERBHz(pole_hz, car_params_.erb_break_freq, car_params_.erb_q);
alexbrandmeyer@609 49 }
alexbrandmeyer@643 50 pole_freqs_.resize(num_channels_);
alexbrandmeyer@643 51 pole_hz = car_params_.first_pole_theta * sample_rate_ / (2 * kPi);
alexbrandmeyer@643 52 for (int channel = 0; channel < num_channels_; ++channel) {
alexbrandmeyer@643 53 pole_freqs_(channel) = pole_hz;
alexbrandmeyer@643 54 pole_hz = pole_hz - car_params_.erb_per_step *
alexbrandmeyer@643 55 ERBHz(pole_hz, car_params_.erb_break_freq, car_params_.erb_q);
alexbrandmeyer@610 56 }
alexbrandmeyer@626 57 max_channels_per_octave_ = log(2) / log(pole_freqs_(0) / pole_freqs_(1));
alexbrandmeyer@636 58 CARCoeffs car_coeffs;
alexbrandmeyer@636 59 IHCCoeffs ihc_coeffs;
alexbrandmeyer@636 60 std::vector<AGCCoeffs> agc_coeffs;
alexbrandmeyer@643 61 DesignCARCoeffs(car_params_, sample_rate_, pole_freqs_, &car_coeffs);
alexbrandmeyer@643 62 DesignIHCCoeffs(ihc_params_, sample_rate_, &ihc_coeffs);
alexbrandmeyer@636 63 // This code initializes the coefficients for each of the AGC stages.
alexbrandmeyer@643 64 DesignAGCCoeffs(agc_params_, sample_rate_, &agc_coeffs);
alexbrandmeyer@636 65 // Once we have the coefficient structure we can design the ears.
ronw@645 66 ears_.clear();
ronw@645 67 ears_.reserve(num_ears_);
ronw@645 68 for (int i = 0; i < num_ears_; ++i) {
ronw@645 69 ears_.push_back(new Ear(num_channels_, car_coeffs, ihc_coeffs, agc_coeffs));
alexbrandmeyer@610 70 }
alexbrandmeyer@609 71 }
alexbrandmeyer@609 72
alexbrandmeyer@636 73 void CARFAC::RunSegment(const vector<vector<float>>& sound_data,
alexbrandmeyer@626 74 const int32_t start, const int32_t length,
alexbrandmeyer@636 75 const bool open_loop, CARFACOutput* seg_output) {
alexbrandmeyer@610 76 // A nested loop structure is used to iterate through the individual samples
alexbrandmeyer@610 77 // for each ear (audio channel).
alexbrandmeyer@626 78 bool updated; // This variable is used by the AGC stage.
alexbrandmeyer@643 79 for (int32_t timepoint = 0; timepoint < length; ++timepoint) {
alexbrandmeyer@643 80 for (int audio_channel = 0; audio_channel < num_ears_; ++audio_channel) {
alexbrandmeyer@626 81 // First we create a reference to the current Ear object.
ronw@645 82 Ear* ear = ears_[audio_channel];
alexbrandmeyer@610 83 // This stores the audio sample currently being processed.
alexbrandmeyer@643 84 FPType input = sound_data[audio_channel][start + timepoint];
ronw@644 85
alexbrandmeyer@610 86 // Now we apply the three stages of the model in sequence to the current
alexbrandmeyer@610 87 // audio sample.
ronw@645 88 ear->CARStep(input);
ronw@645 89 ear->IHCStep(ear->car_out());
ronw@645 90 updated = ear->AGCStep(ear->ihc_out());
alexbrandmeyer@610 91 }
alexbrandmeyer@643 92 seg_output->AppendOutput(ears_);
alexbrandmeyer@636 93 if (updated) {
alexbrandmeyer@643 94 if (num_ears_ > 1) {
alexbrandmeyer@636 95 CrossCouple();
alexbrandmeyer@636 96 }
alexbrandmeyer@636 97 if (! open_loop) {
alexbrandmeyer@636 98 CloseAGCLoop();
alexbrandmeyer@636 99 }
alexbrandmeyer@626 100 }
alexbrandmeyer@610 101 }
alexbrandmeyer@610 102 }
alexbrandmeyer@610 103
alexbrandmeyer@610 104 void CARFAC::CrossCouple() {
ronw@645 105 for (int stage = 0; stage < ears_[0]->agc_num_stages(); ++stage) {
ronw@645 106 if (ears_[0]->agc_decim_phase(stage) > 0) {
alexbrandmeyer@610 107 break;
alexbrandmeyer@610 108 } else {
ronw@645 109 FPType mix_coeff = ears_[0]->agc_mix_coeff(stage);
alexbrandmeyer@610 110 if (mix_coeff > 0) {
alexbrandmeyer@643 111 ArrayX stage_state;
alexbrandmeyer@643 112 ArrayX this_stage_values = ArrayX::Zero(num_channels_);
ronw@645 113 for (const auto& ear : ears_) {
ronw@645 114 stage_state = ear->agc_memory(stage);
alexbrandmeyer@610 115 this_stage_values += stage_state;
alexbrandmeyer@610 116 }
alexbrandmeyer@643 117 this_stage_values /= num_ears_;
ronw@645 118 for (const auto& ear : ears_) {
ronw@645 119 stage_state = ear->agc_memory(stage);
ronw@645 120 ear->set_agc_memory(stage, stage_state + mix_coeff *
ronw@645 121 (this_stage_values - stage_state));
alexbrandmeyer@610 122 }
alexbrandmeyer@610 123 }
alexbrandmeyer@609 124 }
alexbrandmeyer@609 125 }
alexbrandmeyer@609 126 }
alexbrandmeyer@610 127
alexbrandmeyer@610 128 void CARFAC::CloseAGCLoop() {
ronw@645 129 for (auto& ear : ears_) {
ronw@645 130 ArrayX undamping = 1 - ear->agc_memory(0);
alexbrandmeyer@610 131 // This updates the target stage gain for the new damping.
ronw@645 132 ear->set_dzb_memory((ear->zr_coeffs() * undamping - ear->zb_memory()) /
ronw@645 133 ear->agc_decimation(0));
ronw@645 134 ear->set_dg_memory((ear->StageGValue(undamping) - ear->g_memory()) /
ronw@645 135 ear->agc_decimation(0));
alexbrandmeyer@610 136 }
alexbrandmeyer@636 137 }
alexbrandmeyer@636 138
alexbrandmeyer@643 139 void CARFAC::DesignCARCoeffs(const CARParams& car_params,
alexbrandmeyer@643 140 const FPType sample_rate,
alexbrandmeyer@643 141 const ArrayX& pole_freqs,
alexbrandmeyer@636 142 CARCoeffs* car_coeffs) {
alexbrandmeyer@643 143 num_channels_ = pole_freqs.size();
alexbrandmeyer@640 144 car_coeffs->velocity_scale = car_params.velocity_scale;
alexbrandmeyer@640 145 car_coeffs->v_offset = car_params.v_offset;
alexbrandmeyer@643 146 car_coeffs->r1_coeffs.resize(num_channels_);
alexbrandmeyer@643 147 car_coeffs->a0_coeffs.resize(num_channels_);
alexbrandmeyer@643 148 car_coeffs->c0_coeffs.resize(num_channels_);
alexbrandmeyer@643 149 car_coeffs->h_coeffs.resize(num_channels_);
alexbrandmeyer@643 150 car_coeffs->g0_coeffs.resize(num_channels_);
alexbrandmeyer@640 151 FPType f = car_params.zero_ratio * car_params.zero_ratio - 1.0;
alexbrandmeyer@643 152 ArrayX theta = pole_freqs * ((2.0 * kPi) / sample_rate);
alexbrandmeyer@640 153 car_coeffs->c0_coeffs = theta.sin();
alexbrandmeyer@640 154 car_coeffs->a0_coeffs = theta.cos();
alexbrandmeyer@640 155 FPType ff = car_params.high_f_damping_compression;
alexbrandmeyer@643 156 ArrayX x = theta / kPi;
alexbrandmeyer@640 157 car_coeffs->zr_coeffs = kPi * (x - (ff * (x*x*x)));
alexbrandmeyer@640 158 FPType max_zeta = car_params.max_zeta;
alexbrandmeyer@640 159 FPType min_zeta = car_params.min_zeta;
alexbrandmeyer@640 160 car_coeffs->r1_coeffs = (1.0 - (car_coeffs->zr_coeffs * max_zeta));
alexbrandmeyer@643 161 ArrayX erb_freqs(num_channels_);
alexbrandmeyer@643 162 for (int channel = 0; channel < num_channels_; ++channel) {
alexbrandmeyer@643 163 erb_freqs(channel) = ERBHz(pole_freqs(channel), car_params.erb_break_freq,
alexbrandmeyer@640 164 car_params.erb_q);
alexbrandmeyer@636 165 }
alexbrandmeyer@643 166 ArrayX min_zetas = min_zeta + (0.25 * ((erb_freqs / pole_freqs) -
alexbrandmeyer@636 167 min_zeta));
alexbrandmeyer@640 168 car_coeffs->zr_coeffs *= max_zeta - min_zetas;
alexbrandmeyer@640 169 car_coeffs->h_coeffs = car_coeffs->c0_coeffs * f;
alexbrandmeyer@643 170 ArrayX relative_undamping = ArrayX::Ones(num_channels_);
alexbrandmeyer@643 171 ArrayX r = car_coeffs->r1_coeffs + (car_coeffs->zr_coeffs *
alexbrandmeyer@636 172 relative_undamping);
alexbrandmeyer@640 173 car_coeffs->g0_coeffs = (1.0 - (2.0 * r * car_coeffs->a0_coeffs) + (r*r)) /
alexbrandmeyer@640 174 (1 - (2 * r * car_coeffs->a0_coeffs) +
alexbrandmeyer@640 175 (car_coeffs->h_coeffs * r * car_coeffs->c0_coeffs) + (r*r));
alexbrandmeyer@636 176 }
alexbrandmeyer@636 177
alexbrandmeyer@643 178 void CARFAC::DesignIHCCoeffs(const IHCParams& ihc_params,
alexbrandmeyer@643 179 const FPType sample_rate, IHCCoeffs* ihc_coeffs) {
alexbrandmeyer@640 180 if (ihc_params.just_half_wave_rectify) {
alexbrandmeyer@640 181 ihc_coeffs->just_half_wave_rectify = ihc_params.just_half_wave_rectify;
alexbrandmeyer@636 182 } else {
alexbrandmeyer@636 183 // This section calculates conductance values using two pre-defined scalars.
alexbrandmeyer@643 184 ArrayX x(1);
alexbrandmeyer@636 185 FPType conduct_at_10, conduct_at_0;
alexbrandmeyer@636 186 x(0) = 10.0;
alexbrandmeyer@636 187 x = CARFACDetect(x);
alexbrandmeyer@636 188 conduct_at_10 = x(0);
alexbrandmeyer@636 189 x(0) = 0.0;
alexbrandmeyer@636 190 x = CARFACDetect(x);
alexbrandmeyer@636 191 conduct_at_0 = x(0);
alexbrandmeyer@640 192 if (ihc_params.one_capacitor) {
alexbrandmeyer@636 193 FPType ro = 1 / conduct_at_10 ;
alexbrandmeyer@640 194 FPType c = ihc_params.tau1_out / ro;
alexbrandmeyer@640 195 FPType ri = ihc_params.tau1_in / c;
alexbrandmeyer@636 196 FPType saturation_output = 1 / ((2 * ro) + ri);
alexbrandmeyer@636 197 FPType r0 = 1 / conduct_at_0;
alexbrandmeyer@636 198 FPType current = 1 / (ri + r0);
alexbrandmeyer@640 199 ihc_coeffs->cap1_voltage = 1 - (current * ri);
alexbrandmeyer@640 200 ihc_coeffs->just_half_wave_rectify = false;
alexbrandmeyer@643 201 ihc_coeffs->lpf_coeff = 1 - exp( -1 / (ihc_params.tau_lpf * sample_rate));
alexbrandmeyer@643 202 ihc_coeffs->out1_rate = ro / (ihc_params.tau1_out * sample_rate);
alexbrandmeyer@643 203 ihc_coeffs->in1_rate = 1 / (ihc_params.tau1_in * sample_rate);
alexbrandmeyer@640 204 ihc_coeffs->one_capacitor = ihc_params.one_capacitor;
alexbrandmeyer@640 205 ihc_coeffs->output_gain = 1 / (saturation_output - current);
alexbrandmeyer@640 206 ihc_coeffs->rest_output = current / (saturation_output - current);
alexbrandmeyer@640 207 ihc_coeffs->rest_cap1 = ihc_coeffs->cap1_voltage;
alexbrandmeyer@636 208 } else {
alexbrandmeyer@636 209 FPType ro = 1 / conduct_at_10;
alexbrandmeyer@640 210 FPType c2 = ihc_params.tau2_out / ro;
alexbrandmeyer@640 211 FPType r2 = ihc_params.tau2_in / c2;
alexbrandmeyer@640 212 FPType c1 = ihc_params.tau1_out / r2;
alexbrandmeyer@640 213 FPType r1 = ihc_params.tau1_in / c1;
alexbrandmeyer@636 214 FPType saturation_output = 1 / (2 * ro + r2 + r1);
alexbrandmeyer@636 215 FPType r0 = 1 / conduct_at_0;
alexbrandmeyer@636 216 FPType current = 1 / (r1 + r2 + r0);
alexbrandmeyer@640 217 ihc_coeffs->cap1_voltage = 1 - (current * r1);
alexbrandmeyer@640 218 ihc_coeffs->cap2_voltage = ihc_coeffs->cap1_voltage - (current * r2);
alexbrandmeyer@640 219 ihc_coeffs->just_half_wave_rectify = false;
alexbrandmeyer@643 220 ihc_coeffs->lpf_coeff = 1 - exp(-1 / (ihc_params.tau_lpf * sample_rate));
alexbrandmeyer@643 221 ihc_coeffs->out1_rate = 1 / (ihc_params.tau1_out * sample_rate);
alexbrandmeyer@643 222 ihc_coeffs->in1_rate = 1 / (ihc_params.tau1_in * sample_rate);
alexbrandmeyer@643 223 ihc_coeffs->out2_rate = ro / (ihc_params.tau2_out * sample_rate);
alexbrandmeyer@643 224 ihc_coeffs->in2_rate = 1 / (ihc_params.tau2_in * sample_rate);
alexbrandmeyer@640 225 ihc_coeffs->one_capacitor = ihc_params.one_capacitor;
alexbrandmeyer@640 226 ihc_coeffs->output_gain = 1 / (saturation_output - current);
alexbrandmeyer@640 227 ihc_coeffs->rest_output = current / (saturation_output - current);
alexbrandmeyer@640 228 ihc_coeffs->rest_cap1 = ihc_coeffs->cap1_voltage;
alexbrandmeyer@640 229 ihc_coeffs->rest_cap2 = ihc_coeffs->cap2_voltage;
alexbrandmeyer@636 230 }
alexbrandmeyer@636 231 }
alexbrandmeyer@643 232 ihc_coeffs->ac_coeff = 2 * kPi * ihc_params.ac_corner_hz / sample_rate;
alexbrandmeyer@636 233 }
alexbrandmeyer@636 234
alexbrandmeyer@643 235 void CARFAC::DesignAGCCoeffs(const AGCParams& agc_params,
alexbrandmeyer@643 236 const FPType sample_rate,
alexbrandmeyer@636 237 vector<AGCCoeffs>* agc_coeffs) {
alexbrandmeyer@643 238 agc_coeffs->resize(agc_params.num_stages);
alexbrandmeyer@636 239 FPType previous_stage_gain = 0.0;
alexbrandmeyer@636 240 FPType decim = 1.0;
alexbrandmeyer@643 241 for (int stage = 0; stage < agc_params.num_stages; ++stage) {
alexbrandmeyer@636 242 AGCCoeffs& agc_coeff = agc_coeffs->at(stage);
alexbrandmeyer@643 243 agc_coeff.num_agc_stages = agc_params.num_stages;
alexbrandmeyer@640 244 agc_coeff.agc_stage_gain = agc_params.agc_stage_gain;
alexbrandmeyer@640 245 vector<FPType> agc1_scales = agc_params.agc1_scales;
alexbrandmeyer@640 246 vector<FPType> agc2_scales = agc_params.agc2_scales;
alexbrandmeyer@640 247 vector<FPType> time_constants = agc_params.time_constants;
alexbrandmeyer@640 248 FPType mix_coeff = agc_params.agc_mix_coeff;
alexbrandmeyer@640 249 agc_coeff.decimation = agc_params.decimation[stage];
alexbrandmeyer@636 250 FPType total_dc_gain = previous_stage_gain;
alexbrandmeyer@636 251 // Here we calculate the parameters for the current stage.
alexbrandmeyer@636 252 FPType tau = time_constants[stage];
alexbrandmeyer@640 253 agc_coeff.decim = decim;
alexbrandmeyer@640 254 agc_coeff.decim *= agc_coeff.decimation;
alexbrandmeyer@643 255 agc_coeff.agc_epsilon = 1 - exp((-1 * agc_coeff.decim) /
alexbrandmeyer@643 256 (tau * sample_rate));
alexbrandmeyer@643 257 FPType n_times = tau * (sample_rate / agc_coeff.decim);
alexbrandmeyer@636 258 FPType delay = (agc2_scales[stage] - agc1_scales[stage]) / n_times;
alexbrandmeyer@636 259 FPType spread_sq = (pow(agc1_scales[stage], 2) +
alexbrandmeyer@636 260 pow(agc2_scales[stage], 2)) / n_times;
alexbrandmeyer@636 261 FPType u = 1 + (1 / spread_sq);
alexbrandmeyer@636 262 FPType p = u - sqrt(pow(u, 2) - 1);
alexbrandmeyer@636 263 FPType dp = delay * (1 - (2 * p) + (p*p)) / 2;
alexbrandmeyer@640 264 agc_coeff.agc_pole_z1 = p - dp;
alexbrandmeyer@640 265 agc_coeff.agc_pole_z2 = p + dp;
alexbrandmeyer@636 266 int n_taps = 0;
alexbrandmeyer@636 267 bool fir_ok = false;
alexbrandmeyer@636 268 int n_iterations = 1;
alexbrandmeyer@636 269 // This section initializes the FIR coeffs settings at each stage.
alexbrandmeyer@636 270 FPType fir_left, fir_mid, fir_right;
alexbrandmeyer@636 271 while (! fir_ok) {
alexbrandmeyer@636 272 switch (n_taps) {
alexbrandmeyer@636 273 case 0:
alexbrandmeyer@636 274 n_taps = 3;
alexbrandmeyer@636 275 break;
alexbrandmeyer@636 276 case 3:
alexbrandmeyer@636 277 n_taps = 5;
alexbrandmeyer@636 278 break;
alexbrandmeyer@636 279 case 5:
alexbrandmeyer@636 280 n_iterations++;
alexbrandmeyer@636 281 assert(n_iterations < 16 &&
alexbrandmeyer@636 282 "Too many iterations needed in AGC spatial smoothing.");
alexbrandmeyer@636 283 break;
alexbrandmeyer@636 284 default:
alexbrandmeyer@636 285 assert(true && "Bad n_taps; should be 3 or 5.");
alexbrandmeyer@636 286 break;
alexbrandmeyer@636 287 }
alexbrandmeyer@636 288 // The smoothing function is a space-domain smoothing, but it considered
alexbrandmeyer@636 289 // here by analogy to time-domain smoothing, which is why its potential
alexbrandmeyer@636 290 // off-centeredness is called a delay. Since it's a smoothing filter, it
alexbrandmeyer@636 291 // is also analogous to a discrete probability distribution (a p.m.f.),
alexbrandmeyer@636 292 // with mean corresponding to delay and variance corresponding to squared
alexbrandmeyer@636 293 // spatial spread (in samples, or channels, and the square thereof,
alexbrandmeyer@636 294 // respecitively). Here we design a filter implementation's coefficient
alexbrandmeyer@636 295 // via the method of moment matching, so we get the intended delay and
alexbrandmeyer@636 296 // spread, and don't worry too much about the shape of the distribution,
alexbrandmeyer@636 297 // which will be some kind of blob not too far from Gaussian if we run
alexbrandmeyer@636 298 // several FIR iterations.
alexbrandmeyer@636 299 FPType delay_variance = spread_sq / n_iterations;
alexbrandmeyer@636 300 FPType mean_delay = delay / n_iterations;
alexbrandmeyer@636 301 FPType a, b;
alexbrandmeyer@636 302 switch (n_taps) {
alexbrandmeyer@636 303 case 3:
alexbrandmeyer@636 304 a = (delay_variance + (mean_delay*mean_delay) - mean_delay) / 2.0;
alexbrandmeyer@636 305 b = (delay_variance + (mean_delay*mean_delay) + mean_delay) / 2.0;
alexbrandmeyer@636 306 fir_left = a;
alexbrandmeyer@636 307 fir_mid = 1 - a - b;
alexbrandmeyer@636 308 fir_right = b;
alexbrandmeyer@636 309 fir_ok = fir_mid >= 0.2 ? true : false;
alexbrandmeyer@636 310 break;
alexbrandmeyer@636 311 case 5:
alexbrandmeyer@636 312 a = (((delay_variance + (mean_delay*mean_delay)) * 2.0/5.0) -
alexbrandmeyer@636 313 (mean_delay * 2.0/3.0)) / 2.0;
alexbrandmeyer@636 314 b = (((delay_variance + (mean_delay*mean_delay)) * 2.0/5.0) +
alexbrandmeyer@636 315 (mean_delay * 2.0/3.0)) / 2.0;
alexbrandmeyer@636 316 fir_left = a / 2.0;
alexbrandmeyer@636 317 fir_mid = 1 - a - b;
alexbrandmeyer@636 318 fir_right = b / 2.0;
alexbrandmeyer@636 319 fir_ok = fir_mid >= 0.1 ? true : false;
alexbrandmeyer@636 320 break;
alexbrandmeyer@636 321 default:
alexbrandmeyer@636 322 assert(true && "Bad n_taps; should be 3 or 5.");
alexbrandmeyer@636 323 break;
alexbrandmeyer@636 324 }
alexbrandmeyer@636 325 }
alexbrandmeyer@636 326 // Once we have the FIR design for this stage we can assign it to the
alexbrandmeyer@636 327 // appropriate data members.
alexbrandmeyer@640 328 agc_coeff.agc_spatial_iterations = n_iterations;
alexbrandmeyer@640 329 agc_coeff.agc_spatial_n_taps = n_taps;
alexbrandmeyer@640 330 agc_coeff.agc_spatial_fir_left = fir_left;
alexbrandmeyer@640 331 agc_coeff.agc_spatial_fir_mid = fir_mid;
alexbrandmeyer@640 332 agc_coeff.agc_spatial_fir_right = fir_right;
alexbrandmeyer@640 333 total_dc_gain += pow(agc_coeff.agc_stage_gain, stage);
alexbrandmeyer@640 334 agc_coeff.agc_mix_coeffs = stage == 0 ? 0 : mix_coeff /
alexbrandmeyer@643 335 (tau * (sample_rate / agc_coeff.decim));
alexbrandmeyer@640 336 agc_coeff.agc_gain = total_dc_gain;
alexbrandmeyer@640 337 agc_coeff.detect_scale = 1 / total_dc_gain;
alexbrandmeyer@640 338 previous_stage_gain = agc_coeff.agc_gain;
alexbrandmeyer@640 339 decim = agc_coeff.decim;
alexbrandmeyer@636 340 }
ronw@641 341 }
alexbrandmeyer@643 342
ronw@644 343 FPType CARFAC::ERBHz(const FPType center_frequency_hz,
ronw@644 344 const FPType erb_break_freq, const FPType erb_q) {
alexbrandmeyer@643 345 return (erb_break_freq + center_frequency_hz) / erb_q;
ronw@644 346 }