alexbrandmeyer@609
|
1 //
|
alexbrandmeyer@609
|
2 // carfac.cc
|
alexbrandmeyer@609
|
3 // CARFAC Open Source C++ Library
|
alexbrandmeyer@609
|
4 //
|
alexbrandmeyer@609
|
5 // Created by Alex Brandmeyer on 5/10/13.
|
alexbrandmeyer@609
|
6 //
|
alexbrandmeyer@609
|
7 // This C++ file is part of an implementation of Lyon's cochlear model:
|
alexbrandmeyer@609
|
8 // "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
alexbrandmeyer@609
|
9 // to supplement Lyon's upcoming book "Human and Machine Hearing"
|
alexbrandmeyer@609
|
10 //
|
alexbrandmeyer@609
|
11 // Licensed under the Apache License, Version 2.0 (the "License");
|
alexbrandmeyer@609
|
12 // you may not use this file except in compliance with the License.
|
alexbrandmeyer@609
|
13 // You may obtain a copy of the License at
|
alexbrandmeyer@609
|
14 //
|
alexbrandmeyer@609
|
15 // http://www.apache.org/licenses/LICENSE-2.0
|
alexbrandmeyer@609
|
16 //
|
alexbrandmeyer@609
|
17 // Unless required by applicable law or agreed to in writing, software
|
alexbrandmeyer@609
|
18 // distributed under the License is distributed on an "AS IS" BASIS,
|
alexbrandmeyer@609
|
19 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
alexbrandmeyer@609
|
20 // See the License for the specific language governing permissions and
|
alexbrandmeyer@609
|
21 // limitations under the License.
|
alexbrandmeyer@640
|
22
|
alexbrandmeyer@636
|
23 #include <assert.h>
|
alexbrandmeyer@609
|
24 #include "carfac.h"
|
alexbrandmeyer@636
|
25 using std::vector;
|
ronw@625
|
26
|
alexbrandmeyer@626
|
27 void CARFAC::Design(const int n_ears, const FPType fs,
|
alexbrandmeyer@626
|
28 const CARParams& car_params, const IHCParams& ihc_params,
|
alexbrandmeyer@626
|
29 const AGCParams& agc_params) {
|
alexbrandmeyer@609
|
30 n_ears_ = n_ears;
|
alexbrandmeyer@609
|
31 fs_ = fs;
|
alexbrandmeyer@611
|
32 ears_.resize(n_ears_);
|
alexbrandmeyer@610
|
33 n_ch_ = 0;
|
alexbrandmeyer@640
|
34 FPType pole_hz = car_params.first_pole_theta * fs / (2 * kPi);
|
alexbrandmeyer@640
|
35 while (pole_hz > car_params.min_pole_hz) {
|
alexbrandmeyer@626
|
36 ++n_ch_;
|
alexbrandmeyer@640
|
37 pole_hz = pole_hz - car_params.erb_per_step *
|
alexbrandmeyer@640
|
38 ERBHz(pole_hz, car_params.erb_break_freq, car_params.erb_q);
|
alexbrandmeyer@609
|
39 }
|
alexbrandmeyer@626
|
40 pole_freqs_.resize(n_ch_);
|
alexbrandmeyer@640
|
41 pole_hz = car_params.first_pole_theta * fs / (2 * kPi);
|
alexbrandmeyer@626
|
42 for (int ch = 0; ch < n_ch_; ++ch) {
|
alexbrandmeyer@626
|
43 pole_freqs_(ch) = pole_hz;
|
alexbrandmeyer@640
|
44 pole_hz = pole_hz - car_params.erb_per_step *
|
alexbrandmeyer@640
|
45 ERBHz(pole_hz, car_params.erb_break_freq, car_params.erb_q);
|
alexbrandmeyer@610
|
46 }
|
alexbrandmeyer@626
|
47 max_channels_per_octave_ = log(2) / log(pole_freqs_(0) / pole_freqs_(1));
|
alexbrandmeyer@636
|
48 CARCoeffs car_coeffs;
|
alexbrandmeyer@636
|
49 IHCCoeffs ihc_coeffs;
|
alexbrandmeyer@636
|
50 std::vector<AGCCoeffs> agc_coeffs;
|
alexbrandmeyer@636
|
51 DesignCARCoeffs(car_params, fs, pole_freqs_, &car_coeffs);
|
alexbrandmeyer@636
|
52 DesignIHCCoeffs(ihc_params, fs, &ihc_coeffs);
|
alexbrandmeyer@636
|
53 // This code initializes the coefficients for each of the AGC stages.
|
alexbrandmeyer@636
|
54 DesignAGCCoeffs(agc_params, fs, &agc_coeffs);
|
alexbrandmeyer@636
|
55 // Once we have the coefficient structure we can design the ears.
|
alexbrandmeyer@626
|
56 for (auto& ear : ears_) {
|
alexbrandmeyer@637
|
57 ear.InitEar(n_ch_, fs_, car_coeffs, ihc_coeffs,
|
alexbrandmeyer@636
|
58 agc_coeffs);
|
alexbrandmeyer@610
|
59 }
|
alexbrandmeyer@609
|
60 }
|
alexbrandmeyer@609
|
61
|
alexbrandmeyer@636
|
62 void CARFAC::Run(const vector<vector<float>>& sound_data,
|
alexbrandmeyer@636
|
63 CARFACOutput* output) {
|
alexbrandmeyer@626
|
64 int n_audio_channels = sound_data.size();
|
alexbrandmeyer@611
|
65 int32_t seg_len = 441; // We use a fixed segment length for now.
|
alexbrandmeyer@626
|
66 int32_t n_timepoints = sound_data[0].size();
|
alexbrandmeyer@611
|
67 int32_t n_segs = ceil((n_timepoints * 1.0) / seg_len);
|
alexbrandmeyer@610
|
68 // These values store the start and endpoints for each segment
|
alexbrandmeyer@611
|
69 int32_t start;
|
alexbrandmeyer@611
|
70 int32_t length = seg_len;
|
alexbrandmeyer@610
|
71 // This section loops over the individual audio segments.
|
alexbrandmeyer@626
|
72 for (int32_t i = 0; i < n_segs; ++i) {
|
alexbrandmeyer@610
|
73 // For each segment we calculate the start point and the segment length.
|
alexbrandmeyer@610
|
74 start = i * seg_len;
|
alexbrandmeyer@610
|
75 if (i == n_segs - 1) {
|
alexbrandmeyer@610
|
76 // The last segment can be shorter than the rest.
|
alexbrandmeyer@610
|
77 length = n_timepoints - start;
|
alexbrandmeyer@609
|
78 }
|
alexbrandmeyer@610
|
79 // Once we've determined the start point and segment length, we run the
|
alexbrandmeyer@610
|
80 // CARFAC model on the current segment.
|
alexbrandmeyer@636
|
81 RunSegment(sound_data, start,
|
alexbrandmeyer@636
|
82 length, false, output);
|
alexbrandmeyer@609
|
83 }
|
alexbrandmeyer@609
|
84 }
|
alexbrandmeyer@609
|
85
|
alexbrandmeyer@636
|
86 void CARFAC::RunSegment(const vector<vector<float>>& sound_data,
|
alexbrandmeyer@626
|
87 const int32_t start, const int32_t length,
|
alexbrandmeyer@636
|
88 const bool open_loop, CARFACOutput* seg_output) {
|
alexbrandmeyer@610
|
89 // A nested loop structure is used to iterate through the individual samples
|
alexbrandmeyer@610
|
90 // for each ear (audio channel).
|
alexbrandmeyer@626
|
91 bool updated; // This variable is used by the AGC stage.
|
alexbrandmeyer@636
|
92 for (int32_t i = 0; i < length; ++i) {
|
alexbrandmeyer@636
|
93 for (int j = 0; j < n_ears_; ++j) {
|
alexbrandmeyer@626
|
94 // First we create a reference to the current Ear object.
|
alexbrandmeyer@626
|
95 Ear& ear = ears_[j];
|
alexbrandmeyer@610
|
96 // This stores the audio sample currently being processed.
|
alexbrandmeyer@636
|
97 FPType input = sound_data[j][start+i];
|
alexbrandmeyer@610
|
98 // Now we apply the three stages of the model in sequence to the current
|
alexbrandmeyer@610
|
99 // audio sample.
|
alexbrandmeyer@637
|
100 ear.CARStep(input);
|
alexbrandmeyer@637
|
101 ear.IHCStep(ear.car_out());
|
alexbrandmeyer@637
|
102 updated = ear.AGCStep(ear.ihc_out());
|
alexbrandmeyer@610
|
103 }
|
alexbrandmeyer@637
|
104 seg_output->StoreOutput(ears_);
|
alexbrandmeyer@636
|
105 if (updated) {
|
alexbrandmeyer@636
|
106 if (n_ears_ > 1) {
|
alexbrandmeyer@636
|
107 CrossCouple();
|
alexbrandmeyer@636
|
108 }
|
alexbrandmeyer@636
|
109 if (! open_loop) {
|
alexbrandmeyer@636
|
110 CloseAGCLoop();
|
alexbrandmeyer@636
|
111 }
|
alexbrandmeyer@626
|
112 }
|
alexbrandmeyer@610
|
113 }
|
alexbrandmeyer@610
|
114 }
|
alexbrandmeyer@610
|
115
|
alexbrandmeyer@610
|
116 void CARFAC::CrossCouple() {
|
alexbrandmeyer@626
|
117 for (int stage = 0; stage < ears_[0].agc_nstages(); ++stage) {
|
alexbrandmeyer@626
|
118 if (ears_[0].agc_decim_phase(stage) > 0) {
|
alexbrandmeyer@610
|
119 break;
|
alexbrandmeyer@610
|
120 } else {
|
alexbrandmeyer@626
|
121 FPType mix_coeff = ears_[0].agc_mix_coeff(stage);
|
alexbrandmeyer@610
|
122 if (mix_coeff > 0) {
|
alexbrandmeyer@610
|
123 FloatArray stage_state;
|
alexbrandmeyer@610
|
124 FloatArray this_stage_values = FloatArray::Zero(n_ch_);
|
alexbrandmeyer@626
|
125 for (auto& ear : ears_) {
|
alexbrandmeyer@626
|
126 stage_state = ear.agc_memory(stage);
|
alexbrandmeyer@610
|
127 this_stage_values += stage_state;
|
alexbrandmeyer@610
|
128 }
|
alexbrandmeyer@610
|
129 this_stage_values /= n_ears_;
|
alexbrandmeyer@626
|
130 for (auto& ear : ears_) {
|
alexbrandmeyer@626
|
131 stage_state = ear.agc_memory(stage);
|
alexbrandmeyer@626
|
132 ear.set_agc_memory(stage, stage_state + mix_coeff *
|
alexbrandmeyer@626
|
133 (this_stage_values - stage_state));
|
alexbrandmeyer@610
|
134 }
|
alexbrandmeyer@610
|
135 }
|
alexbrandmeyer@609
|
136 }
|
alexbrandmeyer@609
|
137 }
|
alexbrandmeyer@609
|
138 }
|
alexbrandmeyer@610
|
139
|
alexbrandmeyer@610
|
140 void CARFAC::CloseAGCLoop() {
|
alexbrandmeyer@626
|
141 for (auto& ear: ears_) {
|
alexbrandmeyer@626
|
142 FloatArray undamping = 1 - ear.agc_memory(0);
|
alexbrandmeyer@610
|
143 // This updates the target stage gain for the new damping.
|
alexbrandmeyer@626
|
144 ear.set_dzb_memory((ear.zr_coeffs() * undamping - ear.zb_memory()) /
|
alexbrandmeyer@626
|
145 ear.agc_decimation(0));
|
alexbrandmeyer@626
|
146 ear.set_dg_memory((ear.StageGValue(undamping) - ear.g_memory()) /
|
alexbrandmeyer@626
|
147 ear.agc_decimation(0));
|
alexbrandmeyer@610
|
148 }
|
alexbrandmeyer@636
|
149 }
|
alexbrandmeyer@636
|
150
|
alexbrandmeyer@636
|
151 void CARFAC::DesignCARCoeffs(const CARParams& car_params, const FPType fs,
|
alexbrandmeyer@636
|
152 const FloatArray& pole_freqs,
|
alexbrandmeyer@636
|
153 CARCoeffs* car_coeffs) {
|
alexbrandmeyer@636
|
154 n_ch_ = pole_freqs.size();
|
alexbrandmeyer@640
|
155 car_coeffs->velocity_scale = car_params.velocity_scale;
|
alexbrandmeyer@640
|
156 car_coeffs->v_offset = car_params.v_offset;
|
alexbrandmeyer@640
|
157 car_coeffs->r1_coeffs.resize(n_ch_);
|
alexbrandmeyer@640
|
158 car_coeffs->a0_coeffs.resize(n_ch_);
|
alexbrandmeyer@640
|
159 car_coeffs->c0_coeffs.resize(n_ch_);
|
alexbrandmeyer@640
|
160 car_coeffs->h_coeffs.resize(n_ch_);
|
alexbrandmeyer@640
|
161 car_coeffs->g0_coeffs.resize(n_ch_);
|
alexbrandmeyer@640
|
162 FPType f = car_params.zero_ratio * car_params.zero_ratio - 1.0;
|
alexbrandmeyer@637
|
163 FloatArray theta = pole_freqs * ((2.0 * kPi) / fs);
|
alexbrandmeyer@640
|
164 car_coeffs->c0_coeffs = theta.sin();
|
alexbrandmeyer@640
|
165 car_coeffs->a0_coeffs = theta.cos();
|
alexbrandmeyer@640
|
166 FPType ff = car_params.high_f_damping_compression;
|
alexbrandmeyer@637
|
167 FloatArray x = theta / kPi;
|
alexbrandmeyer@640
|
168 car_coeffs->zr_coeffs = kPi * (x - (ff * (x*x*x)));
|
alexbrandmeyer@640
|
169 FPType max_zeta = car_params.max_zeta;
|
alexbrandmeyer@640
|
170 FPType min_zeta = car_params.min_zeta;
|
alexbrandmeyer@640
|
171 car_coeffs->r1_coeffs = (1.0 - (car_coeffs->zr_coeffs * max_zeta));
|
alexbrandmeyer@636
|
172 FloatArray erb_freqs(n_ch_);
|
alexbrandmeyer@636
|
173 for (int ch=0; ch < n_ch_; ++ch) {
|
alexbrandmeyer@640
|
174 erb_freqs(ch) = ERBHz(pole_freqs(ch), car_params.erb_break_freq,
|
alexbrandmeyer@640
|
175 car_params.erb_q);
|
alexbrandmeyer@636
|
176 }
|
alexbrandmeyer@636
|
177 FloatArray min_zetas = min_zeta + (0.25 * ((erb_freqs / pole_freqs) -
|
alexbrandmeyer@636
|
178 min_zeta));
|
alexbrandmeyer@640
|
179 car_coeffs->zr_coeffs *= max_zeta - min_zetas;
|
alexbrandmeyer@640
|
180 car_coeffs->h_coeffs = car_coeffs->c0_coeffs * f;
|
alexbrandmeyer@636
|
181 FloatArray relative_undamping = FloatArray::Ones(n_ch_);
|
alexbrandmeyer@640
|
182 FloatArray r = car_coeffs->r1_coeffs + (car_coeffs->zr_coeffs *
|
alexbrandmeyer@636
|
183 relative_undamping);
|
alexbrandmeyer@640
|
184 car_coeffs->g0_coeffs = (1.0 - (2.0 * r * car_coeffs->a0_coeffs) + (r*r)) /
|
alexbrandmeyer@640
|
185 (1 - (2 * r * car_coeffs->a0_coeffs) +
|
alexbrandmeyer@640
|
186 (car_coeffs->h_coeffs * r * car_coeffs->c0_coeffs) + (r*r));
|
alexbrandmeyer@636
|
187 }
|
alexbrandmeyer@636
|
188
|
alexbrandmeyer@636
|
189 void CARFAC::DesignIHCCoeffs(const IHCParams& ihc_params, const FPType fs,
|
alexbrandmeyer@636
|
190 IHCCoeffs* ihc_coeffs) {
|
alexbrandmeyer@640
|
191 if (ihc_params.just_half_wave_rectify) {
|
alexbrandmeyer@640
|
192 ihc_coeffs->just_half_wave_rectify = ihc_params.just_half_wave_rectify;
|
alexbrandmeyer@636
|
193 } else {
|
alexbrandmeyer@636
|
194 // This section calculates conductance values using two pre-defined scalars.
|
alexbrandmeyer@636
|
195 FloatArray x(1);
|
alexbrandmeyer@636
|
196 FPType conduct_at_10, conduct_at_0;
|
alexbrandmeyer@636
|
197 x(0) = 10.0;
|
alexbrandmeyer@636
|
198 x = CARFACDetect(x);
|
alexbrandmeyer@636
|
199 conduct_at_10 = x(0);
|
alexbrandmeyer@636
|
200 x(0) = 0.0;
|
alexbrandmeyer@636
|
201 x = CARFACDetect(x);
|
alexbrandmeyer@636
|
202 conduct_at_0 = x(0);
|
alexbrandmeyer@640
|
203 if (ihc_params.one_capacitor) {
|
alexbrandmeyer@636
|
204 FPType ro = 1 / conduct_at_10 ;
|
alexbrandmeyer@640
|
205 FPType c = ihc_params.tau1_out / ro;
|
alexbrandmeyer@640
|
206 FPType ri = ihc_params.tau1_in / c;
|
alexbrandmeyer@636
|
207 FPType saturation_output = 1 / ((2 * ro) + ri);
|
alexbrandmeyer@636
|
208 FPType r0 = 1 / conduct_at_0;
|
alexbrandmeyer@636
|
209 FPType current = 1 / (ri + r0);
|
alexbrandmeyer@640
|
210 ihc_coeffs->cap1_voltage = 1 - (current * ri);
|
alexbrandmeyer@640
|
211 ihc_coeffs->just_half_wave_rectify = false;
|
alexbrandmeyer@640
|
212 ihc_coeffs->lpf_coeff = 1 - exp( -1 / (ihc_params.tau_lpf * fs));
|
alexbrandmeyer@640
|
213 ihc_coeffs->out1_rate = ro / (ihc_params.tau1_out * fs);
|
alexbrandmeyer@640
|
214 ihc_coeffs->in1_rate = 1 / (ihc_params.tau1_in * fs);
|
alexbrandmeyer@640
|
215 ihc_coeffs->one_capacitor = ihc_params.one_capacitor;
|
alexbrandmeyer@640
|
216 ihc_coeffs->output_gain = 1 / (saturation_output - current);
|
alexbrandmeyer@640
|
217 ihc_coeffs->rest_output = current / (saturation_output - current);
|
alexbrandmeyer@640
|
218 ihc_coeffs->rest_cap1 = ihc_coeffs->cap1_voltage;
|
alexbrandmeyer@636
|
219 } else {
|
alexbrandmeyer@636
|
220 FPType ro = 1 / conduct_at_10;
|
alexbrandmeyer@640
|
221 FPType c2 = ihc_params.tau2_out / ro;
|
alexbrandmeyer@640
|
222 FPType r2 = ihc_params.tau2_in / c2;
|
alexbrandmeyer@640
|
223 FPType c1 = ihc_params.tau1_out / r2;
|
alexbrandmeyer@640
|
224 FPType r1 = ihc_params.tau1_in / c1;
|
alexbrandmeyer@636
|
225 FPType saturation_output = 1 / (2 * ro + r2 + r1);
|
alexbrandmeyer@636
|
226 FPType r0 = 1 / conduct_at_0;
|
alexbrandmeyer@636
|
227 FPType current = 1 / (r1 + r2 + r0);
|
alexbrandmeyer@640
|
228 ihc_coeffs->cap1_voltage = 1 - (current * r1);
|
alexbrandmeyer@640
|
229 ihc_coeffs->cap2_voltage = ihc_coeffs->cap1_voltage - (current * r2);
|
alexbrandmeyer@640
|
230 ihc_coeffs->just_half_wave_rectify = false;
|
alexbrandmeyer@640
|
231 ihc_coeffs->lpf_coeff = 1 - exp(-1 / (ihc_params.tau_lpf * fs));
|
alexbrandmeyer@640
|
232 ihc_coeffs->out1_rate = 1 / (ihc_params.tau1_out * fs);
|
alexbrandmeyer@640
|
233 ihc_coeffs->in1_rate = 1 / (ihc_params.tau1_in * fs);
|
alexbrandmeyer@640
|
234 ihc_coeffs->out2_rate = ro / (ihc_params.tau2_out * fs);
|
alexbrandmeyer@640
|
235 ihc_coeffs->in2_rate = 1 / (ihc_params.tau2_in * fs);
|
alexbrandmeyer@640
|
236 ihc_coeffs->one_capacitor = ihc_params.one_capacitor;
|
alexbrandmeyer@640
|
237 ihc_coeffs->output_gain = 1 / (saturation_output - current);
|
alexbrandmeyer@640
|
238 ihc_coeffs->rest_output = current / (saturation_output - current);
|
alexbrandmeyer@640
|
239 ihc_coeffs->rest_cap1 = ihc_coeffs->cap1_voltage;
|
alexbrandmeyer@640
|
240 ihc_coeffs->rest_cap2 = ihc_coeffs->cap2_voltage;
|
alexbrandmeyer@636
|
241 }
|
alexbrandmeyer@636
|
242 }
|
alexbrandmeyer@640
|
243 ihc_coeffs->ac_coeff = 2 * kPi * ihc_params.ac_corner_hz / fs;
|
alexbrandmeyer@636
|
244 }
|
alexbrandmeyer@636
|
245
|
alexbrandmeyer@636
|
246 void CARFAC::DesignAGCCoeffs(const AGCParams& agc_params, const FPType fs,
|
alexbrandmeyer@636
|
247 vector<AGCCoeffs>* agc_coeffs) {
|
alexbrandmeyer@640
|
248 agc_coeffs->resize(agc_params.n_stages);
|
alexbrandmeyer@636
|
249 FPType previous_stage_gain = 0.0;
|
alexbrandmeyer@636
|
250 FPType decim = 1.0;
|
alexbrandmeyer@640
|
251 for (int stage = 0; stage < agc_params.n_stages; ++stage) {
|
alexbrandmeyer@636
|
252 AGCCoeffs& agc_coeff = agc_coeffs->at(stage);
|
alexbrandmeyer@640
|
253 agc_coeff.n_agc_stages = agc_params.n_stages;
|
alexbrandmeyer@640
|
254 agc_coeff.agc_stage_gain = agc_params.agc_stage_gain;
|
alexbrandmeyer@640
|
255 vector<FPType> agc1_scales = agc_params.agc1_scales;
|
alexbrandmeyer@640
|
256 vector<FPType> agc2_scales = agc_params.agc2_scales;
|
alexbrandmeyer@640
|
257 vector<FPType> time_constants = agc_params.time_constants;
|
alexbrandmeyer@640
|
258 FPType mix_coeff = agc_params.agc_mix_coeff;
|
alexbrandmeyer@640
|
259 agc_coeff.decimation = agc_params.decimation[stage];
|
alexbrandmeyer@636
|
260 FPType total_dc_gain = previous_stage_gain;
|
alexbrandmeyer@636
|
261 // Here we calculate the parameters for the current stage.
|
alexbrandmeyer@636
|
262 FPType tau = time_constants[stage];
|
alexbrandmeyer@640
|
263 agc_coeff.decim = decim;
|
alexbrandmeyer@640
|
264 agc_coeff.decim *= agc_coeff.decimation;
|
alexbrandmeyer@640
|
265 agc_coeff.agc_epsilon = 1 - exp((-1 * agc_coeff.decim) / (tau * fs));
|
alexbrandmeyer@640
|
266 FPType n_times = tau * (fs / agc_coeff.decim);
|
alexbrandmeyer@636
|
267 FPType delay = (agc2_scales[stage] - agc1_scales[stage]) / n_times;
|
alexbrandmeyer@636
|
268 FPType spread_sq = (pow(agc1_scales[stage], 2) +
|
alexbrandmeyer@636
|
269 pow(agc2_scales[stage], 2)) / n_times;
|
alexbrandmeyer@636
|
270 FPType u = 1 + (1 / spread_sq);
|
alexbrandmeyer@636
|
271 FPType p = u - sqrt(pow(u, 2) - 1);
|
alexbrandmeyer@636
|
272 FPType dp = delay * (1 - (2 * p) + (p*p)) / 2;
|
alexbrandmeyer@640
|
273 agc_coeff.agc_pole_z1 = p - dp;
|
alexbrandmeyer@640
|
274 agc_coeff.agc_pole_z2 = p + dp;
|
alexbrandmeyer@636
|
275 int n_taps = 0;
|
alexbrandmeyer@636
|
276 bool fir_ok = false;
|
alexbrandmeyer@636
|
277 int n_iterations = 1;
|
alexbrandmeyer@636
|
278 // This section initializes the FIR coeffs settings at each stage.
|
alexbrandmeyer@636
|
279 FPType fir_left, fir_mid, fir_right;
|
alexbrandmeyer@636
|
280 while (! fir_ok) {
|
alexbrandmeyer@636
|
281 switch (n_taps) {
|
alexbrandmeyer@636
|
282 case 0:
|
alexbrandmeyer@636
|
283 n_taps = 3;
|
alexbrandmeyer@636
|
284 break;
|
alexbrandmeyer@636
|
285 case 3:
|
alexbrandmeyer@636
|
286 n_taps = 5;
|
alexbrandmeyer@636
|
287 break;
|
alexbrandmeyer@636
|
288 case 5:
|
alexbrandmeyer@636
|
289 n_iterations++;
|
alexbrandmeyer@636
|
290 assert(n_iterations < 16 &&
|
alexbrandmeyer@636
|
291 "Too many iterations needed in AGC spatial smoothing.");
|
alexbrandmeyer@636
|
292 break;
|
alexbrandmeyer@636
|
293 default:
|
alexbrandmeyer@636
|
294 assert(true && "Bad n_taps; should be 3 or 5.");
|
alexbrandmeyer@636
|
295 break;
|
alexbrandmeyer@636
|
296 }
|
alexbrandmeyer@636
|
297 // The smoothing function is a space-domain smoothing, but it considered
|
alexbrandmeyer@636
|
298 // here by analogy to time-domain smoothing, which is why its potential
|
alexbrandmeyer@636
|
299 // off-centeredness is called a delay. Since it's a smoothing filter, it
|
alexbrandmeyer@636
|
300 // is also analogous to a discrete probability distribution (a p.m.f.),
|
alexbrandmeyer@636
|
301 // with mean corresponding to delay and variance corresponding to squared
|
alexbrandmeyer@636
|
302 // spatial spread (in samples, or channels, and the square thereof,
|
alexbrandmeyer@636
|
303 // respecitively). Here we design a filter implementation's coefficient
|
alexbrandmeyer@636
|
304 // via the method of moment matching, so we get the intended delay and
|
alexbrandmeyer@636
|
305 // spread, and don't worry too much about the shape of the distribution,
|
alexbrandmeyer@636
|
306 // which will be some kind of blob not too far from Gaussian if we run
|
alexbrandmeyer@636
|
307 // several FIR iterations.
|
alexbrandmeyer@636
|
308 FPType delay_variance = spread_sq / n_iterations;
|
alexbrandmeyer@636
|
309 FPType mean_delay = delay / n_iterations;
|
alexbrandmeyer@636
|
310 FPType a, b;
|
alexbrandmeyer@636
|
311 switch (n_taps) {
|
alexbrandmeyer@636
|
312 case 3:
|
alexbrandmeyer@636
|
313 a = (delay_variance + (mean_delay*mean_delay) - mean_delay) / 2.0;
|
alexbrandmeyer@636
|
314 b = (delay_variance + (mean_delay*mean_delay) + mean_delay) / 2.0;
|
alexbrandmeyer@636
|
315 fir_left = a;
|
alexbrandmeyer@636
|
316 fir_mid = 1 - a - b;
|
alexbrandmeyer@636
|
317 fir_right = b;
|
alexbrandmeyer@636
|
318 fir_ok = fir_mid >= 0.2 ? true : false;
|
alexbrandmeyer@636
|
319 break;
|
alexbrandmeyer@636
|
320 case 5:
|
alexbrandmeyer@636
|
321 a = (((delay_variance + (mean_delay*mean_delay)) * 2.0/5.0) -
|
alexbrandmeyer@636
|
322 (mean_delay * 2.0/3.0)) / 2.0;
|
alexbrandmeyer@636
|
323 b = (((delay_variance + (mean_delay*mean_delay)) * 2.0/5.0) +
|
alexbrandmeyer@636
|
324 (mean_delay * 2.0/3.0)) / 2.0;
|
alexbrandmeyer@636
|
325 fir_left = a / 2.0;
|
alexbrandmeyer@636
|
326 fir_mid = 1 - a - b;
|
alexbrandmeyer@636
|
327 fir_right = b / 2.0;
|
alexbrandmeyer@636
|
328 fir_ok = fir_mid >= 0.1 ? true : false;
|
alexbrandmeyer@636
|
329 break;
|
alexbrandmeyer@636
|
330 default:
|
alexbrandmeyer@636
|
331 assert(true && "Bad n_taps; should be 3 or 5.");
|
alexbrandmeyer@636
|
332 break;
|
alexbrandmeyer@636
|
333 }
|
alexbrandmeyer@636
|
334 }
|
alexbrandmeyer@636
|
335 // Once we have the FIR design for this stage we can assign it to the
|
alexbrandmeyer@636
|
336 // appropriate data members.
|
alexbrandmeyer@640
|
337 agc_coeff.agc_spatial_iterations = n_iterations;
|
alexbrandmeyer@640
|
338 agc_coeff.agc_spatial_n_taps = n_taps;
|
alexbrandmeyer@640
|
339 agc_coeff.agc_spatial_fir_left = fir_left;
|
alexbrandmeyer@640
|
340 agc_coeff.agc_spatial_fir_mid = fir_mid;
|
alexbrandmeyer@640
|
341 agc_coeff.agc_spatial_fir_right = fir_right;
|
alexbrandmeyer@640
|
342 total_dc_gain += pow(agc_coeff.agc_stage_gain, stage);
|
alexbrandmeyer@640
|
343 agc_coeff.agc_mix_coeffs = stage == 0 ? 0 : mix_coeff /
|
alexbrandmeyer@640
|
344 (tau * (fs / agc_coeff.decim));
|
alexbrandmeyer@640
|
345 agc_coeff.agc_gain = total_dc_gain;
|
alexbrandmeyer@640
|
346 agc_coeff.detect_scale = 1 / total_dc_gain;
|
alexbrandmeyer@640
|
347 previous_stage_gain = agc_coeff.agc_gain;
|
alexbrandmeyer@640
|
348 decim = agc_coeff.decim;
|
alexbrandmeyer@636
|
349 }
|
alexbrandmeyer@640
|
350 } |