tomwalters@268
|
1 // Copyright 2008-2010, Thomas Walters
|
tomwalters@268
|
2 //
|
tomwalters@268
|
3 // AIM-C: A C++ implementation of the Auditory Image Model
|
tomwalters@268
|
4 // http://www.acousticscale.org/AIMC
|
tomwalters@268
|
5 //
|
tomwalters@268
|
6 // This program is free software: you can redistribute it and/or modify
|
tomwalters@268
|
7 // it under the terms of the GNU General Public License as published by
|
tomwalters@268
|
8 // the Free Software Foundation, either version 3 of the License, or
|
tomwalters@268
|
9 // (at your option) any later version.
|
tomwalters@268
|
10 //
|
tomwalters@268
|
11 // This program is distributed in the hope that it will be useful,
|
tomwalters@268
|
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
tomwalters@268
|
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
tomwalters@268
|
14 // GNU General Public License for more details.
|
tomwalters@268
|
15 //
|
tomwalters@268
|
16 // You should have received a copy of the GNU General Public License
|
tomwalters@268
|
17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
|
tomwalters@268
|
18
|
tomwalters@268
|
19 /*! \file
|
tomwalters@268
|
20 * \brief Gaussian features - based on MATLAB code by Christian Feldbauer
|
tomwalters@268
|
21 */
|
tomwalters@268
|
22
|
tomwalters@268
|
23 /*!
|
tomwalters@273
|
24 * \author Thomas Walters <tom@acousticscale.org>
|
tomwalters@268
|
25 * \date created 2008/06/23
|
tomwalters@268
|
26 * \version \$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $
|
tomwalters@268
|
27 */
|
tomwalters@268
|
28
|
tomwalters@268
|
29 #include <math.h>
|
tomwalters@268
|
30
|
tomwalters@268
|
31 #include "Modules/Features/ModuleGaussians.h"
|
tomwalters@268
|
32 #include "Support/Common.h"
|
tomwalters@268
|
33
|
tomwalters@268
|
34 namespace aimc {
|
tomwalters@278
|
35 ModuleGaussians::ModuleGaussians(Parameters *params) : Module(params) {
|
tomwalters@268
|
36 // Set module metadata
|
tomwalters@268
|
37 module_description_ = "Gaussian Fitting to SSI profile";
|
tomwalters@273
|
38 module_identifier_ = "gaussians";
|
tomwalters@268
|
39 module_type_ = "features";
|
tomwalters@268
|
40 module_version_ = "$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $";
|
tomwalters@268
|
41
|
tomwalters@273
|
42 m_iParamNComp = parameters_->DefaultInt("features.gaussians.ncomp", 4);
|
tomwalters@273
|
43 m_fParamVar = parameters_->DefaultFloat("features.gaussians.var", 115.0);
|
tomwalters@273
|
44 m_fParamPosteriorExp =
|
tomwalters@273
|
45 parameters_->DefaultFloat("features.gaussians.posterior_exp", 6.0);
|
tomwalters@273
|
46 m_iParamMaxIt = parameters_->DefaultInt("features.gaussians.maxit", 250);
|
tomwalters@268
|
47
|
tomwalters@273
|
48 // The parameters system doesn't support tiny numbers well, to define this
|
tomwalters@273
|
49 // variable as a string, then convert it to a float afterwards
|
tomwalters@273
|
50 parameters_->DefaultString("features.gaussians.priors_converged", "1e-7");
|
tomwalters@268
|
51 m_fParamPriorsConverged =
|
tomwalters@273
|
52 parameters_->GetFloat("features.gaussians.priors_converged");
|
tomwalters@268
|
53 }
|
tomwalters@268
|
54
|
tomwalters@268
|
55 ModuleGaussians::~ModuleGaussians() {
|
tomwalters@268
|
56 }
|
tomwalters@268
|
57
|
tomwalters@268
|
58 bool ModuleGaussians::InitializeInternal(const SignalBank &input) {
|
tomwalters@268
|
59 m_pA.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
60 m_pMu.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
61
|
tomwalters@268
|
62 // Assuming the number of channels is greater than twice the number of
|
tomwalters@268
|
63 // Gaussian components, this is ok
|
tomwalters@268
|
64 if (input.channel_count() >= 2 * m_iParamNComp) {
|
tomwalters@273
|
65 output_.Initialize(m_iParamNComp, 1, input.sample_rate());
|
tomwalters@268
|
66 } else {
|
tomwalters@268
|
67 LOG_ERROR(_T("Too few channels in filterbank to produce sensible "
|
tomwalters@268
|
68 "Gaussian features. Either increase the number of filterbank"
|
tomwalters@268
|
69 " channels, or decrease the number of Gaussian components"));
|
tomwalters@268
|
70 return false;
|
tomwalters@268
|
71 }
|
tomwalters@268
|
72
|
tomwalters@268
|
73 m_iNumChannels = input.channel_count();
|
tomwalters@268
|
74 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
|
tomwalters@268
|
75
|
tomwalters@268
|
76 return true;
|
tomwalters@268
|
77 }
|
tomwalters@268
|
78
|
tomwalters@275
|
79 void ModuleGaussians::ResetInternal() {
|
tomwalters@268
|
80 m_pSpectralProfile.clear();
|
tomwalters@268
|
81 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
|
tomwalters@292
|
82 m_pA.clear();
|
tomwalters@292
|
83 m_pA.resize(m_iParamNComp, 0.0f);
|
tomwalters@292
|
84 m_pMu.clear();
|
tomwalters@292
|
85 m_pMu.resize(m_iParamNComp, 0.0f);
|
tomwalters@268
|
86 }
|
tomwalters@268
|
87
|
tomwalters@268
|
88 void ModuleGaussians::Process(const SignalBank &input) {
|
tomwalters@273
|
89 if (!initialized_) {
|
tomwalters@273
|
90 LOG_ERROR(_T("Module ModuleGaussians not initialized."));
|
tomwalters@273
|
91 return;
|
tomwalters@273
|
92 }
|
tomwalters@268
|
93 // Calculate spectral profile
|
tomwalters@268
|
94 for (int iChannel = 0;
|
tomwalters@268
|
95 iChannel < input.channel_count();
|
tomwalters@268
|
96 ++iChannel) {
|
tomwalters@268
|
97 m_pSpectralProfile[iChannel] = 0.0f;
|
tomwalters@268
|
98 for (int iSample = 0;
|
tomwalters@268
|
99 iSample < input.buffer_length();
|
tomwalters@268
|
100 ++iSample) {
|
tomwalters@268
|
101 m_pSpectralProfile[iChannel] += input[iChannel][iSample];
|
tomwalters@268
|
102 }
|
tomwalters@280
|
103 m_pSpectralProfile[iChannel] /= static_cast<float>(input.buffer_length());
|
tomwalters@273
|
104 }
|
tomwalters@273
|
105
|
tomwalters@280
|
106 float spectral_profile_sum = 0.0f;
|
tomwalters@273
|
107 for (int i = 0; i < input.channel_count(); ++i) {
|
tomwalters@273
|
108 spectral_profile_sum += m_pSpectralProfile[i];
|
tomwalters@273
|
109 }
|
tomwalters@273
|
110
|
tomwalters@280
|
111 float logsum = log(spectral_profile_sum);
|
tomwalters@273
|
112 if (!isinf(logsum)) {
|
tomwalters@273
|
113 output_.set_sample(m_iParamNComp - 1, 0, logsum);
|
tomwalters@273
|
114 } else {
|
tomwalters@273
|
115 output_.set_sample(m_iParamNComp - 1, 0, -1000.0);
|
tomwalters@268
|
116 }
|
tomwalters@268
|
117
|
tomwalters@268
|
118 for (int iChannel = 0;
|
tomwalters@268
|
119 iChannel < input.channel_count();
|
tomwalters@268
|
120 ++iChannel) {
|
tomwalters@268
|
121 m_pSpectralProfile[iChannel] = pow(m_pSpectralProfile[iChannel], 0.8);
|
tomwalters@268
|
122 }
|
tomwalters@268
|
123
|
tomwalters@268
|
124 RubberGMMCore(2, true);
|
tomwalters@268
|
125
|
tomwalters@280
|
126 float fMean1 = m_pMu[0];
|
tomwalters@280
|
127 float fMean2 = m_pMu[1];
|
tomwalters@280
|
128 // LOG_INFO(_T("Orig. mean 0 = %f"), m_pMu[0]);
|
tomwalters@280
|
129 // LOG_INFO(_T("Orig. mean 1 = %f"), m_pMu[1]);
|
tomwalters@280
|
130 // LOG_INFO(_T("Orig. prob 0 = %f"), m_pA[0]);
|
tomwalters@280
|
131 // LOG_INFO(_T("Orig. prob 1 = %f"), m_pA[1]);
|
tomwalters@268
|
132
|
tomwalters@280
|
133 float fA1 = 0.05 * m_pA[0];
|
tomwalters@280
|
134 float fA2 = 1.0 - 0.25 * m_pA[1];
|
tomwalters@268
|
135
|
tomwalters@280
|
136 // LOG_INFO(_T("fA1 = %f"), fA1);
|
tomwalters@280
|
137 // LOG_INFO(_T("fA2 = %f"), fA2);
|
tomwalters@274
|
138
|
tomwalters@280
|
139 float fGradient = (fMean2 - fMean1) / (fA2 - fA1);
|
tomwalters@280
|
140 float fIntercept = fMean2 - fGradient * fA2;
|
tomwalters@274
|
141
|
tomwalters@280
|
142 // LOG_INFO(_T("fGradient = %f"), fGradient);
|
tomwalters@280
|
143 // LOG_INFO(_T("fIntercept = %f"), fIntercept);
|
tomwalters@268
|
144
|
tomwalters@268
|
145 for (int i = 0; i < m_iParamNComp; ++i) {
|
tomwalters@280
|
146 m_pMu[i] = (static_cast<float>(i)
|
tomwalters@280
|
147 / (static_cast<float>(m_iParamNComp) - 1.0f))
|
tomwalters@280
|
148 * fGradient + fIntercept;
|
tomwalters@280
|
149 // LOG_INFO(_T("mean %d = %f"), i, m_pMu[i]);
|
tomwalters@268
|
150 }
|
tomwalters@268
|
151
|
tomwalters@268
|
152 for (int i = 0; i < m_iParamNComp; ++i) {
|
tomwalters@280
|
153 m_pA[i] = 1.0f / static_cast<float>(m_iParamNComp);
|
tomwalters@268
|
154 }
|
tomwalters@268
|
155
|
tomwalters@268
|
156 RubberGMMCore(m_iParamNComp, false);
|
tomwalters@268
|
157
|
tomwalters@268
|
158 for (int i = 0; i < m_iParamNComp - 1; ++i) {
|
tomwalters@268
|
159 if (!isnan(m_pA[i])) {
|
tomwalters@268
|
160 output_.set_sample(i, 0, m_pA[i]);
|
tomwalters@268
|
161 } else {
|
tomwalters@268
|
162 output_.set_sample(i, 0, 0.0f);
|
tomwalters@268
|
163 }
|
tomwalters@268
|
164 }
|
tomwalters@273
|
165
|
tomwalters@268
|
166 PushOutput();
|
tomwalters@268
|
167 }
|
tomwalters@268
|
168
|
tomwalters@268
|
169 bool ModuleGaussians::RubberGMMCore(int iNComponents, bool bDoInit) {
|
tomwalters@268
|
170 int iSizeX = m_iNumChannels;
|
tomwalters@268
|
171
|
tomwalters@268
|
172 // Normalise the spectral profile
|
tomwalters@280
|
173 float fSpectralProfileTotal = 0.0f;
|
tomwalters@268
|
174 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
175 fSpectralProfileTotal += m_pSpectralProfile[iCount];
|
tomwalters@268
|
176 }
|
tomwalters@268
|
177 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
178 m_pSpectralProfile[iCount] /= fSpectralProfileTotal;
|
tomwalters@268
|
179 }
|
tomwalters@268
|
180
|
tomwalters@268
|
181 if (bDoInit) {
|
tomwalters@268
|
182 // Uniformly spaced components
|
tomwalters@280
|
183 float dd = (iSizeX - 1.0f) / iNComponents;
|
tomwalters@268
|
184 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
185 m_pMu[i] = dd / 2.0f + (i * dd);
|
tomwalters@268
|
186 m_pA[i] = 1.0f / iNComponents;
|
tomwalters@268
|
187 }
|
tomwalters@268
|
188 }
|
tomwalters@268
|
189
|
tomwalters@280
|
190 vector<float> pA_old;
|
tomwalters@268
|
191 pA_old.resize(iNComponents);
|
tomwalters@280
|
192 vector<float> pP_mod_X;
|
tomwalters@268
|
193 pP_mod_X.resize(iSizeX);
|
tomwalters@280
|
194 vector<float> pP_comp;
|
tomwalters@268
|
195 pP_comp.resize(iSizeX * iNComponents);
|
tomwalters@268
|
196
|
tomwalters@268
|
197 for (int iIteration = 0; iIteration < m_iParamMaxIt; iIteration++) {
|
tomwalters@268
|
198 // (re)calculate posteriors (component probability given observation)
|
tomwalters@268
|
199 // denominator: the model density at all observation points X
|
tomwalters@268
|
200 for (int i = 0; i < iSizeX; ++i) {
|
tomwalters@268
|
201 pP_mod_X[i] = 0.0f;
|
tomwalters@268
|
202 }
|
tomwalters@268
|
203
|
tomwalters@268
|
204 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
205 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
206 pP_mod_X[iCount] += 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
|
tomwalters@280
|
207 * exp((-0.5f)
|
tomwalters@280
|
208 * pow(static_cast<float>(iCount+1) - m_pMu[i], 2)
|
tomwalters@280
|
209 / m_fParamVar) * m_pA[i];
|
tomwalters@268
|
210 }
|
tomwalters@268
|
211 }
|
tomwalters@268
|
212
|
tomwalters@268
|
213 for (int i = 0; i < iSizeX * iNComponents; ++i) {
|
tomwalters@268
|
214 pP_comp[i] = 0.0f;
|
tomwalters@268
|
215 }
|
tomwalters@268
|
216
|
tomwalters@268
|
217 for (int i = 0; i < iNComponents; i++) {
|
tomwalters@268
|
218 for (int iCount = 0; iCount < iSizeX; iCount++) {
|
tomwalters@268
|
219 pP_comp[iCount + i * iSizeX] =
|
tomwalters@268
|
220 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
|
tomwalters@280
|
221 * exp((-0.5f) * pow((static_cast<float>(iCount + 1) - m_pMu[i]), 2)
|
tomwalters@280
|
222 / m_fParamVar);
|
tomwalters@268
|
223 pP_comp[iCount + i * iSizeX] =
|
tomwalters@268
|
224 pP_comp[iCount + i * iSizeX] * m_pA[i] / pP_mod_X[iCount];
|
tomwalters@268
|
225 }
|
tomwalters@268
|
226 }
|
tomwalters@268
|
227
|
tomwalters@268
|
228 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@280
|
229 float fSum = 0.0f;
|
tomwalters@268
|
230 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
231 pP_comp[iCount+i*iSizeX] = pow(pP_comp[iCount + i * iSizeX],
|
tomwalters@280
|
232 m_fParamPosteriorExp); // expansion
|
tomwalters@268
|
233 fSum += pP_comp[iCount+i*iSizeX];
|
tomwalters@268
|
234 }
|
tomwalters@268
|
235 for (int i = 0; i < iNComponents; ++i)
|
tomwalters@268
|
236 pP_comp[iCount+i*iSizeX] = pP_comp[iCount + i * iSizeX] / fSum;
|
tomwalters@268
|
237 // renormalisation
|
tomwalters@268
|
238 }
|
tomwalters@268
|
239
|
tomwalters@268
|
240 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
241 pA_old[i] = m_pA[i];
|
tomwalters@268
|
242 m_pA[i] = 0.0f;
|
tomwalters@268
|
243 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@268
|
244 m_pA[i] += pP_comp[iCount + i * iSizeX] * m_pSpectralProfile[iCount];
|
tomwalters@268
|
245 }
|
tomwalters@268
|
246 }
|
tomwalters@268
|
247
|
tomwalters@268
|
248 // finish when already converged
|
tomwalters@280
|
249 float fPrdist = 0.0f;
|
tomwalters@268
|
250 for (int i = 0; i < iNComponents; ++i) {
|
tomwalters@268
|
251 fPrdist += pow((m_pA[i] - pA_old[i]), 2);
|
tomwalters@268
|
252 }
|
tomwalters@268
|
253 fPrdist /= iNComponents;
|
tomwalters@268
|
254
|
tomwalters@268
|
255 if (fPrdist < m_fParamPriorsConverged) {
|
tomwalters@280
|
256 // LOG_INFO("Converged!");
|
tomwalters@268
|
257 break;
|
tomwalters@268
|
258 }
|
tomwalters@280
|
259 // LOG_INFO("Didn't converge!");
|
tomwalters@274
|
260
|
tomwalters@268
|
261
|
tomwalters@268
|
262 // update means (positions)
|
tomwalters@268
|
263 for (int i = 0 ; i < iNComponents; ++i) {
|
tomwalters@280
|
264 float mu_old = m_pMu[i];
|
tomwalters@268
|
265 if (m_pA[i] > 0.0f) {
|
tomwalters@268
|
266 m_pMu[i] = 0.0f;
|
tomwalters@268
|
267 for (int iCount = 0; iCount < iSizeX; ++iCount) {
|
tomwalters@268
|
268 m_pMu[i] += m_pSpectralProfile[iCount]
|
tomwalters@280
|
269 * pP_comp[iCount + i * iSizeX]
|
tomwalters@280
|
270 * static_cast<float>(iCount + 1);
|
tomwalters@268
|
271 }
|
tomwalters@268
|
272 m_pMu[i] /= m_pA[i];
|
tomwalters@268
|
273 if (isnan(m_pMu[i])) {
|
tomwalters@268
|
274 m_pMu[i] = mu_old;
|
tomwalters@268
|
275 }
|
tomwalters@268
|
276 }
|
tomwalters@268
|
277 }
|
tomwalters@280
|
278 } // loop over iterations
|
tomwalters@268
|
279
|
tomwalters@268
|
280 // Ensure they are sorted, using a really simple bubblesort
|
tomwalters@268
|
281 bool bSorted = false;
|
tomwalters@268
|
282 while (!bSorted) {
|
tomwalters@268
|
283 bSorted = true;
|
tomwalters@268
|
284 for (int i = 0; i < iNComponents - 1; ++i) {
|
tomwalters@268
|
285 if (m_pMu[i] > m_pMu[i + 1]) {
|
tomwalters@280
|
286 float fTemp = m_pMu[i];
|
tomwalters@268
|
287 m_pMu[i] = m_pMu[i + 1];
|
tomwalters@268
|
288 m_pMu[i + 1] = fTemp;
|
tomwalters@268
|
289 fTemp = m_pA[i];
|
tomwalters@268
|
290 m_pA[i] = m_pA[i + 1];
|
tomwalters@268
|
291 m_pA[i + 1] = fTemp;
|
tomwalters@268
|
292 bSorted = false;
|
tomwalters@268
|
293 }
|
tomwalters@268
|
294 }
|
tomwalters@268
|
295 }
|
tomwalters@268
|
296 return true;
|
tomwalters@268
|
297 }
|
tomwalters@280
|
298 } // namespace aimc
|
tomwalters@268
|
299
|