tomwalters@268
|
1 // Copyright 2008-2010, Thomas Walters
|
tomwalters@268
|
2 //
|
tomwalters@268
|
3 // AIM-C: A C++ implementation of the Auditory Image Model
|
tomwalters@268
|
4 // http://www.acousticscale.org/AIMC
|
tomwalters@268
|
5 //
|
tomwalters@318
|
6 // Licensed under the Apache License, Version 2.0 (the "License");
|
tomwalters@318
|
7 // you may not use this file except in compliance with the License.
|
tomwalters@318
|
8 // You may obtain a copy of the License at
|
tomwalters@268
|
9 //
|
tomwalters@318
|
10 // http://www.apache.org/licenses/LICENSE-2.0
|
tomwalters@268
|
11 //
|
tomwalters@318
|
12 // Unless required by applicable law or agreed to in writing, software
|
tomwalters@318
|
13 // distributed under the License is distributed on an "AS IS" BASIS,
|
tomwalters@318
|
14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tomwalters@318
|
15 // See the License for the specific language governing permissions and
|
tomwalters@318
|
16 // limitations under the License.
|
tomwalters@268
|
17
|
tomwalters@268
|
18 /*! \file
|
tomwalters@268
|
19 * \brief Gaussian features - based on MATLAB code by Christian Feldbauer
|
tomwalters@268
|
20 */
|
tomwalters@268
|
21
|
tomwalters@268
|
22 /*!
|
tomwalters@273
|
23 * \author Thomas Walters <tom@acousticscale.org>
|
tomwalters@268
|
24 * \date created 2008/06/23
|
tomwalters@296
|
25 * \version \$Id$
|
tomwalters@268
|
26 */
|
tomwalters@268
|
27
|
tomwalters@268
|
28 #include <math.h>
|
tomwalters@268
|
29
|
tomwalters@268
|
30 #include "Modules/Features/ModuleGaussians.h"
|
tomwalters@268
|
31 #include "Support/Common.h"
|
tomwalters@268
|
32
|
tomwalters@268
|
33 namespace aimc {
|
tomwalters@278
|
34 ModuleGaussians::ModuleGaussians(Parameters *params) : Module(params) {
|
tomwalters@268
|
35 // Set module metadata
|
tomwalters@268
|
36 module_description_ = "Gaussian Fitting to SSI profile";
|
tomwalters@273
|
37 module_identifier_ = "gaussians";
|
tomwalters@268
|
38 module_type_ = "features";
|
tomwalters@296
|
39 module_version_ = "$Id$";
|
tomwalters@268
|
40
|
tomwalters@273
|
41 m_iParamNComp = parameters_->DefaultInt("features.gaussians.ncomp", 4);
|
tomwalters@273
|
42 m_fParamVar = parameters_->DefaultFloat("features.gaussians.var", 115.0);
|
tomwalters@273
|
43 m_fParamPosteriorExp =
|
tomwalters@273
|
44 parameters_->DefaultFloat("features.gaussians.posterior_exp", 6.0);
|
tomwalters@273
|
45 m_iParamMaxIt = parameters_->DefaultInt("features.gaussians.maxit", 250);
|
tomwalters@268
|
46
|
tomwalters@273
|
47 // The parameters system doesn't support tiny numbers well, to define this
|
tomwalters@273
|
48 // variable as a string, then convert it to a float afterwards
|
tomwalters@273
|
49 parameters_->DefaultString("features.gaussians.priors_converged", "1e-7");
|
tomwalters@268
|
50 m_fParamPriorsConverged =
|
tomwalters@273
|
51 parameters_->GetFloat("features.gaussians.priors_converged");
|
tomwalters@268
|
52 }
|
tomwalters@268
|
53
|
tomwalters@268
|
54 ModuleGaussians::~ModuleGaussians() {
|
tomwalters@268
|
55 }
|
tomwalters@268
|
56
|
tomwalters@268
|
57 bool ModuleGaussians::InitializeInternal(const SignalBank &input) {
|
tomwalters@268
|
58 m_pA.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
59 m_pMu.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
60
|
tomwalters@268
|
61 // Assuming the number of channels is greater than twice the number of
|
tomwalters@268
|
62 // Gaussian components, this is ok
|
tomwalters@268
|
63 if (input.channel_count() >= 2 * m_iParamNComp) {
|
tomwalters@273
|
64 output_.Initialize(m_iParamNComp, 1, input.sample_rate());
|
tomwalters@268
|
65 } else {
|
tomwalters@268
|
66 LOG_ERROR(_T("Too few channels in filterbank to produce sensible "
|
tomwalters@268
|
67 "Gaussian features. Either increase the number of filterbank"
|
tomwalters@268
|
68 " channels, or decrease the number of Gaussian components"));
|
tomwalters@268
|
69 return false;
|
tomwalters@268
|
70 }
|
tomwalters@268
|
71
|
tomwalters@268
|
72 m_iNumChannels = input.channel_count();
|
tomwalters@268
|
73 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
|
tomwalters@268
|
74
|
tomwalters@268
|
75 return true;
|
tomwalters@268
|
76 }
|
tomwalters@268
|
77
|
tomwalters@275
|
78 void ModuleGaussians::ResetInternal() {
|
tomwalters@268
|
79 m_pSpectralProfile.clear();
|
tomwalters@268
|
80 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
|
tomwalters@292
|
81 m_pA.clear();
|
tomwalters@292
|
82 m_pA.resize(m_iParamNComp, 0.0f);
|
tomwalters@292
|
83 m_pMu.clear();
|
tomwalters@292
|
84 m_pMu.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
85 }
|
tomwalters@268
|
86
|
tomwalters@268
|
87 void ModuleGaussians::Process(const SignalBank &input) {
|
tomwalters@273
|
88 if (!initialized_) {
|
tomwalters@273
|
89 LOG_ERROR(_T("Module ModuleGaussians not initialized."));
|
tomwalters@273
|
90 return;
|
tomwalters@273
|
91 }
|
tomwalters@268
|
92 // Calculate spectral profile
|
tomwalters@268
|
93 for (int iChannel = 0;
|
tomwalters@268
|
94 iChannel < input.channel_count();
|
tomwalters@268
|
95 ++iChannel) {
|
tomwalters@268
|
96 m_pSpectralProfile[iChannel] = 0.0f;
|
tomwalters@268
|
97 for (int iSample = 0;
|
tomwalters@268
|
98 iSample < input.buffer_length();
|
tomwalters@268
|
99 ++iSample) {
|
tomwalters@268
|
100 m_pSpectralProfile[iChannel] += input[iChannel][iSample];
|
tomwalters@268
|
101 }
|
tomwalters@280
|
102 m_pSpectralProfile[iChannel] /= static_cast<float>(input.buffer_length());
|
tomwalters@273
|
103 }
|
tomwalters@273
|
104
|
tomwalters@280
|
105 float spectral_profile_sum = 0.0f;
|
tomwalters@273
|
106 for (int i = 0; i < input.channel_count(); ++i) {
|
tomwalters@273
|
107 spectral_profile_sum += m_pSpectralProfile[i];
|
tomwalters@273
|
108 }
|
tomwalters@273
|
109
|
tomwalters@280
|
110 float logsum = log(spectral_profile_sum);
|
tomwalters@273
|
111 if (!isinf(logsum)) {
|
tomwalters@273
|
112 output_.set_sample(m_iParamNComp - 1, 0, logsum);
|
tomwalters@273
|
113 } else {
|
tomwalters@273
|
114 output_.set_sample(m_iParamNComp - 1, 0, -1000.0);
|
tomwalters@268
|
115 }
|
tomwalters@268
|
116
|
tomwalters@268
|
117 for (int iChannel = 0;
|
tomwalters@268
|
118 iChannel < input.channel_count();
|
tomwalters@268
|
119 ++iChannel) {
|
tomwalters@268
|
120 m_pSpectralProfile[iChannel] = pow(m_pSpectralProfile[iChannel], 0.8);
|
tomwalters@268
|
121 }
|
tomwalters@268
|
122
|
tomwalters@268
|
123 RubberGMMCore(2, true);
|
tomwalters@268
|
124
|
tomwalters@280
|
125 float fMean1 = m_pMu[0];
|
tomwalters@280
|
126 float fMean2 = m_pMu[1];
|
tomwalters@280
|
127 // LOG_INFO(_T("Orig. mean 0 = %f"), m_pMu[0]);
|
tomwalters@280
|
128 // LOG_INFO(_T("Orig. mean 1 = %f"), m_pMu[1]);
|
tomwalters@280
|
129 // LOG_INFO(_T("Orig. prob 0 = %f"), m_pA[0]);
|
tomwalters@280
|
130 // LOG_INFO(_T("Orig. prob 1 = %f"), m_pA[1]);
|
tomwalters@268
|
131
|
tomwalters@280
|
132 float fA1 = 0.05 * m_pA[0];
|
tomwalters@280
|
133 float fA2 = 1.0 - 0.25 * m_pA[1];
|
tomwalters@268
|
134
|
tomwalters@280
|
135 // LOG_INFO(_T("fA1 = %f"), fA1);
|
tomwalters@280
|
136 // LOG_INFO(_T("fA2 = %f"), fA2);
|
tomwalters@274
|
137
|
tomwalters@280
|
138 float fGradient = (fMean2 - fMean1) / (fA2 - fA1);
|
tomwalters@280
|
139 float fIntercept = fMean2 - fGradient * fA2;
|
tomwalters@274
|
140
|
tomwalters@280
|
141 // LOG_INFO(_T("fGradient = %f"), fGradient);
|
tomwalters@280
|
142 // LOG_INFO(_T("fIntercept = %f"), fIntercept);
|
tomwalters@268
|
143
|
tomwalters@268
|
144 for (int i = 0; i < m_iParamNComp; ++i) {
|
tomwalters@280
|
145 m_pMu[i] = (static_cast<float>(i)
|
tomwalters@280
|
146 / (static_cast<float>(m_iParamNComp) - 1.0f))
|
tomwalters@280
|
147 * fGradient + fIntercept;
|
tomwalters@280
|
148 // LOG_INFO(_T("mean %d = %f"), i, m_pMu[i]);
|
tomwalters@268
|
149 }
|
tomwalters@268
|
150
|
tomwalters@268
|
151 for (int i = 0; i < m_iParamNComp; ++i) {
|
tomwalters@280
|
152 m_pA[i] = 1.0f / static_cast<float>(m_iParamNComp);
|
tomwalters@268
|
153 }
|
tomwalters@268
|
154
|
tomwalters@268
|
155 RubberGMMCore(m_iParamNComp, false);
|
tomwalters@268
|
156
|
tomwalters@268
|
157 for (int i = 0; i < m_iParamNComp - 1; ++i) {
|
tomwalters@268
|
158 if (!isnan(m_pA[i])) {
|
tomwalters@268
|
159 output_.set_sample(i, 0, m_pA[i]);
|
tomwalters@268
|
160 } else {
|
tomwalters@268
|
161 output_.set_sample(i, 0, 0.0f);
|
tomwalters@268
|
162 }
|
tomwalters@268
|
163 }
|
tomwalters@273
|
164
|
tomwalters@268
|
165 PushOutput();
|
tomwalters@268
|
166 }
|
tomwalters@268
|
167
|
tomwalters@268
|
168 bool ModuleGaussians::RubberGMMCore(int iNComponents, bool bDoInit) {
|
tomwalters@268
|
169 int iSizeX = m_iNumChannels;
|
tomwalters@268
|
170
|
tomwalters@268
|
171 // Normalise the spectral profile
|
tomwalters@280
|
172 float fSpectralProfileTotal = 0.0f;
|
tomwalters@268
|
173 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
174 fSpectralProfileTotal += m_pSpectralProfile[iCount];
|
tomwalters@268
|
175 }
|
tomwalters@268
|
176 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
177 m_pSpectralProfile[iCount] /= fSpectralProfileTotal;
|
tomwalters@268
|
178 }
|
tomwalters@268
|
179
|
tomwalters@268
|
180 if (bDoInit) {
|
tomwalters@268
|
181 // Uniformly spaced components
|
tomwalters@280
|
182 float dd = (iSizeX - 1.0f) / iNComponents;
|
tomwalters@268
|
183 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
184 m_pMu[i] = dd / 2.0f + (i * dd);
|
tomwalters@268
|
185 m_pA[i] = 1.0f / iNComponents;
|
tomwalters@268
|
186 }
|
tomwalters@268
|
187 }
|
tomwalters@268
|
188
|
tomwalters@280
|
189 vector<float> pA_old;
|
tomwalters@268
|
190 pA_old.resize(iNComponents);
|
tomwalters@280
|
191 vector<float> pP_mod_X;
|
tomwalters@268
|
192 pP_mod_X.resize(iSizeX);
|
tomwalters@280
|
193 vector<float> pP_comp;
|
tomwalters@268
|
194 pP_comp.resize(iSizeX * iNComponents);
|
tomwalters@268
|
195
|
tomwalters@268
|
196 for (int iIteration = 0; iIteration < m_iParamMaxIt; iIteration++) {
|
tomwalters@268
|
197 // (re)calculate posteriors (component probability given observation)
|
tomwalters@268
|
198 // denominator: the model density at all observation points X
|
tomwalters@268
|
199 for (int i = 0; i < iSizeX; ++i) {
|
tomwalters@268
|
200 pP_mod_X[i] = 0.0f;
|
tomwalters@268
|
201 }
|
tomwalters@268
|
202
|
tomwalters@268
|
203 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
204 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
205 pP_mod_X[iCount] += 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
|
tomwalters@280
|
206 * exp((-0.5f)
|
tomwalters@280
|
207 * pow(static_cast<float>(iCount+1) - m_pMu[i], 2)
|
tomwalters@280
|
208 / m_fParamVar) * m_pA[i];
|
tomwalters@268
|
209 }
|
tomwalters@268
|
210 }
|
tomwalters@268
|
211
|
tomwalters@268
|
212 for (int i = 0; i < iSizeX * iNComponents; ++i) {
|
tomwalters@268
|
213 pP_comp[i] = 0.0f;
|
tomwalters@268
|
214 }
|
tomwalters@268
|
215
|
tomwalters@268
|
216 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
217 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
218 pP_comp[iCount + i * iSizeX] =
|
tomwalters@268
|
219 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
|
tomwalters@280
|
220 * exp((-0.5f) * pow((static_cast<float>(iCount + 1) - m_pMu[i]), 2)
|
tomwalters@280
|
221 / m_fParamVar);
|
tomwalters@268
|
222 pP_comp[iCount + i * iSizeX] =
|
tomwalters@268
|
223 pP_comp[iCount + i * iSizeX] * m_pA[i] / pP_mod_X[iCount];
|
tomwalters@268
|
224 }
|
tomwalters@268
|
225 }
|
tomwalters@268
|
226
|
tomwalters@268
|
227 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@280
|
228 float fSum = 0.0f;
|
tomwalters@268
|
229 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
230 pP_comp[iCount+i*iSizeX] = pow(pP_comp[iCount + i * iSizeX],
|
tomwalters@280
|
231 m_fParamPosteriorExp); // expansion
|
tomwalters@268
|
232 fSum += pP_comp[iCount+i*iSizeX];
|
tomwalters@268
|
233 }
|
tomwalters@268
|
234 for (int i = 0; i < iNComponents; ++i)
|
tomwalters@268
|
235 pP_comp[iCount+i*iSizeX] = pP_comp[iCount + i * iSizeX] / fSum;
|
tomwalters@268
|
236 // renormalisation
|
tomwalters@268
|
237 }
|
tomwalters@268
|
238
|
tomwalters@268
|
239 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
240 pA_old[i] = m_pA[i];
|
tomwalters@268
|
241 m_pA[i] = 0.0f;
|
tomwalters@268
|
242 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@268
|
243 m_pA[i] += pP_comp[iCount + i * iSizeX] * m_pSpectralProfile[iCount];
|
tomwalters@268
|
244 }
|
tomwalters@268
|
245 }
|
tomwalters@268
|
246
|
tomwalters@268
|
247 // finish when already converged
|
tomwalters@280
|
248 float fPrdist = 0.0f;
|
tomwalters@268
|
249 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
250 fPrdist += pow((m_pA[i] - pA_old[i]), 2);
|
tomwalters@268
|
251 }
|
tomwalters@268
|
252 fPrdist /= iNComponents;
|
tomwalters@268
|
253
|
tomwalters@268
|
254 if (fPrdist < m_fParamPriorsConverged) {
|
tomwalters@280
|
255 // LOG_INFO("Converged!");
|
tomwalters@268
|
256 break;
|
tomwalters@268
|
257 }
|
tomwalters@280
|
258 // LOG_INFO("Didn't converge!");
|
tomwalters@274
|
259
|
tomwalters@268
|
260
|
tomwalters@268
|
261 // update means (positions)
|
tomwalters@268
|
262 for (int i = 0 ; i < iNComponents; ++i) {
|
tomwalters@280
|
263 float mu_old = m_pMu[i];
|
tomwalters@268
|
264 if (m_pA[i] > 0.0f) {
|
tomwalters@268
|
265 m_pMu[i] = 0.0f;
|
tomwalters@268
|
266 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@268
|
267 m_pMu[i] += m_pSpectralProfile[iCount]
|
tomwalters@280
|
268 * pP_comp[iCount + i * iSizeX]
|
tomwalters@280
|
269 * static_cast<float>(iCount + 1);
|
tomwalters@268
|
270 }
|
tomwalters@268
|
271 m_pMu[i] /= m_pA[i];
|
tomwalters@268
|
272 if (isnan(m_pMu[i])) {
|
tomwalters@268
|
273 m_pMu[i] = mu_old;
|
tomwalters@268
|
274 }
|
tomwalters@268
|
275 }
|
tomwalters@268
|
276 }
|
tomwalters@280
|
277 } // loop over iterations
|
tomwalters@268
|
278
|
tomwalters@268
|
279 // Ensure they are sorted, using a really simple bubblesort
|
tomwalters@268
|
280 bool bSorted = false;
|
tomwalters@268
|
281 while (!bSorted) {
|
tomwalters@268
|
282 bSorted = true;
|
tomwalters@268
|
283 for (int i = 0; i < iNComponents - 1; ++i) {
|
tomwalters@268
|
284 if (m_pMu[i] > m_pMu[i + 1]) {
|
tomwalters@280
|
285 float fTemp = m_pMu[i];
|
tomwalters@268
|
286 m_pMu[i] = m_pMu[i + 1];
|
tomwalters@268
|
287 m_pMu[i + 1] = fTemp;
|
tomwalters@268
|
288 fTemp = m_pA[i];
|
tomwalters@268
|
289 m_pA[i] = m_pA[i + 1];
|
tomwalters@268
|
290 m_pA[i + 1] = fTemp;
|
tomwalters@268
|
291 bSorted = false;
|
tomwalters@268
|
292 }
|
tomwalters@268
|
293 }
|
tomwalters@268
|
294 }
|
tomwalters@268
|
295 return true;
|
tomwalters@268
|
296 }
|
tomwalters@280
|
297 } // namespace aimc
|
tomwalters@268
|
298
|