view Sirtassa/Main.m @ 2:13ec2fa02a26 tip

(none)
author Yannick JACOB <y.jacob@se12.qmul.ac.uk>
date Tue, 03 Sep 2013 15:33:42 +0100
parents
children
line wrap: on
line source
%% Default Values
%Audio and score information
if(~exist('midiCell','var'))
    midiCell = cell(2,1);
    midiCell{1} = 'Lussier_bassoon.mid';
    midiCell{2} = 'Lussier_trumpet.mid';
    mixName = 'Lussier_mix.wav';
    %mixName = '311CLNOF.WAV';
    %midiCell{1} = '311CLNOF.mid';
end
if(~exist('blockSize','var'))   blockSize = 2048;   end
if(~exist('overlap','var'))     overlap = 2;        end
%Maximum frequency of the filter
if(~exist('bandPassFilterMaxFreq','var'))    bandPassFilterMaxFreq = 10000; end
%Number of band pass filters in the filter
if(~exist('nbBandPassFilters','var'))    nbBandPassFilters = 20;end
%Maximum updates per frame
if(~exist('maxUpdates','var'))    maxUpdates = 2;end
%Number of partials in the model
if(~exist('nbPartials','var'))    nbPartials = 8;end
if(~exist('plotRefinedScore','var'))    plotRefinedScore = 0;end
if(~exist('plotPartial','var'))    plotPartial = 0;end
if(~exist('plotFilter','var'))    plotFilter = 0;end
%Nummber of instrument in the mix.
nbInstrument = length(midiCell);
fftSize = blockSize;

%Weights of the harmonic series
partialsWeights = ones(nbPartials,nbInstrument);

colors = 'rwm';
%% Initialisation
hopSize =blockSize/overlap;                   %Hopsize
HFFTS = fftSize/2+1;                    %Size of the usefull part of the fft (half+1)
[audio, fs] = wavread(mixName);

% zeropadding the audio length
audio(end:end+hopSize-mod(length(audio),hopSize)) = 0;
audioLength = length(audio);

scoreLength = audioLength/hopSize - overlap+1; %Number of frames
wdw = hamming(blockSize);

tic
%% Create filters
filterBasis = createBPFilters(bandPassFilterMaxFreq,nbBandPassFilters,fftSize,fftSize/fs);
filterCoefficients = ones(nbBandPassFilters,nbInstrument);
%% Creating the score
originalScore = createScore(scoreLength,midiCell,fs/hopSize,fftSize/fs);
originalScore(scoreLength+1:end,:) = [];
gains = double(originalScore'>0);
%% Creating spectrogram
magnitude = zeros(fftSize, scoreLength);
phase = zeros(fftSize, scoreLength);
audioVector = zeros(fftSize,1);
for curFrame = 1:scoreLength
    audioVector(1:blockSize) = audio(hopSize*(curFrame-1)+1:hopSize*(curFrame-1)+blockSize,1).*wdw;
    spectrogramVector = fft(audioVector);
    magnitude(:,curFrame) = abs(spectrogramVector);
    phase(:,curFrame) = angle(spectrogramVector);
end
magnitude(HFFTS+1:end,:) = [];
phase(HFFTS+1:end,:) = [];
maxSizeWindows = 400;
hammingWindows = cell(1,maxSizeWindows);
for len = 1:maxSizeWindows
    hammingWindows{len} = hamming(len);
end

%% Refine Score and create Excitation Spectrum
refinedScore = originalScore;   %score to be refiened
basicSpec = zeros(HFFTS, scoreLength);        %Basic theoretical spectrogram
excitationSpectrums = cell(nbInstrument,scoreLength);   %cell for each frame
largerES = cell(nbInstrument,scoreLength);   %cell for each frame

for ins = 1:nbInstrument                %for each isntrument
    for curFrame = 1: scoreLength        %for each frame
        excitationSpectrums{ins,curFrame} = sparse(zeros(HFFTS,nbPartials));
        largerES{ins,curFrame} = sparse(zeros(HFFTS,nbPartials));
        if(originalScore(curFrame,ins))        %if there is a note
            %Refine score and creates Excitation Spectrum
            [refinedScore(curFrame,ins), width] = refineScore(magnitude(:,curFrame),originalScore(curFrame,ins));
            excitationSpectrums{ins,curFrame} = sparse(createExcitationSpectrums(refinedScore(curFrame,ins),HFFTS,nbPartials,partialsWeights(:,ins),width,hammingWindows));
            largerES{ins,curFrame} = sparse(createExcitationSpectrums(refinedScore(curFrame,ins),HFFTS,nbPartials,partialsWeights(:,ins),2*width,hammingWindows));
        end
        basicSpec(:,curFrame) = basicSpec(:,curFrame) + (excitationSpectrums{ins,curFrame}*partialsWeights(:,ins))*gains(ins,curFrame); %Spectrogram without update
    end
end
%% Plot spectrogram and add original and refined score
if (plotRefinedScore)
    figure(1),imagesc(log(10*magnitude(1:fftSize/16,:)+1)), axis xy
    plotableScore = originalScore+1;
    plotableScore(plotableScore==1) = 0;
    hold on ,plot(plotableScore,'.k'),
    
    for harm = 1 : nbPartials
        for ins = nbInstrument:-1:1
            plot(refinedScore(:,ins)*harm+1,['.' colors(ins)]), colorbar
        end
    end
end
%% Online Processing
%Values that can be changed by the model.
maskForChangeableValues = basicSpec > 10^-4;
maskedSpectrogram = magnitude.*maskForChangeableValues;
bufferSize = 100;
nextProcess = 1;
for curFrame = 1:scoreLength
    if sum(refinedScore(curFrame,:),2)
        UpdateGainCoefficientsOL2
        if (curFrame==nextProcess)
            first = max(curFrame-bufferSize+1,1);
            currentMag = magnitude(:,first:curFrame);
            tmpMaskForChangeableValues = basicSpec(:,first:curFrame) > 10^-4;
            tmpMaskedSpectrogram = currentMag.*tmpMaskForChangeableValues;
            len = curFrame-first+1;
            for  nbUpdates = 1:maxUpdates           %update loop
                UpdatePartialCoefficientsOL
                UpdateFilterCoefficientsOL
                if (plotFilter)
                    %%%Filter
                    figure(4),plot(outlook(1:blockSize/8,:)), title('Filter')
                end
                if (plotPartial)
                    %%%Decay
                    figure(5),stem(partialsWeights), title('Partial Weights')
                end
            end
            nextProcess = min(ceil(curFrame*1.2),scoreLength)
            %bufferSize = round(max(bufferSize,curFrame*0.5));
            if (plotFilter)
                %%%Filter
                figure(4),plot(outlook(1:blockSize/8,:)), title('Filter')
            end
            if (plotPartial)
                %%%Decay
                figure(5),stem(partialsWeights), title('Partial Weights')
                
            end
        end
    end
end
timeV = toc;
fprintf('Time: %6.3g s, %6.2g times real time \t \n ', timeV, timeV*fs/audioLength);


% Remodel Spectrogram
ECA = cell(nbInstrument,1);
xHat = zeros(HFFTS,scoreLength);
for ins = 1:nbInstrument
    ECA{ins} = sparse(zeros(HFFTS,scoreLength));
    for frame = 1:scoreLength
        ECA{ins}(:,frame) = filterBasis * filterCoefficients(:,ins).*(largerES{ins,frame}*partialsWeights(:,ins));
    end
    xHat = xHat + ECA{ins}.*repmat(gains(ins,:),HFFTS,1);
end
%% Final plot
%%%Spectrogram (comparison with basic and final)
% % bMax = max(max(log(10*basicSpec+1)));
% % xMax = max(max(log(10*xHat+1)));
% % mMax = max(max(log(10*magnitude+1)));
% % tMax = max([bMax mMax xMax]);
% % figure(3), subplot(3,1,1), imagesc(log(10*basicSpec(1:hopSize/2,:)+1)), axis xy, linkaxes, caxis([0 tMax]), colorbar, title('Basic Model')
% % subplot(3,1,2), imagesc(log(10*xHat(1:hopSize/2,:)+1)), axis xy, linkaxes, caxis([0 tMax]), colorbar, title('Optimised Spectrogram')
% % subplot(3,1,3), imagesc(log(10*magnitude(1:hopSize/2,:)+1)), axis xy, linkaxes, caxis([0 tMax]), colorbar, title('Actual Spectrogram')
% %
% %
% % %%%Filter
% % figure(4),plot(outlook(1:blockSize/8,:)), title('Filter')
% %
% % %%%Decay
% % figure(5),stem(partialsWeights), title('Partial Weights')

%% Writing
%extraInfo = [sprintf('_%d_%d_%d_%d_%d_%d',blockSize,overlap,maxUpdates,nbPartials,nbBandPassFilters,bandPassFilterMaxFreq) specExp];
finalScale = zeros(audioLength,1);
freq = zeros(fftSize,1);
finalAudio = cell(nbInstrument+1,1);
finalAudioMasked = cell(nbInstrument,1);

wdw2 = hamming(fftSize);
nbMaskingTechniques = 4;
maskingCell = cell(1,nbMaskingTechniques);
maskingCell{1} = 'raw';
maskingCell{2} = 'per';
maskingCell{3} = 'sha';
maskingCell{4} = '10p';
finalMask = cell(nbInstrument,nbMaskingTechniques); %4 is the number of different masking techniques
for ins = 1:nbInstrument
    finalMask{ins,1} = sparse(zeros(HFFTS,scoreLength));
    finalMask{ins,4} = sparse(zeros(HFFTS,scoreLength));
    for curFrame = 1:scoreLength
        finalMask{ins,1}(:,curFrame) = filterBasis * filterCoefficients(:,ins).*(excitationSpectrums{ins,curFrame}*partialsWeights(:,ins));
        finalMask{ins,4}(:,curFrame) = filterBasis * filterCoefficients(:,ins).*(largerES{ins,curFrame}*partialsWeights(:,ins));
    end
    
    finalMask{ins,1} = finalMask{ins,1}.*repmat(gains(ins,:),HFFTS,1);
    finalMask{ins,4} = finalMask{ins,4}.*repmat(gains(ins,:),HFFTS,1);
    
    % masking strategy 1
    finalMask{ins,2} = magnitude .* (finalMask{ins,4} ./ (xHat+eps));
    
    % masking strategy 2
    finalMask{ins,3} = magnitude .* ( (finalMask{ins,4}+eps) ./ (xHat+eps));
    
    % masking strategy 3
    finalMask{ins,4} = magnitude .* ( (finalMask{ins,4}+0.1 * eps) ./ (xHat+eps));
    
    finalAudio{ins} = zeros(audioLength,1);
    finalAudioMasked{ins} = zeros(audioLength,1);
end

% sonifying the model
finalAudio{nbInstrument+1} = zeros(audioLength,1);
%Overlap and add
for curFrame = 1:scoreLength
    freq(1:HFFTS) = xHat(:,curFrame).*exp(1i*phase(:,curFrame));
    freq(HFFTS+1:fftSize) = freq(HFFTS-1:-1:2);
    faudio = real(ifft(freq)).*wdw2;
    finalAudio{nbInstrument+1}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) = finalAudio{nbInstrument+1}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) + faudio;
    for ins = 1:nbInstrument
        freq(1:HFFTS) = finalMask{ins,1}(:,curFrame).*exp(1i*phase(:,curFrame));
        freq(HFFTS+1:fftSize) = freq(HFFTS-1:-1:2);
        faudio = real(ifft(freq)).*wdw2;
        finalAudio{ins}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) = finalAudio{ins}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) + faudio;
    end
    finalScale((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) = finalScale((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) + wdw2;
end

for ins = 1:nbInstrument
    finalAudio{ins} = finalAudio{ins}./finalScale;
    %    wavwrite(finalAudio{ins},fs,16,[midiCell{ins}(1:4) '_' num2str(ins) '_' maskingCell{1} extraInfo '.wav']);
end
finalAudio{nbInstrument+1} = finalAudio{nbInstrument+1}./finalScale;
%wavwrite(finalAudio{nbInstrument+1},fs,16,[mixName(1:4) '_0_' maskingCell{1} extraInfo '.wav']);

% sonifying the masked version
%Overlap and add
for tech = 2:nbMaskingTechniques
    finalScale = zeros(audioLength,1);
    for curFrame = 1:scoreLength
        for ins = 1:nbInstrument
            freq(1:HFFTS) = finalMask{ins,tech}(:,curFrame).*exp(i*phase(:,curFrame));
            freq(HFFTS+1:fftSize) = freq(HFFTS-1:-1:2);
            faudio = real(ifft(freq)).*wdw2;
            finalAudioMasked{ins}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) = finalAudioMasked{ins}((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) + faudio;
        end
        finalScale((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) = finalScale((curFrame-1)*hopSize+1:(curFrame-1)*hopSize+fftSize,1) + wdw2;
    end
    for ins = 1:nbInstrument
        finalAudioMasked{ins} = finalAudioMasked{ins}./finalScale;
        %    wavwrite(finalAudioMasked{ins},fs,16,[midiCell{ins}(1:4) '_' num2str(ins) '_' maskingCell{tech} extraInfo '.wav']);
    end
end