annotate procedures.cpp @ 13:de3961f74f30 tip

Add Linux/gcc Makefile; build fix
author Chris Cannam
date Mon, 05 Sep 2011 15:22:35 +0100
parents 977f541d6683
children
rev   line source
xue@11 1 /*
xue@11 2 Harmonic sinusoidal modelling and tools
xue@11 3
xue@11 4 C++ code package for harmonic sinusoidal modelling and relevant signal processing.
xue@11 5 Centre for Digital Music, Queen Mary, University of London.
xue@11 6 This file copyright 2011 Wen Xue.
xue@11 7
xue@11 8 This program is free software; you can redistribute it and/or
xue@11 9 modify it under the terms of the GNU General Public License as
xue@11 10 published by the Free Software Foundation; either version 2 of the
xue@11 11 License, or (at your option) any later version.
xue@11 12 */
xue@1 13 //---------------------------------------------------------------------------
xue@1 14
xue@1 15 #include <math.h>
Chris@2 16 #include <string.h>
Chris@3 17 #include <stddef.h>
xue@1 18 #include "procedures.h"
xue@1 19 #include "matrix.h"
xue@1 20 #include "opt.h"
Chris@2 21 #include "sinest.h"
xue@1 22
Chris@5 23 /** \file procedures.h */
Chris@5 24
xue@1 25 //---------------------------------------------------------------------------
xue@1 26 //TGMM methods
xue@1 27
xue@1 28 //method TGMM::TGMM: default constructor
xue@1 29 TGMM::TGMM()
xue@1 30 {
xue@1 31 p=0, m=dev=0;
xue@1 32 }//TGMM
xue@1 33
xue@1 34 //method GMM:~TGMM: default destructor
xue@1 35 TGMM::~TGMM()
xue@1 36 {
xue@1 37 ReleaseGMM(p, m, dev)
xue@1 38 };
xue@1 39
xue@1 40 //---------------------------------------------------------------------------
xue@1 41 //TFSpans methods
xue@1 42
xue@1 43 //method TTFSpans: default constructor
xue@1 44 TTFSpans::TTFSpans()
xue@1 45 {
xue@1 46 Count=0;
xue@1 47 Capacity=100;
xue@1 48 Items=new TTFSpan[Capacity];
xue@1 49 }//TTFSpans
xue@1 50
xue@1 51 //method ~TTFSpans: default destructor
xue@1 52 TTFSpans::~TTFSpans()
xue@1 53 {
xue@1 54 delete[] Items;
xue@1 55 }//~TTFSpans
xue@1 56
Chris@5 57 /**
xue@1 58 method Add: add a new span to the list
xue@1 59
xue@1 60 In: ATFSpan: the new span to add
xue@1 61 */
xue@1 62 void TTFSpans::Add(TTFSpan& ATFSpan)
xue@1 63 {
xue@1 64 if (Count==Capacity)
xue@1 65 {
xue@1 66 int OldCapacity=Capacity;
xue@1 67 Capacity+=50;
xue@1 68 TTFSpan* NewItems=new TTFSpan[Capacity];
xue@1 69 memcpy(NewItems, Items, sizeof(TTFSpan)*OldCapacity);
xue@1 70 delete[] Items;
xue@1 71 Items=NewItems;
xue@1 72 }
xue@1 73 Items[Count]=ATFSpan;
xue@1 74 Count++;
xue@1 75 }//Add
xue@1 76
Chris@5 77 /**
xue@1 78 method Clear: discard the current content without freeing memory.
xue@1 79 */
xue@1 80 void TTFSpans::Clear()
xue@1 81 {
xue@1 82 Count=0;
xue@1 83 }//Clear
xue@1 84
Chris@5 85 /**
xue@1 86 method Delete: delete a span from current list
xue@1 87
xue@1 88 In: Index: index to the span to delete
xue@1 89 */
xue@1 90 int TTFSpans::Delete(int Index)
xue@1 91 {
xue@1 92 if (Index<0 || Index>=Count)
xue@1 93 return 0;
xue@1 94 memmove(&Items[Index], &Items[Index+1], sizeof(TTFSpan)*(Count-1-Index));
xue@1 95 Count--;
xue@1 96 return 1;
xue@1 97 }//Delete
xue@1 98
xue@1 99 //---------------------------------------------------------------------------
xue@1 100 //SpecTrack methods
xue@1 101
Chris@5 102 /**
xue@1 103 method TSpecTrack::Add: adds a SpecPeak to the track.
xue@1 104
xue@1 105 In: APeak: the SpecPeak to add.
xue@1 106 */
xue@1 107 int TSpecTrack::Add(TSpecPeak& APeak)
xue@1 108 {
xue@1 109 if (Count>=Capacity)
xue@1 110 {
xue@1 111 Peaks=(TSpecPeak*)realloc(Peaks, sizeof(TSpecPeak)*(Capacity*2));
xue@1 112 Capacity*=2;
xue@1 113 }
xue@1 114 int ind=LocatePeak(APeak);
xue@1 115 if (ind<0)
xue@1 116 {
xue@1 117 InsertPeak(APeak, -ind-1);
xue@1 118 ind=-ind-1;
xue@1 119 }
xue@1 120
xue@1 121 int t=APeak.t;
xue@1 122 double f=APeak.f;
xue@1 123 if (Count==1) t1=t2=t, fmin=fmax=f;
xue@1 124 else
xue@1 125 {
xue@1 126 if (t<t1) t1=t;
xue@1 127 else if (t>t2) t2=t;
xue@1 128 if (f<fmin) fmin=f;
xue@1 129 else if (f>fmax) fmax=f;
xue@1 130 }
xue@1 131 return ind;
xue@1 132 }//Add
xue@1 133
Chris@5 134 /**
xue@1 135 method TSpecTrack::TSpecTrack: creates a SpecTrack with an inital capacity.
xue@1 136
xue@1 137 In: ACapacity: initial capacity, i.e. the number SpecPeak's to allocate storage space for.
xue@1 138 */
xue@1 139 TSpecTrack::TSpecTrack(int ACapacity)
xue@1 140 {
xue@1 141 Count=0;
xue@1 142 Capacity=ACapacity;
xue@1 143 Peaks=new TSpecPeak[Capacity];
xue@1 144 }//TSpecTrack
xue@1 145
xue@1 146 //method TSpecTrack::~TSpecTrack: default destructor.
xue@1 147 TSpecTrack::~TSpecTrack()
xue@1 148 {
xue@1 149 delete[] Peaks;
xue@1 150 }//TSpecTrack
xue@1 151
Chris@5 152 /**
xue@1 153 method InsertPeak: inserts a new SpecPeak into the track at a given index. Internal use only.
xue@1 154
xue@1 155 In: APeak: the SpecPeak to insert.
xue@1 156 index: the position in the list to place the new SpecPeak. Original SpecPeak's at and after this
xue@1 157 position are shifted by 1 posiiton.
xue@1 158 */
xue@1 159 void TSpecTrack::InsertPeak(TSpecPeak& APeak, int index)
xue@1 160 {
xue@1 161 memmove(&Peaks[index+1], &Peaks[index], sizeof(TSpecPeak)*(Count-index));
xue@1 162 Peaks[index]=APeak;
xue@1 163 Count++;
xue@1 164 }//InsertPeak
xue@1 165
Chris@5 166 /**
xue@1 167 method TSpecTrack::LocatePeak: looks for a SpecPeak in the track that has the same time (t) as APeak.
xue@1 168
xue@1 169 In: APeak: a SpecPeak
xue@1 170
xue@1 171 Returns the index in this track of the first SpecPeak that has the same time stamp as APeak. However,
xue@1 172 if there is no peak with that time stamp, the method returns -1 if APeaks comes before the first
xue@1 173 SpecPeak, -2 if between 1st and 2nd SpecPeak's, -3 if between 2nd and 3rd SpecPeak's, etc.
xue@1 174 */
xue@1 175 int TSpecTrack::LocatePeak(TSpecPeak& APeak)
xue@1 176 {
xue@1 177 if (APeak.t<Peaks[0].t) return -1;
xue@1 178 if (APeak.t>Peaks[Count-1].t) return -Count-1;
xue@1 179
xue@1 180 if (APeak.t==Peaks[0].t) return 0;
xue@1 181 else if (APeak.t==Peaks[Count-1].t) return Count-1;
xue@1 182
xue@1 183 int a=0, b=Count-1, c=(a+b)/2;
xue@1 184 while (a<c)
xue@1 185 {
xue@1 186 if (APeak.t==Peaks[c].t) return c;
xue@1 187 else if (APeak.t<Peaks[c].t) {b=c; c=(a+b)/2;}
xue@1 188 else {a=c; c=(a+b)/2;}
xue@1 189 }
xue@1 190 return -a-2;
xue@1 191 }//LocatePeak
xue@1 192
xue@1 193 //---------------------------------------------------------------------------
Chris@5 194 /**
xue@1 195 function: ACPower: AC power
xue@1 196
xue@1 197 In: data[Count]: a signal
xue@1 198
xue@1 199 Returns the power of its AC content.
xue@1 200 */
xue@1 201 double ACPower(double* data, int Count, void*)
xue@1 202 {
xue@1 203 if (Count<=0) return 0;
xue@1 204 double power=0, avg=0, tmp;
xue@1 205 for (int i=0; i<Count; i++)
xue@1 206 {
xue@1 207 tmp=*(data++);
xue@1 208 power+=tmp*tmp;
xue@1 209 avg+=tmp;
xue@1 210 }
xue@8 211 power=(power-avg*avg/Count)/Count;
xue@1 212 return power;
xue@1 213 }//ACPower
xue@1 214
xue@1 215 //---------------------------------------------------------------------------
Chris@5 216 /**
xue@1 217 function Add: vector addition
xue@1 218
xue@1 219 In: dest[Count], source[Count]: two vectors
xue@1 220 Out: dest[Count]: their sum
xue@1 221
xue@1 222 No return value.
xue@1 223 */
xue@1 224 void Add(double* dest, double* source, int Count)
xue@1 225 {
xue@1 226 for (int i=0; i<Count; i++) *(dest++)+=*(source++);
xue@1 227 }//Add
xue@1 228
Chris@5 229 /**
xue@1 230 function Add: vector addition
xue@1 231
xue@1 232 In: addend[count], adder[count]: two vectors
xue@1 233 Out: out[count]: their sum
xue@1 234
xue@1 235 No return value.
xue@1 236 */
xue@1 237 void Add(double* out, double* addend, double* adder, int count)
xue@1 238 {
xue@1 239 for (int i=0; i<count; i++) *(out++)=*(addend++)+*(adder++);
xue@1 240 }//Add
xue@1 241
xue@1 242 //---------------------------------------------------------------------------
xue@1 243
Chris@5 244 /**
xue@1 245 function ApplyWindow: applies window function to signal buffer.
xue@1 246
xue@1 247 In: Buffer[Size]: signal to be windowed
xue@1 248 Weight[Size]: the window
xue@1 249 Out: OutBuffer[Size]: windowed signal
xue@1 250
xue@1 251 No return value;
xue@1 252 */
xue@1 253 void ApplyWindow(double* OutBuffer, double* Buffer, double* Weights, int Size)
xue@1 254 {
xue@1 255 for (int i=0; i<Size; i++) *(OutBuffer++)=*(Buffer++)**(Weights++);
xue@1 256 }//ApplyWindow
xue@1 257
xue@1 258 //---------------------------------------------------------------------------
Chris@5 259 /**
xue@1 260 function Avg: average
xue@1 261
xue@1 262 In: data[Count]: a data array
xue@1 263
xue@1 264 Returns the average of the array.
xue@1 265 */
xue@1 266 double Avg(double* data, int Count, void*)
xue@1 267 {
xue@1 268 if (Count<=0) return 0;
xue@1 269 double avg=0;
xue@1 270 for (int i=0; i<Count; i++) avg+=*(data++);
xue@1 271 avg/=Count;
xue@1 272 return avg;
xue@1 273 }//Avg
xue@1 274
xue@1 275 //---------------------------------------------------------------------------
Chris@5 276 /**
xue@1 277 function AvgFilter: get slow-varying wave trace by averaging
xue@1 278
xue@1 279 In: data[Count]: input signal
xue@1 280 HWid: half the size of the averaging window
xue@1 281 Out: datout[Count]: the slow-varying part of data[].
xue@1 282
xue@1 283 No return value.
xue@1 284 */
xue@1 285 void AvgFilter(double* dataout, double* data, int Count, int HWid)
xue@1 286 {
xue@1 287 double sum=0;
xue@1 288
xue@1 289 dataout[0]=data[0];
xue@1 290
xue@1 291 for (int i=1; i<=HWid; i++)
xue@1 292 {
xue@1 293 sum+=data[2*i-1]+data[2*i];
xue@1 294 dataout[i]=sum/(2*i+1);
xue@1 295 }
xue@1 296
xue@1 297 for (int i=HWid+1; i<Count-HWid; i++)
xue@1 298 {
xue@1 299 sum=sum+data[i+HWid]-data[i-HWid-1];
xue@1 300 dataout[i]=sum/(2*HWid+1);
xue@1 301 }
xue@1 302
xue@1 303 for (int i=Count-HWid; i<Count; i++)
xue@1 304 {
xue@1 305 sum=sum-data[2*i-Count-1]-data[2*i-Count];
xue@1 306 dataout[i]=sum/(2*(Count-i)-1);
xue@1 307 }
xue@1 308 }//AvgFilter
xue@1 309
xue@1 310 //---------------------------------------------------------------------------
Chris@5 311 /**
xue@1 312 function CalculateSpectrogram: computes the spectrogram of a signal
xue@1 313
xue@1 314 In: data[Count]: the time-domain signal
xue@1 315 start, end: start and end points marking the section for which the spectrogram is to be computed
xue@1 316 Wid, Offst: frame size and hop size
xue@1 317 Window: window function
xue@1 318 amp: a pre-amplifier
xue@1 319 half: specifies if the spectral values at Wid/2 are to be retried
xue@1 320 Out: Spec[][Wid/2] or Spec[][Wid/2+1]: amplitude spectrogram
xue@1 321 ph[][][Wid/2] or Ph[][Wid/2+1]: phase spectrogram
xue@1 322
xue@1 323 No return value. The caller is repsonse to arrange storage spance of output buffers.
xue@1 324 */
xue@1 325 void CalculateSpectrogram(double* data, int Count, int start, int end, int Wid, int Offst, double* Window, double** Spec, double** Ph, double amp, bool half)
xue@1 326 {
xue@1 327 AllocateFFTBuffer(Wid, fft, w, x);
xue@1 328
xue@1 329 int Fr=(end-start-Wid)/Offst+1;
xue@1 330
xue@1 331 for (int i=0; i<Fr; i++)
xue@1 332 {
xue@11 333 RFFTCW(&data[i*Offst+start], Window, 0, 0, Log2(Wid), w, x);
xue@1 334
xue@1 335 if (Spec)
xue@1 336 {
xue@1 337 for (int j=0; j<Wid/2; j++)
xue@1 338 Spec[i][j]=sqrt(x[j].x*x[j].x+x[j].y*x[j].y)*amp;
xue@1 339 if (half)
xue@1 340 Spec[i][Wid/2]=sqrt(x[Wid/2].x*x[Wid/2].x+x[Wid/2].y*x[Wid/2].y)*amp;
xue@1 341 }
xue@1 342 if (Ph)
xue@1 343 {
xue@1 344 for (int j=0; j<=Wid/2; j++)
xue@1 345 Ph[i][j]=Atan2(x[j].y, x[j].x);
xue@1 346 if (half)
xue@1 347 Ph[i][Wid/2]=Atan2(x[Wid/2].y, x[Wid/2].x);
xue@1 348 }
xue@1 349 }
xue@1 350 FreeFFTBuffer(fft);
xue@1 351 }//CalculateSpectrogram
xue@1 352
xue@1 353 //---------------------------------------------------------------------------
Chris@5 354 /**
xue@1 355 function Conv: simple convolution
xue@1 356
xue@1 357 In: in1[N1], in2[N2]: two sequences
xue@1 358 Out: out[N1+N2-1]: their convolution
xue@1 359
xue@1 360 No return value.
xue@1 361 */
xue@1 362 void Conv(double* out, int N1, double* in1, int N2, double* in2)
xue@1 363 {
xue@1 364 int N=N1+N1-1;
xue@1 365 memset(out, 0, sizeof(double)*N);
xue@1 366 for (int n1=0; n1<N1; n1++)
xue@1 367 for (int n2=0; n2<N2; n2++)
xue@1 368 out[n1+n2]+=in1[n1]*in2[n2];
xue@1 369 }//Conv
xue@1 370
xue@1 371 //---------------------------------------------------------------------------
Chris@5 372 /**
xue@1 373 function Correlation: computes correlation coefficient of 2 vectors a & b, equals cos(aOb).
xue@1 374
xue@1 375 In: a[Count], b[Count]: two vectors
xue@1 376
xue@1 377 Returns their correlation coefficient.
xue@1 378 */
xue@1 379 double Correlation(double* a, double* b, int Count)
xue@1 380 {
xue@1 381 double aa=0, bb=0, ab=0;
xue@1 382 for (int i=0; i<Count; i++)
xue@1 383 {
xue@1 384 aa+=*a**a;
xue@1 385 bb+=*b**b;
xue@1 386 ab+=*(a++)**(b++);
xue@1 387 }
xue@1 388 return ab/sqrt(aa*bb);
xue@1 389 }//Correlation
xue@1 390
xue@1 391 //---------------------------------------------------------------------------
Chris@5 392 /**
xue@1 393 function DCAmplitude: DC amplitude
xue@1 394
xue@1 395 In: data[Count]: a signal
xue@1 396
xue@1 397 Returns its DC amplitude (=AC amplitude without DC removing)
xue@1 398 */
xue@1 399 double DCAmplitude(double* data, int Count, void*)
xue@1 400 {
xue@1 401 if (Count<=0) return 0;
xue@1 402 double power=0, tmp;
xue@1 403 for (int i=0; i<Count; i++)
xue@1 404 {
xue@1 405 tmp=*(data++);
xue@1 406 power+=tmp*tmp;
xue@1 407 }
xue@1 408 power/=Count;
xue@1 409 return sqrt(2*power);
xue@1 410 }//DCAmplitude
xue@1 411
Chris@5 412 /**
xue@1 413 function DCPower: DC power
xue@1 414
xue@1 415 In: data[Count]: a signal
xue@1 416
xue@1 417 Returns its DC power.
xue@1 418 */
xue@1 419 double DCPower(double* data, int Count, void*)
xue@1 420 {
xue@1 421 if (Count<=0) return 0;
xue@1 422 double power=0, tmp;
xue@1 423 for (int i=0; i<Count; i++)
xue@1 424 {
xue@1 425 tmp=*(data++);
xue@1 426 power+=tmp*tmp;
xue@1 427 }
xue@1 428 power/=Count;
xue@1 429 return power;
xue@1 430 }//DCPower
xue@1 431
xue@1 432 //---------------------------------------------------------------------------
Chris@5 433 /**
xue@1 434 DCT: discrete cosine transform, direct computation. For fast DCT, see fft.cpp.
xue@1 435
xue@1 436 In: input[N]: a signal
xue@1 437 Out: output[N]: its DCT
xue@1 438
xue@1 439 No return value.
xue@1 440 */
xue@1 441 void DCT( double* output, double* input, int N)
xue@1 442 {
xue@1 443 double Wn;
xue@1 444
xue@1 445 for (int n=0; n<N; n++)
xue@1 446 {
xue@1 447 output[n]=0;
xue@1 448 Wn=n*M_PI/2/N;
xue@1 449 for (int k=0; k<N; k++)
xue@1 450 output[n]+=input[k]*cos((2*k+1)*Wn);
xue@1 451 if (n==0) output[n]*=1.4142135623730950488016887242097/N;
xue@1 452 else output[n]*=2.0/N;
xue@1 453 }
xue@1 454 }//DCT
xue@1 455
Chris@5 456 /**
xue@1 457 function IDCT: inverse discrete cosine transform, direct computation. For fast IDCT, see fft.cpp.
xue@1 458
xue@1 459 In: input[N]: a signal
xue@1 460 Out: output[N]: its IDCT
xue@1 461
xue@1 462 No return value.
xue@1 463 */
xue@1 464 void IDCT(double* output, double* input, int N)
xue@1 465 {
xue@1 466 for (int k=0; k<N; k++)
xue@1 467 {
xue@1 468 double Wk=(2*k+1)*M_PI/2/N;
xue@1 469 output[k]=input[0]/1.4142135623730950488016887242097;
xue@1 470 for (int n=1; n<N; n++)
xue@1 471 output[k]+=input[n]*cos(n*Wk);
xue@1 472 }
xue@1 473 }//IDCT
xue@1 474
xue@1 475 //---------------------------------------------------------------------------
Chris@5 476 /**
xue@1 477 function DeDC: removes DC component of a signal
xue@1 478
xue@1 479 In: data[Count]: the signal
xue@1 480 HWid: half of averaging window size
xue@1 481 Out: data[Count]: de-DC-ed signal
xue@1 482
xue@1 483 No return value.
xue@1 484 */
xue@1 485 void DeDC(double* data, int Count, int HWid)
xue@1 486 {
xue@1 487 double* data2=new double[Count];
xue@1 488 AvgFilter(data2, data, Count, HWid);
xue@1 489 for (int i=0; i<Count; i++)
xue@1 490 *(data++)-=*(data2++);
xue@1 491 delete[] data2;
xue@1 492 }//DeDC
xue@1 493
Chris@5 494 /**
xue@1 495 function DeDC_static: removes DC component statically
xue@1 496
xue@1 497 In: data[Count]: the signal
xue@1 498 Out: data[Count]: DC-removed signal
xue@1 499
xue@1 500 No return value.
xue@1 501 */
xue@1 502 void DeDC_static(double* data, int Count)
xue@1 503 {
xue@1 504 double avg=Avg(data, Count, 0);
xue@1 505 for (int i=0; i<Count; i++) *(data++)-=avg;
xue@1 506 }//DeDC_static
xue@1 507
xue@1 508 //---------------------------------------------------------------------------
Chris@5 509 /**
xue@1 510 function DoubleToInt: converts double-precision floating point array to integer array
xue@1 511
xue@1 512 In: in[Count]: the double array
xue@1 513 BytesPerSample: bytes per sample of destination integers
xue@1 514 Out: out[Count]: the integer array
xue@1 515
xue@1 516 No return value.
xue@1 517 */
xue@1 518 void DoubleToInt(void* out, int BytesPerSample, double* in, int Count)
xue@1 519 {
xue@1 520 if (BytesPerSample==1){unsigned char* out8=(unsigned char*)out; for (int k=0; k<Count; k++) *(out8++)=*(in++)+128.5;}
xue@1 521 else {__int16* out16=(__int16*)out; for (int k=0; k<Count; k++) *(out16++)=floor(*(in++)+0.5);}
xue@1 522 }//DoubleToInt
xue@1 523
Chris@5 524 /**
xue@1 525 function DoubleToIntAdd: adds double-precision floating point array to integer array
xue@1 526
xue@1 527 In: in[Count]: the double array
xue@1 528 out[Count]: the integer array
xue@1 529 BytesPerSample: bytes per sample of destination integers
xue@1 530 Out: out[Count]: the sum of the two arrays
xue@1 531
xue@1 532 No return value.
xue@1 533 */
xue@1 534 void DoubleToIntAdd(void* out, int BytesPerSample, double* in, int Count)
xue@1 535 {
xue@1 536 if (BytesPerSample==1)
xue@1 537 {
xue@1 538 unsigned char* out8=(unsigned char*)out;
xue@1 539 for (int k=0; k<Count; k++){*out8=*out8+*in+128.5; out8++; in++;}
xue@1 540 }
xue@1 541 else
xue@1 542 {
xue@1 543 __int16* out16=(__int16*)out;
xue@1 544 for (int k=0; k<Count; k++){*out16=*out16+floor(*in+0.5); out16++; in++;}
xue@1 545 }
xue@1 546 }//DoubleToIntAdd
xue@1 547
xue@1 548 //---------------------------------------------------------------------------
Chris@5 549 /**
xue@1 550 DPower: in-frame power variation
xue@1 551
xue@1 552 In: data[Count]: a signal
xue@1 553
xue@1 554 returns the different between AC powers of its first and second halves.
xue@1 555 */
xue@1 556 double DPower(double* data, int Count, void*)
xue@1 557 {
xue@1 558 double ene1=ACPower(data, Count/2, 0);
xue@1 559 double ene2=ACPower(&data[Count/2], Count/2, 0);
xue@1 560 return ene2-ene1;
xue@1 561 }//DPower
xue@1 562
xue@1 563 //---------------------------------------------------------------------------
Chris@5 564 /**
Chris@5 565 function Energy: energy
xue@1 566
xue@1 567 In: data[Count]: a signal
xue@1 568
xue@1 569 Returns its total energy
xue@1 570 */
xue@1 571 double Energy(double* data, int Count)
xue@1 572 {
xue@1 573 double result=0;
xue@1 574 for (int i=0; i<Count; i++) result+=data[i]*data[i];
xue@1 575 return result;
xue@1 576 }//Energy
xue@1 577
xue@1 578 //---------------------------------------------------------------------------
Chris@5 579 /**
xue@1 580 function ExpOnsetFilter: onset filter with exponential impulse response h(t)=Aexp(-t/Tr)-Bexp(-t/Ta),
xue@1 581 A=1-exp(-1/Tr), B=1-exp(-1/Ta).
xue@1 582
xue@1 583 In: data[Count]: signal to filter
xue@1 584 Tr, Ta: time constants of h(t)
xue@1 585 Out: dataout[Count]: filtered signal, normalized by multiplying a factor.
xue@1 586
xue@1 587 Returns the normalization factor. Identical data and dataout is allowed.
xue@1 588 */
xue@1 589 double ExpOnsetFilter(double* dataout, double* data, int Count, double Tr, double Ta)
xue@1 590 {
xue@1 591 double FA=0, FB=0;
xue@1 592 double EA=exp(-1.0/Tr), EB=exp(-1.0/Ta);
xue@1 593 double A=1-EA, B=1-EB;
xue@1 594 double NormFactor=1/sqrt((1-EA)*(1-EA)/(1-EA*EA)+(1-EB)*(1-EB)/(1-EB*EB)-2*(1-EA)*(1-EB)/(1-EA*EB));
xue@1 595 for (int i=0; i<Count; i++)
xue@1 596 {
xue@1 597 FA=FA*EA+*data;
xue@1 598 FB=FB*EB+*(data++);
xue@1 599 *(dataout++)=(A*FA-B*FB)*NormFactor;
xue@1 600 }
xue@1 601 return NormFactor;
xue@1 602 }//ExpOnsetFilter
xue@1 603
Chris@5 604 /**
xue@1 605 function ExpOnsetFilter_balanced: exponential onset filter without starting step response. It
xue@1 606 extends the input signal at the front end by bal*Ta samples by repeating the its value at 0, then
xue@1 607 applies the onset filter on the extended signal instead.
xue@1 608
xue@1 609 In: data[Count]: signal to filter
xue@1 610 Tr, Ta: time constants to the impulse response of onset filter, see ExpOnsetFilter().
xue@1 611 bal: balancing factor
xue@1 612 Out: dataout[Count]: filtered signal, normalized by multiplying a factor.
xue@1 613
xue@1 614 Returns the normalization factor. Identical data and dataout is allowed.
xue@1 615 */
xue@1 616 double ExpOnsetFilter_balanced(double* dataout, double* data, int Count, double Tr, double Ta, int bal)
xue@1 617 {
xue@1 618 double* tmpdata=new double[int(Count+bal*Ta)];
xue@1 619 double* ltmpdata=tmpdata;
xue@1 620 for (int i=0; i<bal*Ta; i++) *(ltmpdata++)=data[0];
xue@1 621 memcpy(ltmpdata, data, sizeof(double)*Count);
xue@1 622 double result=ExpOnsetFilter(tmpdata, tmpdata, bal*Ta+Count, Tr, Ta);
xue@1 623 memcpy(dataout, ltmpdata, sizeof(double)*Count);
xue@1 624 delete[] tmpdata;
xue@1 625 return result;
xue@1 626 }//ExpOnsetFilter_balanced
xue@1 627
xue@1 628 //---------------------------------------------------------------------------
Chris@5 629 /**
xue@1 630 function ExtractLinearComponent: Legendre linear component
xue@1 631
xue@1 632 In: data[Count+1]: a signal
xue@1 633 Out: dataout[Count+1]: its Legendre linear component, optional.
xue@1 634
xue@1 635 Returns the coefficient to the linear component.
xue@1 636 */
xue@1 637 double ExtractLinearComponent(double* dataout, double* data, int Count)
xue@1 638 {
xue@1 639 double tmp=0;
xue@1 640 int N=Count*2;
xue@1 641 for (int n=0; n<=Count; n++) tmp+=n**(data++);
xue@1 642 tmp=tmp*24/N/(N+1)/(N+2);
xue@1 643 if (dataout)
xue@1 644 for (int n=0; n<=Count; n++) *(dataout++)=tmp*n;
xue@1 645 return tmp;
xue@1 646 }//ExtractLinearComponent
xue@1 647
xue@1 648 //---------------------------------------------------------------------------
Chris@5 649 /**
xue@1 650 function FFTConv: fast convolution of two series by FFT overlap-add. In an overlap-add scheme it is
xue@1 651 assumed that one of the convolvends is short compared to the other one, which can be potentially
xue@1 652 infinitely long. The long convolvend is devided into short segments, each of which is convolved with
xue@1 653 the short convolvend, the results of which are then assembled into the final result. The minimal delay
xue@1 654 from input to output is the amount of overlap, which is the size of the short convolvend minus 1.
xue@1 655
xue@1 656 In: source1[size1]: convolvend
xue@1 657 source2[size2]: second convolvend
xue@1 658 zero: position of first point in convoluton result, relative to main output buffer.
xue@1 659 pre_buffer[-zero]: buffer hosting values to be overlap-added to the start of the result.
xue@1 660 Out: dest[size1]: the middle part of convolution result
xue@1 661 pre_buffer[-zero]: now updated by adding beginning part of the convolution result
xue@1 662 post_buffer[size2+zero]: end part of the convolution result
xue@1 663
xue@1 664 No return value. Identical dest and source1 allowed.
xue@1 665
xue@1 666 The convolution result has length size1+size2 (counting one trailing zero). If zero lies in the range
xue@1 667 between -size2 and 0, then the first -zero samples are added to pre_buffer[], next size1 samples are
xue@1 668 saved to dest[], and the last size2+zero sampled are saved to post_buffer[]; if not, the middle size1
xue@1 669 samples are saved to dest[], while pre_buffer[] and post_buffer[] are not used.
xue@1 670 */
xue@1 671 void FFTConv(double* dest, double* source1, int size1, double* source2, int size2, int zero, double* pre_buffer, double* post_buffer)
xue@1 672 {
xue@11 673 int order=Log2(size2-1)+1+1;
xue@1 674 int Wid=1<<order;
xue@1 675 int HWid=Wid/2;
xue@1 676 int Fr=size1/HWid;
xue@1 677 int res=size1-HWid*Fr;
xue@1 678 bool trunc=false;
xue@1 679 if (zero<-size2+1 || zero>0) zero=-size2/2, trunc=true;
xue@1 680 if (pre_buffer==NULL || (post_buffer==NULL && size2+zero!=0)) trunc=true;
xue@1 681
xue@1 682 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 683 int* hbitinv=CreateBitInvTable(order-1);
xue@1 684 cdouble* x2=new cdouble[Wid];
xue@1 685 double* tmp=new double[HWid];
xue@1 686 memset(tmp, 0, sizeof(double)*HWid);
xue@1 687
xue@1 688 memcpy(fft, source2, sizeof(double)*size2);
xue@1 689 memset(&fft[size2], 0, sizeof(double)*(Wid-size2));
xue@1 690 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 691
xue@1 692 double r1, r2, i1, i2;
xue@1 693 int ind, ind_;
xue@1 694 for (int i=0; i<Fr; i++)
xue@1 695 {
xue@1 696 memcpy(fft, &source1[i*HWid], sizeof(double)*HWid);
xue@1 697 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 698
xue@1 699 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 700
xue@1 701 for (int j=0; j<Wid; j++)
xue@1 702 {
xue@1 703 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 704 x1[j].x=r1*r2-i1*i2;
xue@1 705 x1[j].y=r1*i2+r2*i1;
xue@1 706 }
xue@1 707 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 708 for (int j=0; j<HWid; j++) tmp[j]+=fft[j];
xue@1 709
xue@1 710 ind=i*HWid+zero; //(i+1)*HWid<=size1
xue@1 711 ind_=ind+HWid; //ind_=(i+1)*HWid+zero<=size1
xue@1 712 if (ind<0)
xue@1 713 {
xue@1 714 if (!trunc)
xue@1 715 memdoubleadd(pre_buffer, tmp, -ind);
xue@1 716 memcpy(dest, &tmp[-ind], sizeof(double)*(HWid+ind));
xue@1 717 }
xue@1 718 else
xue@1 719 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 720 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 721 }
xue@1 722
xue@1 723 if (res>0)
xue@1 724 {
xue@1 725 memcpy(fft, &source1[Fr*HWid], sizeof(double)*res);
xue@1 726 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 727
xue@1 728 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 729
xue@1 730 for (int j=0; j<Wid; j++)
xue@1 731 {
xue@1 732 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 733 x1[j].x=r1*r2-i1*i2;
xue@1 734 x1[j].y=r1*i2+r2*i1;
xue@1 735 }
xue@1 736 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 737 for (int j=0; j<HWid; j++)
xue@1 738 tmp[j]+=fft[j];
xue@1 739
xue@1 740 ind=Fr*HWid+zero; //Fr*HWid=size1-res, ind=size1-res+zero<size1
xue@1 741 ind_=ind+HWid; //ind_=size1 -res+zero+HWid
xue@1 742 if (ind<0)
xue@1 743 {
xue@1 744 if (!trunc)
xue@1 745 memdoubleadd(pre_buffer, tmp, -ind);
xue@1 746 memcpy(dest, &tmp[-ind], sizeof(double)*(HWid+ind));
xue@1 747 }
xue@1 748 else if (ind_>size1)
xue@1 749 {
xue@1 750 memcpy(&dest[ind], tmp, sizeof(double)*(size1-ind));
xue@1 751 if (!trunc && post_buffer)
xue@1 752 {
xue@1 753 if (ind_>size1+size2+zero)
xue@1 754 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(size2+zero));
xue@1 755 else
xue@1 756 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(ind_-size1));
xue@1 757 }
xue@1 758 }
xue@1 759 else
xue@1 760 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 761 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 762 Fr++;
xue@1 763 }
xue@1 764
xue@1 765 ind=Fr*HWid+zero;
xue@1 766 ind_=ind+HWid;
xue@1 767
xue@1 768 if (ind<size1)
xue@1 769 {
xue@1 770 if (ind_>size1)
xue@1 771 {
xue@1 772 memcpy(&dest[ind], tmp, sizeof(double)*(size1-ind));
xue@1 773 if (!trunc && post_buffer)
xue@1 774 {
xue@1 775 if (ind_>size1+size2+zero)
xue@1 776 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(size2+zero));
xue@1 777 else
xue@1 778 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(ind_-size1));
xue@1 779 }
xue@1 780 }
xue@1 781 else
xue@1 782 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 783 }
xue@1 784 else //ind>=size1 => ind_>=size1+size2+zero
xue@1 785 {
xue@1 786 if (!trunc && post_buffer)
xue@1 787 memcpy(&post_buffer[ind-size1], tmp, sizeof(double)*(size1+size2+zero-ind));
xue@1 788 }
xue@1 789
xue@1 790 FreeFFTBuffer(fft);
xue@1 791 delete[] x2;
xue@1 792 delete[] tmp;
xue@1 793 delete[] hbitinv;
xue@1 794 }//FFTConv
xue@1 795
Chris@5 796 /**
xue@1 797 function FFTConv: the simplified version using two output buffers instead of three. This is almost
xue@1 798 equivalent to setting zero=-size2 in the three-output-buffer version (so that post_buffer no longer
xue@1 799 exists), except that this version requires size2 (renamed HWid) be a power of 2, and pre_buffer point
xue@1 800 to the END of the storage (so that pre_buffer=dest automatically connects the two buffers in a
xue@1 801 continuous memory block).
xue@1 802
xue@1 803 In: source1[size1]: convolvend
xue@1 804 source2[HWid]: second convolved, HWid be a power of 2
xue@1 805 pre_buffer[-HWid:-1]: buffer hosting values to be overlap-added to the start of the result.
xue@1 806 Out: dest[size1]: main output buffer, now hosting end part of the result (after HWid samples).
xue@1 807 pre_buffer[-HWid:-1]: now updated by added the start of the result
xue@1 808
xue@1 809 No return value.
xue@1 810 */
xue@1 811 void FFTConv(double* dest, double* source1, int size1, double* source2, int HWid, double* pre_buffer)
xue@1 812 {
xue@1 813 int Wid=HWid*2;
xue@11 814 int order=Log2(Wid);
xue@1 815 int Fr=size1/HWid;
xue@1 816 int res=size1-HWid*Fr;
xue@1 817
xue@1 818 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 819 cdouble *x2=new cdouble[Wid];
xue@1 820 double *tmp=new double[HWid];
xue@1 821 int* hbitinv=CreateBitInvTable(order-1);
xue@1 822
xue@1 823 memcpy(fft, source2, sizeof(double)*HWid);
xue@1 824 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 825 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 826
xue@1 827 double r1, r2, i1, i2;
xue@1 828 for (int i=0; i<Fr; i++)
xue@1 829 {
xue@1 830 memcpy(fft, &source1[i*HWid], sizeof(double)*HWid);
xue@1 831 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 832
xue@1 833 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 834
xue@1 835 for (int j=0; j<Wid; j++)
xue@1 836 {
xue@1 837 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 838 x1[j].x=r1*r2-i1*i2;
xue@1 839 x1[j].y=r1*i2+r2*i1;
xue@1 840 }
xue@1 841 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 842
xue@1 843 if (i==0)
xue@1 844 {
xue@1 845 if (pre_buffer!=NULL)
xue@1 846 {
xue@1 847 double* destl=&pre_buffer[-HWid+1];
xue@1 848 for (int j=0; j<HWid-1; j++) destl[j]+=fft[j];
xue@1 849 }
xue@1 850 }
xue@1 851 else
xue@1 852 {
xue@1 853 for (int j=0; j<HWid-1; j++) tmp[j+1]+=fft[j];
xue@1 854 memcpy(&dest[(i-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 855 }
xue@1 856 memcpy(tmp, &fft[HWid-1], sizeof(double)*HWid);
xue@1 857 }
xue@1 858
xue@1 859 if (res>0)
xue@1 860 {
xue@1 861 if (Fr==0) memset(tmp, 0, sizeof(double)*HWid);
xue@1 862
xue@1 863 memcpy(fft, &source1[Fr*HWid], sizeof(double)*res);
xue@1 864 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 865
xue@1 866 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 867 for (int j=0; j<Wid; j++)
xue@1 868 {
xue@1 869 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 870 x1[j].x=r1*r2-i1*i2;
xue@1 871 x1[j].y=r1*i2+r2*i1;
xue@1 872 }
xue@1 873 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 874
xue@1 875 if (Fr==0)
xue@1 876 {
xue@1 877 if (pre_buffer!=NULL)
xue@1 878 {
xue@1 879 double* destl=&pre_buffer[-HWid+1];
xue@1 880 for (int j=0; j<HWid-1; j++) destl[j]+=fft[j];
xue@1 881 }
xue@1 882 }
xue@1 883 else
xue@1 884 {
xue@1 885 for (int j=0; j<HWid-1; j++) tmp[j+1]+=fft[j];
xue@1 886 memcpy(&dest[(Fr-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 887 }
xue@1 888
xue@1 889 memcpy(&dest[Fr*HWid], &fft[HWid-1], sizeof(double)*res);
xue@1 890 }
xue@1 891 else
xue@1 892 memcpy(&dest[(Fr-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 893
xue@1 894 FreeFFTBuffer(fft);
xue@1 895 delete[] x2; delete[] tmp; delete[] hbitinv;
xue@1 896 }//FFTConv
xue@1 897
Chris@5 898 /**
xue@1 899 function FFTConv: fast convolution of two series by FFT overlap-add. Same as the three-output-buffer
xue@1 900 version above but using integer output buffers as well as integer source1.
xue@1 901
xue@1 902 In: source1[size1]: convolvend
xue@1 903 bps: bytes per sample of integer units in source1[].
xue@1 904 source2[size2]: second convolvend
xue@1 905 zero: position of first point in convoluton result, relative to main output buffer.
xue@1 906 pre_buffer[-zero]: buffer hosting values to be overlap-added to the start of the result.
xue@1 907 Out: dest[size1]: the middle part of convolution result
xue@1 908 pre_buffer[-zero]: now updated by adding beginning part of the convolution result
xue@1 909 post_buffer[size2+zero]: end part of the convolution result
xue@1 910
xue@1 911 No return value. Identical dest and source1 allowed.
xue@1 912 */
xue@1 913 void FFTConv(unsigned char* dest, unsigned char* source1, int bps, int size1, double* source2, int size2, int zero, unsigned char* pre_buffer, unsigned char* post_buffer)
xue@1 914 {
xue@11 915 int order=Log2(size2-1)+1+1;
xue@1 916 int Wid=1<<order;
xue@1 917 int HWid=Wid/2;
xue@1 918 int Fr=size1/HWid;
xue@1 919 int res=size1-HWid*Fr;
xue@1 920 bool trunc=false;
xue@1 921 if (zero<-size2+1 || zero>0) zero=-size2/2, trunc=true;
xue@1 922 if (pre_buffer==NULL || (post_buffer==NULL && size2+zero!=0)) trunc=true;
xue@1 923
xue@1 924 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 925 cdouble* x2=new cdouble[Wid];
xue@1 926 double* tmp=new double[HWid];
xue@1 927 memset(tmp, 0, sizeof(double)*HWid);
xue@1 928 int* hbitinv=CreateBitInvTable(order-1);
xue@1 929
xue@1 930 memcpy(fft, source2, sizeof(double)*size2);
xue@1 931 memset(&fft[size2], 0, sizeof(double)*(Wid-size2));
xue@1 932 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 933
xue@1 934 double r1, r2, i1, i2;
xue@1 935 int ind, ind_;
xue@1 936 for (int i=0; i<Fr; i++)
xue@1 937 {
xue@1 938 IntToDouble(fft, &source1[i*HWid*bps], bps, HWid);
xue@1 939 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 940
xue@1 941 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 942
xue@1 943 for (int j=0; j<Wid; j++)
xue@1 944 {
xue@1 945 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 946 x1[j].x=r1*r2-i1*i2;
xue@1 947 x1[j].y=r1*i2+r2*i1;
xue@1 948 }
xue@1 949 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 950 for (int j=0; j<HWid; j++) tmp[j]+=fft[j];
xue@1 951
xue@1 952 ind=i*HWid+zero; //(i+1)*HWid<=size1
xue@1 953 ind_=ind+HWid; //ind_=(i+1)*HWid+zero<=size1
xue@1 954 if (ind<0)
xue@1 955 {
xue@1 956 if (!trunc)
xue@1 957 DoubleToIntAdd(pre_buffer, bps, tmp, -ind);
xue@1 958 DoubleToInt(dest, bps, &tmp[-ind], HWid+ind);
xue@1 959 }
xue@1 960 else
xue@1 961 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 962 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 963 }
xue@1 964
xue@1 965 if (res>0)
xue@1 966 {
xue@1 967 IntToDouble(fft, &source1[Fr*HWid*bps], bps, res);
xue@1 968 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 969
xue@1 970 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 971
xue@1 972 for (int j=0; j<Wid; j++)
xue@1 973 {
xue@1 974 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 975 x1[j].x=r1*r2-i1*i2;
xue@1 976 x1[j].y=r1*i2+r2*i1;
xue@1 977 }
xue@1 978 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 979 for (int j=0; j<HWid; j++)
xue@1 980 tmp[j]+=fft[j];
xue@1 981
xue@1 982 ind=Fr*HWid+zero; //Fr*HWid=size1-res, ind=size1-res+zero<size1
xue@1 983 ind_=ind+HWid; //ind_=size1 -res+zero+HWid
xue@1 984 if (ind<0)
xue@1 985 {
xue@1 986 if (!trunc)
xue@1 987 DoubleToIntAdd(pre_buffer, bps, tmp, -ind);
xue@1 988 DoubleToInt(dest, bps, &tmp[-ind], HWid+ind);
xue@1 989 }
xue@1 990 else if (ind_>size1)
xue@1 991 {
xue@1 992 DoubleToInt(&dest[ind*bps], bps, tmp, size1-ind);
xue@1 993 if (!trunc && post_buffer)
xue@1 994 {
xue@1 995 if (ind_>size1+size2+zero)
xue@1 996 DoubleToInt(post_buffer, bps, &tmp[size1-ind], size2+zero);
xue@1 997 else
xue@1 998 DoubleToInt(post_buffer, bps, &tmp[size1-ind], ind_-size1);
xue@1 999 }
xue@1 1000 }
xue@1 1001 else
xue@1 1002 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 1003 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 1004 Fr++;
xue@1 1005 }
xue@1 1006
xue@1 1007 ind=Fr*HWid+zero;
xue@1 1008 ind_=ind+HWid;
xue@1 1009
xue@1 1010 if (ind<size1)
xue@1 1011 {
xue@1 1012 if (ind_>size1)
xue@1 1013 {
xue@1 1014 DoubleToInt(&dest[ind*bps], bps, tmp, size1-ind);
xue@1 1015 if (!trunc && post_buffer)
xue@1 1016 {
xue@1 1017 if (ind_>size1+size2+zero)
xue@1 1018 DoubleToInt(post_buffer, bps, &tmp[size1-ind], size2+zero);
xue@1 1019 else
xue@1 1020 DoubleToInt(post_buffer, bps, &tmp[size1-ind], ind_-size1);
xue@1 1021 }
xue@1 1022 }
xue@1 1023 else
xue@1 1024 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 1025 }
xue@1 1026 else //ind>=size1 => ind_>=size1+size2+zero
xue@1 1027 {
xue@1 1028 if (!trunc && post_buffer)
xue@1 1029 DoubleToInt(&post_buffer[(ind-size1)*bps], bps, tmp, size1+size2+zero-ind);
xue@1 1030 }
xue@1 1031
xue@1 1032 FreeFFTBuffer(fft);
xue@1 1033 delete[] x2;
xue@1 1034 delete[] tmp;
xue@1 1035 delete[] hbitinv;
xue@1 1036 }//FFTConv
xue@1 1037
xue@1 1038 //---------------------------------------------------------------------------
Chris@5 1039 /**
xue@1 1040 function FFTFilter: FFT with cosine-window overlap-add: This FFT filter is not an actural LTI system,
xue@1 1041 but an block processing with overlap-add. In this function the blocks are overlapped by 50% and summed
xue@1 1042 up with Hann windowing.
xue@1 1043
xue@1 1044 In: data[Count]: input data
xue@1 1045 Wid: DFT size
xue@1 1046 On, Off: cut-off frequencies of FFT filter. On<Off: band-pass; On>Off: band-stop.
xue@1 1047 Out: dataout[Count]: filtered data
xue@1 1048
xue@1 1049 No return value. Identical data and dataout allowed
xue@1 1050 */
xue@1 1051 void FFTFilter(double* dataout, double* data, int Count, int Wid, int On, int Off)
xue@1 1052 {
xue@11 1053 int Order=Log2(Wid);
xue@1 1054 int HWid=Wid/2;
xue@1 1055 int Fr=(Count-Wid)/HWid+1;
xue@1 1056 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 1057
xue@1 1058 double* win=new double[Wid];
xue@1 1059 for (int i=0; i<Wid; i++) win[i]=sqrt((1-cos(2*M_PI*i/Wid))/2);
xue@1 1060 double* tmpdata=new double[HWid];
xue@1 1061 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 1062
xue@1 1063 for (int i=0; i<Fr; i++)
xue@1 1064 {
xue@1 1065 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 1066 if (i>0)
xue@1 1067 for (int k=0; k<HWid; k++)
xue@1 1068 ldata[k]=ldata[k]*win[k];
xue@1 1069 for (int k=HWid; k<Wid; k++)
xue@1 1070 ldata[k]=ldata[k]*win[k];
xue@1 1071
xue@1 1072 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 1073
xue@1 1074 if (On<Off) //band pass: keep [On, Off) and set other bins to zero
xue@1 1075 {
xue@1 1076 memset(x, 0, On*sizeof(cdouble));
xue@1 1077 if (On>=1)
xue@1 1078 memset(&x[Wid-On+1], 0, (On-1)*sizeof(cdouble));
xue@1 1079 if (Off*2<=Wid)
xue@1 1080 memset(&x[Off], 0, (Wid-Off*2+1)*sizeof(cdouble));
xue@1 1081 }
xue@1 1082 else //band stop: set [Off, On) to zero.
xue@1 1083 {
xue@1 1084 memset(&x[Off], 0, sizeof(cdouble)*(On-Off));
xue@1 1085 memset(&x[Wid-On+1], 0, sizeof(double)*(On-Off));
xue@1 1086 }
xue@1 1087
xue@1 1088 CIFFTR(x, Order, w, ldata);
xue@1 1089
xue@1 1090 if (i>0) for (int k=0; k<HWid; k++) ldata[k]=ldata[k]*win[k];
xue@1 1091 for (int k=HWid; k<Wid; k++) ldata[k]=ldata[k]*win[k];
xue@1 1092
xue@1 1093 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 1094 for (int k=0; k<HWid; k++) dataout[i*HWid+k]+=ldata[k];
xue@1 1095 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 1096 }
xue@1 1097
xue@1 1098 memcpy(&dataout[Fr*HWid], tmpdata, HWid*sizeof(double));
xue@1 1099 memset(&dataout[Fr*HWid+HWid], 0, (Count-Fr*HWid-HWid)*sizeof(double));
xue@1 1100
xue@1 1101 delete[] win;
xue@1 1102 delete[] tmpdata;
xue@1 1103 FreeFFTBuffer(ldata);
xue@1 1104 }//FFTFilter
xue@1 1105
Chris@5 1106 /**
Chris@5 1107 function FFTFilterOLA: FFTFilter with overlap-add support. This is a true LTI filter whose impulse
xue@1 1108 response is constructed using IFFT. The filtering is implemented by fast convolution.
xue@1 1109
xue@1 1110 In: data[Count]: input data
xue@1 1111 Wid: FFT size
xue@1 1112 On, Off: cut-off frequencies, in bins, of the filter
xue@1 1113 pre_buffer[Wid]: buffer hosting sampled to be added with the start of output
xue@1 1114 Out: dataout[Count]: main output buffer, hosting the last $Count samples of output.
xue@1 1115 pre_buffer[Wid]: now updated by adding the first Wid samples of output
xue@1 1116
xue@1 1117 No return value. The complete output contains Count+Wid effective samples (including final 0); firt
xue@1 1118 $Wid are added to pre_buffer[], next Count samples saved to dataout[].
xue@1 1119 */
xue@1 1120 void FFTFilterOLA(double* dataout, double* data, int Count, int Wid, int On, int Off, double* pre_buffer)
xue@1 1121 {
xue@1 1122 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1123 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1124 for (int i=On+1; i<Off; i++) x[i].x=x[Wid-i].x=1-2*(i%2);
xue@11 1125 CIFFTR(x, Log2(Wid), w, spec);
xue@1 1126 FFTConv(dataout, data, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1127 FreeFFTBuffer(spec);
xue@1 1128 }//FFTFilterOLA
xue@1 1129 //version for integer input and output, where BytesPerSample specifies the integer format.
xue@1 1130 void FFTFilterOLA(unsigned char* dataout, unsigned char* data, int BytesPerSample, int Count, int Wid, int On, int Off, unsigned char* pre_buffer)
xue@1 1131 {
xue@1 1132 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1133 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1134 for (int i=On+1; i<Off; i++) x[i].x=x[Wid-i].x=1-2*(i%2);
xue@11 1135 CIFFTR(x, Log2(Wid), w, spec);
xue@1 1136 FFTConv(dataout, data, BytesPerSample, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1137 FreeFFTBuffer(spec);
xue@1 1138 }//FFTFilterOLA
xue@1 1139
Chris@5 1140 /**
xue@1 1141 function FFTFilterOLA: FFT filter with overlap-add support.
xue@1 1142
xue@1 1143 In: data[Count]: input data
xue@1 1144 amp[0:HWid]: amplitude response
xue@1 1145 ph[0:HWid]: phase response, where ph[0]=ph[HWid]=0;
xue@1 1146 pre_buffer[Wid]: buffer hosting sampled to be added to the beginning of the output
xue@1 1147 Out: dataout[Count]: main output buffer, hosting the middle $Count samples of output.
xue@1 1148 pre_buffer[Wid]: now updated by adding the first Wid/2 samples of output
xue@1 1149
xue@1 1150 No return value.
xue@1 1151 */
xue@1 1152 void FFTFilterOLA(double* dataout, double* data, int Count, double* amp, double* ph, int Wid, double* pre_buffer)
xue@1 1153 {
xue@1 1154 int HWid=Wid/2;
xue@1 1155 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1156 x[0].x=amp[0], x[0].y=0;
xue@1 1157 for (int i=1; i<HWid; i++)
xue@1 1158 {
xue@1 1159 x[i].x=x[Wid-i].x=amp[i]*cos(ph[i]);
xue@1 1160 x[i].y=amp[i]*sin(ph[i]);
xue@1 1161 x[Wid-i].y=-x[i].y;
xue@1 1162 }
xue@1 1163 x[HWid].x=amp[HWid], x[HWid].y=0;
xue@11 1164 CIFFTR(x, Log2(Wid), w, spec);
xue@1 1165 FFTConv(dataout, data, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1166 FreeFFTBuffer(spec);
xue@1 1167 }//FFTFilterOLA
xue@1 1168
Chris@5 1169 /**
xue@1 1170 function FFTMask: masks a band of a signal with noise
xue@1 1171
xue@1 1172 In: data[Count]: input signal
xue@1 1173 DigiOn, DigiOff: cut-off frequences of the band to mask
xue@1 1174 maskcoef: masking noise amplifier. If set to 1 than the mask level is set to the highest signal
xue@1 1175 level in the masking band.
xue@1 1176 Out: dataout[Count]: output data
xue@1 1177
xue@1 1178 No return value.
xue@1 1179 */
xue@1 1180 double FFTMask(double* dataout, double* data, int Count, int Wid, double DigiOn, double DigiOff, double maskcoef)
xue@1 1181 {
xue@11 1182 int Order=Log2(Wid);
xue@1 1183 int HWid=Wid/2;
xue@1 1184 int Fr=(Count-Wid)/HWid+1;
xue@1 1185 int On=Wid*DigiOn, Off=Wid*DigiOff;
xue@1 1186 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 1187
xue@1 1188 double* winhann=new double[Wid];
xue@1 1189 double* winhamm=new double[Wid];
xue@1 1190 for (int i=0; i<Wid; i++)
xue@1 1191 {winhamm[i]=0.54-0.46*cos(2*M_PI*i/Wid); winhann[i]=(1-cos(2*M_PI*i/Wid))/2/winhamm[i];}
xue@1 1192 double* tmpdata=new double[HWid];
xue@1 1193 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 1194 double max, randfi;
xue@1 1195
xue@1 1196 max=0;
xue@1 1197 for (int i=0; i<Fr; i++)
xue@1 1198 {
xue@1 1199 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 1200 if (i>0)
xue@1 1201 for (int k=0; k<HWid; k++)
xue@1 1202 ldata[k]=ldata[k]*winhamm[k];
xue@1 1203 for (int k=HWid; k<Wid; k++)
xue@1 1204 ldata[k]=ldata[k]*winhamm[k];
xue@1 1205
xue@1 1206 RFFTC(ldata, ldata, NULL, Order, w, x, 0);
xue@1 1207
xue@1 1208 for (int k=On; k<Off; k++)
xue@1 1209 {
xue@1 1210 x[k].x=x[Wid-k].x=x[k].y=x[Wid-k].y=0;
xue@1 1211 if (max<ldata[k]) max=ldata[k];
xue@1 1212 }
xue@1 1213
xue@1 1214 CIFFTR(x, Order, w, ldata);
xue@1 1215
xue@1 1216 if (i>0)
xue@1 1217 for (int k=0; k<HWid; k++) ldata[k]=ldata[k]*winhann[k];
xue@1 1218 for (int k=HWid; k<Wid; k++) ldata[k]=ldata[k]*winhann[k];
xue@1 1219
xue@1 1220 for (int k=0; k<HWid; k++) tmpdata[k]+=ldata[k];
xue@1 1221 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 1222 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 1223 }
xue@1 1224 memcpy(&dataout[Fr*HWid], tmpdata, HWid*sizeof(double));
xue@1 1225
xue@1 1226 max*=maskcoef;
xue@1 1227
xue@1 1228 for (int i=0; i<Wid; i++)
xue@1 1229 winhann[i]=winhann[i]*winhamm[i];
xue@1 1230
xue@1 1231 for (int i=0; i<Fr; i++)
xue@1 1232 {
xue@1 1233 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1234 for (int k=On; k<Off; k++)
xue@1 1235 {
xue@1 1236 randfi=rand()*M_PI*2/RAND_MAX;
xue@1 1237 x[k].x=x[Wid-k].x=max*cos(randfi);
xue@1 1238 x[k].y=max*sin(randfi);
xue@1 1239 x[Wid-k].y=-x[k].y;
xue@1 1240 }
xue@1 1241
xue@1 1242 CIFFTR(x, Order, w, ldata);
xue@1 1243
xue@1 1244 if (i>0)
xue@1 1245 for (int k=0; k<HWid; k++)
xue@1 1246 ldata[k]=ldata[k]*winhann[k];
xue@1 1247 for (int k=HWid; k<Wid; k++)
xue@1 1248 ldata[k]=ldata[k]*winhann[k];
xue@1 1249
xue@1 1250 for (int k=0; k<Wid; k++) dataout[i*HWid+k]+=ldata[k];
xue@1 1251 }
xue@1 1252
xue@1 1253 memset(&dataout[Fr*HWid+HWid], 0, (Count-Fr*HWid-HWid)*sizeof(double));
xue@1 1254
xue@1 1255 delete[] winhann;
xue@1 1256 delete[] winhamm;
xue@1 1257 delete[] tmpdata;
xue@1 1258 FreeFFTBuffer(ldata);
xue@1 1259
xue@1 1260 return max;
xue@1 1261 }//FFTMask
xue@1 1262
xue@1 1263 //---------------------------------------------------------------------------
Chris@5 1264 /**
xue@1 1265 function FindInc: find the element in ordered list data that is closest to value.
xue@1 1266
xue@1 1267 In: data[Count]: a ordered list
xue@1 1268 value: the value to locate in the list
xue@1 1269
xue@1 1270 Returns the index of the element in the sorted list which is closest to $value.
xue@1 1271 */
xue@1 1272 int FindInc(double value, double* data, int Count)
xue@1 1273 {
xue@1 1274 if (value>=data[Count-1]) return Count-1;
xue@1 1275 if (value<data[0]) return 0;
xue@1 1276 int end=InsertInc(value, data, Count, false);
xue@1 1277 if (fabs(value-data[end-1])<fabs(value-data[end])) return end-1;
xue@1 1278 else return end;
xue@1 1279 }//FindInc
xue@1 1280
xue@1 1281 //---------------------------------------------------------------------------
Chris@5 1282 /**
xue@1 1283 function Gaussian: Gaussian function
xue@1 1284
xue@1 1285 In: Vector[Dim]: a vector
xue@1 1286 Mean[Dim]: mean of Gaussian function
xue@1 1287 Dev[Fim]: diagonal autocorrelation matrix of Gaussian function
xue@1 1288
xue@1 1289 Returns the value of Gaussian function at Vector[].
xue@1 1290 */
xue@1 1291 double Gaussian(int Dim, double* Vector, double* Mean, double* Dev)
xue@1 1292 {
xue@1 1293 double bmt=0, tmp;
xue@1 1294 for (int dim=0; dim<Dim; dim++)
xue@1 1295 {
xue@1 1296 tmp=Vector[dim]-Mean[dim];
xue@1 1297 bmt+=tmp*tmp/Dev[dim];
xue@1 1298 }
xue@1 1299 bmt=-bmt/2;
xue@1 1300 tmp=log(Dev[0]);
xue@1 1301 for (int dim=1; dim<Dim; dim++) tmp+=log(Dev[dim]);
xue@1 1302 bmt-=tmp/2;
xue@1 1303 bmt-=Dim*log(M_PI*2)/2;
xue@1 1304 bmt=exp(bmt);
xue@1 1305 return bmt;
xue@1 1306 }//Gaussian
xue@1 1307
xue@1 1308
xue@1 1309 //---------------------------------------------------------------------------
Chris@5 1310 /**
xue@1 1311 function Hamming: calculates the amplitude spectrum of Hamming window at a given frequency
xue@1 1312
xue@1 1313 In: f: frequency
xue@1 1314 T: size of Hamming window
xue@1 1315
xue@1 1316 Returns the amplitude spectrum at specified frequency.
xue@1 1317 */
xue@1 1318 double Hamming(double f, double T)
xue@1 1319 {
xue@1 1320 double omg0=2*M_PI/T;
xue@1 1321 double omg=f*2*M_PI;
xue@1 1322 cdouble c1, c2, c3;
xue@1 1323 cdouble nj(0, -1);
xue@1 1324 cdouble pj(0, 1);
xue@1 1325 double a=0.54, b=0.46;
xue@1 1326
xue@1 1327 cdouble c=1.0-exp(nj*T*omg);
xue@1 1328 double half=0.5;
xue@1 1329
xue@1 1330 if (fabs(omg)<1e-100)
xue@1 1331 c1=a*T;
xue@1 1332 else
xue@1 1333 c1=a*c/(pj*omg);
xue@1 1334
xue@1 1335 if (fabs(omg+omg0)<1e-100)
xue@1 1336 c2=b*0.5*T;
xue@1 1337 else
xue@1 1338 c2=c*b*half/(nj*cdouble(omg+omg0));
xue@1 1339
xue@1 1340 if (fabs(omg-omg0)<1e-100)
xue@1 1341 c3=b*0.5*T;
xue@1 1342 else
xue@1 1343 c3=b*c*half/(nj*cdouble(omg-omg0));
xue@1 1344
xue@1 1345 c=c1+c2+c3;
xue@1 1346 return abs(c);
xue@1 1347 }//Hamming*/
xue@1 1348
xue@1 1349 //---------------------------------------------------------------------------
Chris@5 1350 /**
xue@1 1351 function HannSq: computes the square norm of Hann window spectrum (window-size-normalized)
xue@1 1352
xue@1 1353 In: x: frequency, in bins
xue@1 1354 N: size of Hann window
xue@1 1355
xue@1 1356 Return the square norm.
xue@1 1357 */
xue@1 1358 double HannSq(double x, double N)
xue@1 1359 {
xue@1 1360 double re, im;
xue@1 1361 double pim=M_PI*x;
xue@1 1362 double pimf=pim/N;
xue@1 1363 double pif=M_PI/N;
xue@1 1364
xue@1 1365 double sinpim=sin(pim);
xue@1 1366 double sinpimf=sin(pimf);
xue@1 1367 double sinpimplus1f=sin(pimf+pif);
xue@1 1368 double sinpimminus1f=sin(pimf-pif);
xue@1 1369
xue@1 1370 double spmdivbyspmf, spmdivbyspmpf, spmdivbyspmmf;
xue@1 1371
xue@1 1372 if (sinpimf==0)
xue@1 1373 spmdivbyspmf=N, spmdivbyspmpf=spmdivbyspmmf=0;
xue@1 1374 else if (sinpimplus1f==0)
xue@1 1375 spmdivbyspmpf=-N, spmdivbyspmf=spmdivbyspmmf=0;
xue@1 1376 else if (sinpimminus1f==0)
xue@1 1377 spmdivbyspmmf=-N, spmdivbyspmf=spmdivbyspmpf=0;
xue@1 1378 else
xue@1 1379 spmdivbyspmf=sinpim/sinpimf, spmdivbyspmpf=sinpim/sinpimplus1f, spmdivbyspmmf=sinpim/sinpimminus1f;
xue@1 1380
xue@1 1381 re=0.5*spmdivbyspmf-0.25*cos(pif)*(spmdivbyspmpf+spmdivbyspmmf);
xue@1 1382 im=0.25*sin(pif)*(-spmdivbyspmpf+spmdivbyspmmf);
xue@1 1383
xue@1 1384 return (re*re+im*im)/(N*N);
xue@1 1385 }//HannSq
xue@1 1386
Chris@5 1387 /**
xue@1 1388 function Hann: computes the Hann window amplitude spectrum (window-size-normalized).
xue@1 1389
xue@1 1390 In: x: frequency, in bins
xue@1 1391 N: size of Hann window
xue@1 1392
xue@1 1393 Return the amplitude spectrum evaluated at x. Maximum 0.5 is reached at x=0. Time 2 to normalize
xue@1 1394 maximum to 1.
xue@1 1395 */
xue@1 1396 double Hann(double x, double N)
xue@1 1397 {
xue@1 1398 double pim=M_PI*x;
xue@1 1399 double pif=M_PI/N;
xue@1 1400 double pimf=pif*x;
xue@1 1401
xue@1 1402 double sinpim=sin(pim);
xue@1 1403 double tanpimf=tan(pimf);
xue@1 1404 double tanpimplus1f=tan(pimf+pif);
xue@1 1405 double tanpimminus1f=tan(pimf-pif);
xue@1 1406
xue@1 1407 double spmdivbyspmf, spmdivbyspmpf, spmdivbyspmmf;
xue@1 1408
xue@1 1409 if (fabs(tanpimf)<1e-10)
xue@1 1410 spmdivbyspmf=N, spmdivbyspmpf=spmdivbyspmmf=0;
xue@1 1411 else if (fabs(tanpimplus1f)<1e-10)
xue@1 1412 spmdivbyspmpf=-N, spmdivbyspmf=spmdivbyspmmf=0;
xue@1 1413 else if (fabs(tanpimminus1f)<1e-10)
xue@1 1414 spmdivbyspmmf=-N, spmdivbyspmf=spmdivbyspmpf=0;
xue@1 1415 else
xue@1 1416 spmdivbyspmf=sinpim/tanpimf, spmdivbyspmpf=sinpim/tanpimplus1f, spmdivbyspmmf=sinpim/tanpimminus1f;
xue@1 1417
xue@1 1418 double result=0.5*spmdivbyspmf-0.25*(spmdivbyspmpf+spmdivbyspmmf);
xue@1 1419
xue@1 1420 return result/N;
xue@1 1421 }//HannC
xue@1 1422
Chris@5 1423 /**
xue@1 1424 function HxPeak2: fine spectral peak detection. This does detection and high-precision LSE estimation
xue@1 1425 in one go. However, since in practise most peaks are spurious, LSE estimation is not necessary on
xue@1 1426 them. Accordingly, HxPeak2 is deprecated in favour of faster but coarser peak picking methods, such as
xue@1 1427 QIFFT, which leaves fine estimation to a later stage of processing.
xue@1 1428
xue@1 1429 In: F, dF, ddF: pointers to functions that compute LSE peak energy for, plus its 1st and 2nd
xue@1 1430 derivatives against, a given frequency.
xue@1 1431 params: pointer to a data structure (l_hx) hosting input data fed to F, dF, and ddF
xue@1 1432 (st, en): frequency range, in bins, to search for peaks in
xue@1 1433 epf: convergence detection threshold
xue@1 1434 Out: hps[return value]: peak frequencies
xue@1 1435 vps[return value]; peak amplitudes
xue@1 1436
xue@1 1437 Returns the number of peaks detected.
xue@1 1438 */
xue@1 1439 int HxPeak2(double*& hps, double*& vhps, double (*F)(double, void*), double (*dF)(double, void*), double(*ddF)(double, void*), void* params, double st, double en, double epf)
xue@1 1440 {
xue@1 1441 struct l_hx {int N; union {double B; struct {int k1; int k2;};}; cdouble* x; double dhxpeak; double hxpeak;} *p=(l_hx *)params;
Chris@3 1442 int dfshift=offsetof(l_hx, dhxpeak);
Chris@3 1443 int fshift=offsetof(l_hx, hxpeak);
xue@1 1444 double B=p->B;
xue@1 1445 int count=0;
xue@1 1446
xue@1 1447 int den=ceil(en), dst=floor(st);
xue@1 1448 if (den-dst<3) den++, dst--;
xue@1 1449 if (den-dst<3) den++, dst--;
xue@1 1450 if (dst<1) dst=1;
xue@1 1451
xue@1 1452 double step=0.5;
xue@1 1453 int num=(den-dst)/step+1;
xue@1 1454 bool allochps=false, allocvhps=false;
xue@1 1455 if (hps==NULL) allochps=true, hps=new double[num];
xue@1 1456 if (vhps==NULL) allocvhps=true, vhps=new double[num];
xue@1 1457
xue@1 1458 {
xue@1 1459 double* inp=new double[num];
xue@1 1460 for (int i=0; i<num; i++)
xue@1 1461 {
xue@1 1462 double lf=dst+step*i;
xue@1 1463 p->k1=ceil(lf-B); if (p->k1<0) p->k1=0;
xue@1 1464 p->k2=floor(lf+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1465 inp[i]=F(lf, params);
xue@1 1466 }
xue@1 1467
xue@1 1468 for (int i=1; i<num-1; i++)
xue@1 1469 {
xue@1 1470 if (inp[i]>=inp[i-1] && inp[i]>=inp[i+1]) //inp[i]=F(dst+step*i)
xue@1 1471 {
xue@1 1472 if (inp[i]==inp[i-1] && inp[i]==inp[i+1]) continue;
xue@1 1473 double fa=dst+step*(i-1), fb=dst+step*(i+1);
xue@1 1474 double ff=dst+step*i;
xue@1 1475 p->k1=ceil(ff-B); if (p->k1<0) p->k1=0;
xue@1 1476 p->k2=floor(ff+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1477
xue@1 1478 double tmp=Newton1dmax(ff, fa, fb, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1479
xue@1 1480 //although we have selected inp[i] to be a local maximum, different truncation
xue@1 1481 // of local spectrum implies it may not hold as the truncation of inp[i] is
xue@1 1482 // used for recalculating inp[i-1] and inp[i+1] in init_Newton method. In this
xue@1 1483 // case we retry the sub-maximal frequency to see if it becomes a local maximum
xue@1 1484 // when the spectrum is truncated to centre on it.
xue@1 1485
xue@1 1486 if (tmp==-0.5 || tmp==-0.7) //y(fa)<=y(ff)<y(fb) or y(ff)<y(fa)<y(fb)
xue@1 1487 {
xue@1 1488 tmp=Newton1dmax(fb, ff, 2*fb-ff, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1489 if (tmp==-0.5 || tmp==-0.7) continue;
xue@1 1490 /*
xue@1 1491 double ff2=(ff+fb)/2;
xue@1 1492 p->k1=ceil(ff2-B); if (p->k1<0) p->k1=0;
xue@1 1493 p->k2=floor(ff2+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1494 tmp=Newton1dmax(ff2, ff, fb, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1495 p->k1=ceil(ff-B); if (p->k1<0) p->k1=0;
xue@1 1496 p->k2=floor(ff+B); if (p->k2>=p->N/2) p->k2=p->N/2-1; */
xue@1 1497 }
xue@1 1498 else if (tmp==-0.6 || tmp==-0.8) //y(fb)<=y(ff)<y(fa)
xue@1 1499 {
xue@1 1500 tmp=Newton1dmax(fa, 2*fa-ff, ff, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1501 if (tmp==-0.6 || tmp==-0.8) continue;
xue@1 1502 }
xue@1 1503 if (tmp<0 /*tmp==-0.5 || tmp==-0.6 || tmp==-1 || tmp==-2 || tmp==-3*/)
xue@1 1504 {
xue@1 1505 Search1Dmax(ff, params, F, dst+step*(i-1), dst+step*(i+1), &vhps[count], epf);
xue@1 1506 }
xue@1 1507 else
xue@1 1508 {
xue@1 1509 vhps[count]=p->hxpeak;
xue@1 1510 }
xue@1 1511 if (ff>=st && ff<=en && ff>dst+step*(i-0.99) && ff<dst+step*(i+0.99))
xue@1 1512 {
xue@1 1513 // if (count==0 || fabs(tmp-hps[count-1])>0.1)
xue@1 1514 // {
xue@1 1515 hps[count]=ff;
xue@1 1516 count++;
xue@1 1517 // }
xue@1 1518 }
xue@1 1519 }
xue@1 1520 }
xue@1 1521 delete[] inp;
xue@1 1522 }
xue@1 1523
xue@1 1524 if (allochps) hps=(double*)realloc(hps, sizeof(double)*count);
xue@1 1525 if (allocvhps) vhps=(double*)realloc(vhps, sizeof(double)*count);
xue@1 1526 return count;
xue@1 1527 }//HxPeak2
xue@1 1528
xue@1 1529 //---------------------------------------------------------------------------
Chris@5 1530 /**
xue@1 1531 function InsertDec: inserts value into sorted decreasing list
xue@1 1532
xue@1 1533 In: data[Count]: a sorted decreasing list.
xue@1 1534 value: the value to be added
xue@1 1535 Out: data[Count]: the list with $value inserted if the latter is larger than its last entry, in which
xue@1 1536 case the original last entry is discarded.
xue@1 1537
xue@1 1538 Returns the index where $value is located in data[], or -1 if $value is smaller than or equal to
xue@1 1539 data[Count-1].
xue@1 1540 */
xue@1 1541 int InsertDec(int value, int* data, int Count)
xue@1 1542 {
xue@1 1543 if (Count<=0) return -1;
xue@1 1544 if (value<=data[Count-1]) return -1;
xue@1 1545 if (value>data[0])
xue@1 1546 {
xue@1 1547 memmove(&data[1], &data[0], sizeof(int)*(Count-1));
xue@1 1548 data[0]=value;
xue@1 1549 return 0;
xue@1 1550 }
xue@1 1551
xue@1 1552 //now Count>=2
xue@1 1553 int head=0, end=Count-1, mid;
xue@1 1554
xue@1 1555 //D(head)>=value>D(end)
xue@1 1556 while (end-head>1)
xue@1 1557 {
xue@1 1558 mid=(head+end)/2;
xue@1 1559 if (value<=data[mid]) head=mid;
xue@1 1560 else end=mid;
xue@1 1561 }
xue@1 1562
xue@1 1563 //D(head=end-1)>=value>D(end)
xue@1 1564 memmove(&data[end+1], &data[end], sizeof(int)*(Count-end-1));
xue@1 1565 data[end]=value;
xue@1 1566 return end;
xue@1 1567 }//InsertDec
xue@1 1568 //the double version
xue@1 1569 int InsertDec(double value, double* data, int Count)
xue@1 1570 {
xue@1 1571 if (Count<=0) return -1;
xue@1 1572 if (value<=data[Count-1]) return -1;
xue@1 1573 if (value>data[0])
xue@1 1574 {
xue@1 1575 memmove(&data[1], &data[0], sizeof(double)*(Count-1));
xue@1 1576 data[0]=value;
xue@1 1577 return 0;
xue@1 1578 }
xue@1 1579
xue@1 1580 //now Count>=2
xue@1 1581 int head=0, end=Count-1, mid;
xue@1 1582
xue@1 1583 //D(head)>=value>D(end)
xue@1 1584 while (end-head>1)
xue@1 1585 {
xue@1 1586 mid=(head+end)/2;
xue@1 1587 if (value<=data[mid]) head=mid;
xue@1 1588 else end=mid;
xue@1 1589 }
xue@1 1590
xue@1 1591 //D(head=end-1)>=value>D(end)
xue@1 1592 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1593 data[end]=value;
xue@1 1594 return end;
xue@1 1595 }//InsertDec
xue@1 1596
Chris@5 1597 /**
xue@1 1598 function InsertDec: inserts value and attached integer into sorted decreasing list
xue@1 1599
xue@1 1600 In: data[Count]: a sorted decreasing list
xue@1 1601 indices[Count]: a list of integers attached to entries of data[]
xue@1 1602 value, index: the value to be added and its attached integer
xue@1 1603 Out: data[Count], indices[Count]: the lists with $value and $index inserted if $value is larger than
xue@1 1604 the last entry of data[], in which case the original last entries are discarded.
xue@1 1605
xue@1 1606 Returns the index where $value is located in data[], or -1 if $value is smaller than or equal to
xue@1 1607 data[Count-1].
xue@1 1608 */
xue@1 1609 int InsertDec(double value, int index, double* data, int* indices, int Count)
xue@1 1610 {
xue@1 1611 if (Count<=0) return -1;
xue@1 1612 if (value<=data[Count-1]) return -1;
xue@1 1613 if (value>data[0])
xue@1 1614 {
xue@1 1615 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1616 memmove(&indices[1], indices, sizeof(int)*(Count-1));
xue@1 1617 data[0]=value, indices[0]=index;
xue@1 1618 return 0;
xue@1 1619 }
xue@1 1620
xue@1 1621 //now Count>=2
xue@1 1622 int head=0, end=Count-1, mid;
xue@1 1623
xue@1 1624 //D(head)>=value>D(end)
xue@1 1625 while (end-head>1)
xue@1 1626 {
xue@1 1627 mid=(head+end)/2;
xue@1 1628 if (value<=data[mid]) head=mid;
xue@1 1629 else end=mid;
xue@1 1630 }
xue@1 1631
xue@1 1632 //D(head=end-1)>=value>D(end)
xue@1 1633 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1634 memmove(&indices[end+1], &indices[end], sizeof(int)*(Count-end-1));
xue@1 1635 data[end]=value, indices[end]=index;
xue@1 1636 return end;
xue@1 1637 }//InsertDec
xue@1 1638
Chris@5 1639 /**
xue@1 1640 InsertInc: inserts value into sorted increasing list.
xue@1 1641
xue@1 1642 In: data[Count]: a sorted increasing list.
xue@1 1643 Capacity: maximal size of data[]
xue@1 1644 value: the value to be added
xue@1 1645 Compare: pointer to function that compare two values
xue@1 1646 Out: data[Count]: the list with $value inserted. If the original list is full (Count=Capacity) then
xue@1 1647 either $value, or the last entry of data[], whichever is larger, is discarded.
xue@1 1648
xue@1 1649 Returns the index where $value is located in data[], or -1 if it is not inserted, which happens if
xue@1 1650 Count=Capacity and $value is larger than or equal to the last entry in data[Capacity].
xue@1 1651 */
xue@1 1652 int InsertInc(void* value, void** data, int Count, int Capacity, int (*Compare)(void*, void*))
xue@1 1653 {
xue@1 1654 if (Capacity<=0) return -1;
xue@1 1655 if (Count>Capacity) Count=Capacity;
xue@1 1656
xue@1 1657 //Compare(A,B)<0 if A<B, =0 if A=B, >0 if A>B
xue@1 1658 int PosToInsert;
xue@1 1659 if (Count==0) PosToInsert=0;
xue@1 1660 else if (Compare(value, data[Count-1])>0) PosToInsert=Count;
xue@1 1661 else if (Compare(value, data[0])<0) PosToInsert=0;
xue@1 1662 else
xue@1 1663 {
xue@1 1664 //now Count>=2
xue@1 1665 int head=0, end=Count-1, mid;
xue@1 1666
xue@1 1667 //D(head)<=value<D(end)
xue@1 1668 while (end-head>1)
xue@1 1669 {
xue@1 1670 mid=(head+end)/2;
xue@1 1671 if (Compare(value, data[mid])>=0) head=mid;
xue@1 1672 else end=mid;
xue@1 1673 }
xue@1 1674 //D(head=end-1)<=value<D(end)
xue@1 1675 PosToInsert=end;
xue@1 1676 }
xue@1 1677
xue@1 1678 if (Count<Capacity)
xue@1 1679 {
xue@1 1680 memmove(&data[PosToInsert+1], &data[PosToInsert], sizeof(void*)*(Count-PosToInsert));
xue@1 1681 data[PosToInsert]=value;
xue@1 1682 }
xue@1 1683 else //Count==Capacity
xue@1 1684 {
xue@1 1685 if (PosToInsert>=Capacity) return -1;
xue@1 1686 memmove(&data[PosToInsert+1], &data[PosToInsert], sizeof(void*)*(Count-PosToInsert-1));
xue@1 1687 data[PosToInsert]=value;
xue@1 1688 }
xue@1 1689 return PosToInsert;
xue@1 1690 }//InsertInc
xue@1 1691
Chris@5 1692 /**
xue@1 1693 function InsertInc: inserts value into sorted increasing list
xue@1 1694
xue@1 1695 In: data[Count]: a sorted increasing list.
xue@1 1696 value: the value to be added
xue@1 1697 doinsert: specifies whether the actually insertion is to be performed
xue@1 1698 Out: data[Count]: the list with $value inserted if the latter is smaller than its last entry, in which
xue@1 1699 case the original last entry of data[] is discarded.
xue@1 1700
xue@1 1701 Returns the index where $value is located in data[], or -1 if value is larger than or equal to
xue@1 1702 data[Count-1].
xue@1 1703 */
xue@1 1704 int InsertInc(double value, double* data, int Count, bool doinsert)
xue@1 1705 {
xue@1 1706 if (Count<=0) return -1;
xue@1 1707 if (value>=data[Count-1]) return -1;
xue@1 1708 if (value<data[0])
xue@1 1709 {
xue@1 1710 memmove(&data[1], &data[0], sizeof(double)*(Count-1));
xue@1 1711 if (doinsert) data[0]=value;
xue@1 1712 return 0;
xue@1 1713 }
xue@1 1714
xue@1 1715 //now Count>=2
xue@1 1716 int head=0, end=Count-1, mid;
xue@1 1717
xue@1 1718 //D(head)<=value<D(end)
xue@1 1719 while (end-head>1)
xue@1 1720 {
xue@1 1721 mid=(head+end)/2;
xue@1 1722 if (value>=data[mid]) head=mid;
xue@1 1723 else end=mid;
xue@1 1724 }
xue@1 1725
xue@1 1726 //D(head=end-1)<=value<D(end)
xue@1 1727 if (doinsert)
xue@1 1728 {
xue@1 1729 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1730 data[end]=value;
xue@1 1731 }
xue@1 1732 return end;
xue@1 1733 }//InsertInc
xue@1 1734 //version where data[] is int.
xue@1 1735 int InsertInc(double value, int* data, int Count, bool doinsert)
xue@1 1736 {
xue@1 1737 if (Count<=0) return -1;
xue@1 1738 if (value>=data[Count-1]) return -1;
xue@1 1739 if (value<data[0])
xue@1 1740 {
xue@1 1741 memmove(&data[1], &data[0], sizeof(int)*(Count-1));
xue@1 1742 if (doinsert) data[0]=value;
xue@1 1743 return 0;
xue@1 1744 }
xue@1 1745
xue@1 1746 //now Count>=2
xue@1 1747 int head=0, end=Count-1, mid;
xue@1 1748
xue@1 1749 //D(head)<=value<D(end)
xue@1 1750 while (end-head>1)
xue@1 1751 {
xue@1 1752 mid=(head+end)/2;
xue@1 1753 if (value>=data[mid]) head=mid;
xue@1 1754 else end=mid;
xue@1 1755 }
xue@1 1756
xue@1 1757 //D(head=end-1)<=value<D(end)
xue@1 1758 if (doinsert)
xue@1 1759 {
xue@1 1760 memmove(&data[end+1], &data[end], sizeof(int)*(Count-end-1));
xue@1 1761 data[end]=value;
xue@1 1762 }
xue@1 1763 return end;
xue@1 1764 }//InsertInc
xue@1 1765
Chris@5 1766 /**
xue@1 1767 function InsertInc: inserts value and attached integer into sorted increasing list
xue@1 1768
xue@1 1769 In: data[Count]: a sorted increasing list
xue@1 1770 indices[Count]: a list of integers attached to entries of data[]
xue@1 1771 value, index: the value to be added and its attached integer
xue@1 1772 Out: data[Count], indices[Count]: the lists with $value and $index inserted if $value is smaller than
xue@1 1773 the last entry of data[], in which case the original last entries are discarded.
xue@1 1774
xue@1 1775 Returns the index where $value is located in data[], or -1 if $value is larger than or equal to
xue@1 1776 data[Count-1].
xue@1 1777 */
xue@1 1778 int InsertInc(double value, int index, double* data, int* indices, int Count)
xue@1 1779 {
xue@1 1780 if (Count<=0) return -1;
xue@1 1781 if (value>=data[Count-1]) return -1;
xue@1 1782 if (value<data[0])
xue@1 1783 {
xue@1 1784 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1785 memmove(&indices[1], indices, sizeof(int)*(Count-1));
xue@1 1786 data[0]=value, indices[0]=index;
xue@1 1787 return 0;
xue@1 1788 }
xue@1 1789
xue@1 1790 //now Count>=2
xue@1 1791 int head=0, end=Count-1, mid;
xue@1 1792
xue@1 1793 //D(head)>=value>D(end)
xue@1 1794 while (end-head>1)
xue@1 1795 {
xue@1 1796 mid=(head+end)/2;
xue@1 1797 if (value>=data[mid]) head=mid;
xue@1 1798 else end=mid;
xue@1 1799 }
xue@1 1800
xue@1 1801 //D(head=end-1)>=value>D(end)
xue@1 1802 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1803 memmove(&indices[end+1], &indices[end], sizeof(int)*(Count-end-1));
xue@1 1804 data[end]=value, indices[end]=index;
xue@1 1805 return end;
xue@1 1806 }//InsertInc
xue@1 1807 //version where indices[] is double-precision floating point.
xue@1 1808 int InsertInc(double value, double index, double* data, double* indices, int Count)
xue@1 1809 {
xue@1 1810 if (Count<=0) return -1;
xue@1 1811 if (value>=data[Count-1]) return -1;
xue@1 1812 if (value<data[0])
xue@1 1813 {
xue@1 1814 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1815 memmove(&indices[1], indices, sizeof(double)*(Count-1));
xue@1 1816 data[0]=value, indices[0]=index;
xue@1 1817 return 0;
xue@1 1818 }
xue@1 1819
xue@1 1820 //now Count>=2
xue@1 1821 int head=0, end=Count-1, mid;
xue@1 1822
xue@1 1823 //D(head)>=value>D(end)
xue@1 1824 while (end-head>1)
xue@1 1825 {
xue@1 1826 mid=(head+end)/2;
xue@1 1827 if (value>=data[mid]) head=mid;
xue@1 1828 else end=mid;
xue@1 1829 }
xue@1 1830
xue@1 1831 //D(head=end-1)>=value>D(end)
xue@1 1832 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1833 memmove(&indices[end+1], &indices[end], sizeof(double)*(Count-end-1));
xue@1 1834 data[end]=value, indices[end]=index;
xue@1 1835 return end;
xue@1 1836 }//InsertInc
xue@1 1837
Chris@5 1838 /**
xue@1 1839 function InsertIncApp: inserts value into flexible-length sorted increasing list
xue@1 1840
xue@1 1841 In: data[Count]: a sorted increasing list.
xue@1 1842 value: the value to be added
xue@1 1843 Out: data[Count+1]: the list with $value inserted.
xue@1 1844
xue@1 1845 Returns the index where $value is located in data[], or -1 if Count<0. data[] must have Count+1
xue@1 1846 storage units on calling.
xue@1 1847 */
xue@1 1848 int InsertIncApp(double value, double* data, int Count)
xue@1 1849 {
xue@1 1850 if (Count<0) return -1;
xue@1 1851 if (Count==0){data[0]=value; return 0;}
xue@1 1852 if (value>=data[Count-1]){data[Count]=value; return Count;}
xue@1 1853 if (value<data[0])
xue@1 1854 {
xue@1 1855 memmove(&data[1], &data[0], sizeof(double)*Count);
xue@1 1856 data[0]=value;
xue@1 1857 return 0;
xue@1 1858 }
xue@1 1859
xue@1 1860 //now Count>=2
xue@1 1861 int head=0, end=Count-1, mid;
xue@1 1862
xue@1 1863 //D(head)<=value<D(end)
xue@1 1864 while (end-head>1)
xue@1 1865 {
xue@1 1866 mid=(head+end)/2;
xue@1 1867 if (value>=data[mid]) head=mid;
xue@1 1868 else end=mid;
xue@1 1869 }
xue@1 1870
xue@1 1871 //D(head=end-1)<=value<D(end)
xue@1 1872 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end));
xue@1 1873 data[end]=value;
xue@1 1874
xue@1 1875 return end;
xue@1 1876 }//InsertIncApp
xue@1 1877
xue@1 1878 //---------------------------------------------------------------------------
Chris@5 1879 /**
xue@1 1880 function InstantFreq; calculates instantaneous frequency from spectrum, evaluated at bin k
xue@1 1881
xue@1 1882 In: x[hwid]: spectrum with scale 2hwid
xue@1 1883 k: reference frequency, in bins
xue@1 1884 mode: must be 1.
xue@1 1885
xue@1 1886 Returns an instantaneous frequency near bin k.
xue@1 1887 */
xue@1 1888 double InstantFreq(int k, int hwid, cdouble* x, int mode)
xue@1 1889 {
xue@1 1890 double result;
xue@1 1891 switch(mode)
xue@1 1892 {
xue@1 1893 //mode 1: the phase vocoder method, based on J. Brown, where the spectrogram
xue@1 1894 // MUST be calculated using rectangular window
xue@1 1895 case 1:
xue@1 1896 {
xue@1 1897 if (k<1) k=1;
xue@1 1898 if (k>hwid-2) k=hwid-2;
xue@1 1899 double hr=0.5*(x[k].x-0.5*(x[k+1].x+x[k-1].x)), hi=0.5*(x[k].y-0.5*(x[k+1].y+x[k-1].y));
xue@1 1900 double ph0=Atan2(hi, hr);
xue@1 1901 double c=cos(M_PI/hwid), s=sin(M_PI/hwid);
xue@1 1902 hr=0.5*(x[k].x-0.5*(x[k+1].x*c-x[k+1].y*s+x[k-1].x*c+x[k-1].y*s));
xue@1 1903 hi=0.5*(x[k].y-0.5*(x[k+1].y*c+x[k+1].x*s+x[k-1].y*c-x[k-1].x*s));
xue@1 1904 double ph1=Atan2(hi, hr);
xue@1 1905 result=(ph1-ph0)/(2*M_PI);
xue@1 1906 if (result<-0.5) result+=1;
xue@1 1907 if (result>0.5) result-=1;
xue@1 1908 result+=k*0.5/hwid;
xue@1 1909 break;
xue@1 1910 }
xue@1 1911 case 2:
xue@1 1912 break;
xue@1 1913 }
xue@1 1914 return result;
xue@1 1915 }//InstantFreq
xue@1 1916
Chris@5 1917 /**
xue@1 1918 function InstantFreq; calculates "frequency spectrum", a sequence of frequencies evaluated at DFT bins
xue@1 1919
xue@1 1920 In: x[hwid]: spectrum with scale 2hwid
xue@1 1921 mode: must be 1.
xue@1 1922 Out: freqspec[hwid]: the frequency spectrum
xue@1 1923
xue@1 1924 No return value.
xue@1 1925 */
xue@1 1926 void InstantFreq(double* freqspec, int hwid, cdouble* x, int mode)
xue@1 1927 {
xue@1 1928 for (int i=0; i<hwid; i++)
xue@1 1929 freqspec[i]=InstantFreq(i, hwid, x, mode);
xue@1 1930 }//InstantFreq
xue@1 1931
xue@1 1932 //---------------------------------------------------------------------------
Chris@5 1933 /**
xue@1 1934 function IntToDouble: copy content of integer array to double array
xue@1 1935
xue@1 1936 In: in: pointer to integer array
xue@1 1937 BytesPerSample: number of bytes each integer takes
xue@1 1938 Count: size of integer array, in integers
xue@1 1939 Out: vector out[Count].
xue@1 1940
xue@1 1941 No return value.
xue@1 1942
xue@1 1943 This version is currently commented out in favour of the version implemented in QuickSpec.cpp which
xue@1 1944 supports 24-bit integers.
xue@1 1945 *//*
xue@1 1946 void IntToDouble(double* out, void* in, int BytesPerSample, int Count)
xue@1 1947 {
xue@1 1948 if (BytesPerSample==1){unsigned char* in8=(unsigned char*)in; for (int k=0; k<Count; k++) *(out++)=*(in8++)-128.0;}
xue@1 1949 else {__int16* in16=(__int16*)in; for (int k=0; k<Count; k++) *(out++)=*(in16++);}
xue@1 1950 }//IntToDouble*/
xue@1 1951
xue@1 1952 //---------------------------------------------------------------------------
Chris@5 1953 /**
xue@1 1954 function IPHannC: inner product with Hann window spectrum
xue@1 1955
xue@1 1956 In: x[N]: spectrum
xue@1 1957 f: reference frequency
xue@1 1958 K1, K2: spectral truncation bounds
xue@1 1959
xue@1 1960 Returns the absolute value of the inner product of x[K1:K2] with the corresponding band of the
xue@1 1961 spectrum of a sinusoid at frequency f.
xue@1 1962 */
xue@1 1963 double IPHannC(double f, cdouble* x, int N, int K1, int K2)
xue@1 1964 {
xue@1 1965 int M; double c[4], iH2;
xue@1 1966 windowspec(wtHann, N, &M, c, &iH2);
xue@1 1967 return abs(IPWindowC(f, x, N, M, c, iH2, K1, K2));
xue@1 1968 }//IPHannC
xue@1 1969
xue@1 1970
xue@1 1971 //---------------------------------------------------------------------------
Chris@5 1972 /**
xue@1 1973 function lse: linear regression y=ax+b
xue@1 1974
xue@1 1975 In: x[Count], y[Count]: input points
xue@1 1976 Out: a, b: LSE estimation of coefficients in y=ax+b
xue@1 1977
xue@1 1978 No return value.
xue@1 1979 */
xue@1 1980 void lse(double* x, double* y, int Count, double& a, double& b)
xue@1 1981 {
xue@1 1982 double sx=0, sy=0, sxx=0, sxy=0;
xue@1 1983 for (int i=0; i<Count; i++)
xue@1 1984 {
xue@1 1985 sx+=x[i];
xue@1 1986 sy+=y[i];
xue@1 1987 sxx+=x[i]*x[i];
xue@1 1988 sxy+=x[i]*y[i];
xue@1 1989 }
xue@1 1990 b=(sxx*sy-sx*sxy)/(Count*sxx-sx*sx);
xue@1 1991 a=(sy-Count*b)/sx;
xue@1 1992 }//lse
xue@1 1993
xue@1 1994 //--------------------------------------------------------------------------
Chris@5 1995 /**
xue@1 1996 memdoubleadd: vector addition
xue@1 1997
xue@1 1998 In: dest[count], source[count]: addends
xue@1 1999 Out: dest[count]: sum
xue@1 2000
xue@1 2001 No return value.
xue@1 2002 */
xue@1 2003 void memdoubleadd(double* dest, double* source, int count)
xue@1 2004 {
xue@1 2005 for (int i=0; i<count; i++){*dest=*dest+*source; dest++; source++;}
xue@1 2006 }//memdoubleadd
xue@1 2007
xue@1 2008 //--------------------------------------------------------------------------
Chris@5 2009 /**
xue@1 2010 function Mel: converts frequency in Hz to frequency in mel.
xue@1 2011
xue@1 2012 In: f: frequency, in Hz
xue@1 2013
xue@1 2014 Returns the frequency measured on mel scale.
xue@1 2015 */
xue@1 2016 double Mel(double f)
xue@1 2017 {
xue@1 2018 return 1127.01048*log(1+f/700);
xue@1 2019 }//Mel
xue@1 2020
Chris@5 2021 /**
xue@1 2022 function InvMel: converts frequency in mel to frequency in Hz.
xue@1 2023
xue@1 2024 In: f: frequency, in mel.
xue@1 2025
xue@1 2026 Returns the frequency in Hz.
xue@1 2027 */
xue@1 2028 double InvMel(double mel)
xue@1 2029 {
xue@1 2030 return 700*(exp(mel/1127.01048)-1);
xue@1 2031 }//InvMel
xue@1 2032
Chris@5 2033 /**
xue@1 2034 function MFCC: calculates MFCC.
xue@1 2035
xue@1 2036 In: Data[FrameWidth]: data
xue@1 2037 NumBands: number of frequency bands on mel scale
xue@1 2038 Bands[3*NumBands]: mel frequency bands, comes as $NumBands triples, each containing the lower,
xue@1 2039 middle and high frequencies, in bins, of one band, from which a weighting window is created to
xue@1 2040 weight individual bins.
xue@1 2041 Ceps_Order: number of MFC coefficients (i.e. DCT coefficients)
xue@1 2042 W, X: FFT buffers
xue@1 2043 Out: C[Ceps_Order]: MFCC
xue@1 2044 Amps[NumBands]: log spectrum on MF bands
xue@1 2045
xue@1 2046 No return value. Use MFCCPrepareBands() to retrieve Bands[].
xue@1 2047 */
xue@1 2048 void MFCC(int FrameWidth, int NumBands, int Ceps_Order, double* Data, double* Bands, double* C, double* Amps, cdouble* W, cdouble* X)
xue@1 2049 {
xue@1 2050 double tmp, b2s, b2c, b2e;
xue@1 2051
xue@11 2052 RFFTC(Data, 0, 0, Log2(FrameWidth), W, X, 0);
xue@1 2053 for (int i=0; i<=FrameWidth/2; i++) Amps[i]=X[i].x*X[i].x+X[i].y*X[i].y;
xue@1 2054
xue@1 2055 for (int i=0; i<NumBands; i++)
xue@1 2056 {
xue@1 2057 tmp=0;
xue@1 2058 b2s=Bands[3*i], b2c=Bands[3*i+1], b2e=Bands[3*i+2];
xue@1 2059
xue@1 2060 for (int j=ceil(b2s); j<ceil(b2c); j++)
xue@1 2061 tmp+=Amps[j]*(j-b2s)/(b2c-b2s);
xue@1 2062 for (int j=ceil(b2c); j<b2e; j++)
xue@1 2063 tmp+=Amps[j]*(b2e-j)/(b2e-b2c);
xue@1 2064
xue@1 2065 if (tmp<3.7200759760208359629596958038631e-44)
xue@1 2066 Amps[i]=-100;
xue@1 2067 else
xue@1 2068 Amps[i]=log(tmp);
xue@1 2069 }
xue@1 2070
xue@1 2071 for (int i=0; i<Ceps_Order; i++)
xue@1 2072 {
xue@1 2073 tmp=Amps[0]*cos(M_PI*(i+1)/2/NumBands);
xue@1 2074 for (int j=1; j<NumBands; j++)
xue@1 2075 tmp+=Amps[j]*cos(M_PI*(i+0.5)*(j+0.5)/NumBands);
xue@1 2076 C[i]=tmp;
xue@1 2077 }
xue@1 2078 }//MFCC
xue@1 2079
Chris@5 2080 /**
xue@1 2081 function MFCCPrepareBands: returns a array of OVERLAPPING bands given in triples, whose 1st and 3rd
xue@1 2082 entries are the start and end of a band, in bins, and the 2nd is a middle frequency.
xue@1 2083
xue@1 2084 In: SamplesPerSec: sampling rate
xue@1 2085 NumberOfBins: FFT size
xue@1 2086 NumberOfBands: number of mel-frequency bands
xue@1 2087
xue@1 2088 Returns pointer to the array of triples.
xue@1 2089 */
xue@1 2090 double* MFCCPrepareBands(int NumberOfBands, int SamplesPerSec, int NumberOfBins)
xue@1 2091 {
xue@1 2092 double* Bands=new double[NumberOfBands*3];
xue@1 2093 double naqfreq=SamplesPerSec/2.0; //naqvist freq
xue@1 2094 double binwid=SamplesPerSec*1.0/NumberOfBins;
xue@1 2095 double naqmel=Mel(naqfreq);
xue@1 2096 double b=naqmel/(NumberOfBands+1);
xue@1 2097
xue@1 2098 Bands[0]=0;
xue@1 2099 Bands[1]=InvMel(b)/binwid;
xue@1 2100 Bands[2]=InvMel(b*2)/binwid;
xue@1 2101 for (int i=1; i<NumberOfBands; i++)
xue@1 2102 {
xue@1 2103 Bands[3*i]=Bands[3*i-2];
xue@1 2104 Bands[3*i+1]=Bands[3*i-1];
xue@1 2105 Bands[3*i+2]=InvMel(b*(i+2))/binwid;
xue@1 2106 }
xue@1 2107 return Bands;
xue@1 2108 }//MFCCPrepareBands
xue@1 2109
xue@1 2110 //---------------------------------------------------------------------------
Chris@5 2111 /**
xue@1 2112 function Multi: vector-constant multiplication
xue@1 2113
xue@1 2114 In: data[count]: a vector
xue@1 2115 mul: a constant
xue@1 2116 Out: data[count]: their product
xue@1 2117
xue@1 2118 No return value.
xue@1 2119 */
xue@1 2120 void Multi(double* data, int count, double mul)
xue@1 2121 {
xue@1 2122 for (int i=0; i<count; i++){*data=*data*mul; data++;}
xue@1 2123 }//Multi
xue@1 2124
Chris@5 2125 /**
xue@1 2126 function Multi: vector-constant multiplication
xue@1 2127
xue@1 2128 In: in[count]: a vector
xue@1 2129 mul: a constant
xue@1 2130 Out: out[count]: their product
xue@1 2131
xue@1 2132 No return value.
xue@1 2133 */
xue@1 2134 void Multi(double* out, double* in, int count, double mul)
xue@1 2135 {
xue@1 2136 for (int i=0; i<count; i++) *(out++)=*(in++)*mul;
xue@1 2137 }//Multi
xue@1 2138
Chris@5 2139 /**
xue@1 2140 function Multi: vector-constant multiply-addition
xue@1 2141
xue@1 2142 In: in[count], adder[count]: vectors
xue@1 2143 mul: a constant
xue@1 2144 Out: out[count]: in[]+adder[]*mul
xue@1 2145
xue@1 2146 No return value.
xue@1 2147 */
xue@1 2148 void MultiAdd(double* out, double* in, double* adder, int count, double mul)
xue@1 2149 {
xue@1 2150 for (int i=0; i<count; i++) *(out++)=*(in++)+*(adder++)*mul;
xue@1 2151 }//MultiAdd
xue@1 2152
xue@1 2153 //---------------------------------------------------------------------------
Chris@5 2154 /**
xue@1 2155 function NearestPeak: finds a peak value in an array that is nearest to a given index
xue@1 2156
xue@1 2157 In: data[count]: an array
xue@1 2158 anindex: an index
xue@1 2159
xue@1 2160 Returns the index to a peak of data[] that is closest to anindex. In case of two cloest indices,
xue@1 2161 returns the index to the higher peak of the two.
xue@1 2162 */
xue@1 2163 int NearestPeak(double* data, int count, int anindex)
xue@1 2164 {
xue@1 2165 int upind=anindex, downind=anindex;
xue@1 2166 if (anindex<1) anindex=1;
xue@1 2167 if (anindex>count-2) anindex=count-2;
xue@1 2168
xue@1 2169 if (data[anindex]>data[anindex-1] && data[anindex]>data[anindex+1]) return anindex;
xue@1 2170
xue@1 2171 if (data[anindex]<data[anindex-1])
xue@1 2172 while (downind>0 && data[downind-1]>data[downind]) downind--;
xue@1 2173 if (data[anindex]<data[anindex+1])
xue@1 2174 while (upind<count-1 && data[upind]<data[upind+1]) upind++;
xue@1 2175
xue@1 2176 if (upind==anindex) return downind;
xue@1 2177 if (downind==anindex) return upind;
xue@1 2178
xue@1 2179 if (anindex-downind<upind-anindex) return downind;
xue@1 2180 else if (anindex-downind>upind-anindex) return upind;
xue@1 2181 else if (data[upind]<data[downind]) return downind;
xue@1 2182 else return upind;
xue@1 2183 }//NearestPeak
xue@1 2184
xue@1 2185 //---------------------------------------------------------------------------
Chris@5 2186 /**
xue@1 2187 function NegativeExp: fits the curve y=1-x^lmd.
xue@1 2188
xue@1 2189 In: x[Count], y[Count]: sample points to fit, x[0]=0, x[Count-1]=1, y[0]=1, y[Count-1]=0
xue@1 2190 Out: lmd: coefficient of y=1-x^lmd.
xue@1 2191
xue@1 2192 Returns rms fitting error.
xue@1 2193 */
xue@1 2194 double NegativeExp(double* x, double* y, int Count, double& lmd, int sample, double step, double eps, int maxiter)
xue@1 2195 {
xue@1 2196 lmd=0;
xue@1 2197 for (int i=1; i<Count-1; i++)
xue@1 2198 {
xue@1 2199 if (y[i]<1)
xue@1 2200 lmd+=log(1-y[i])/log(x[i]);
xue@1 2201 else
xue@1 2202 lmd+=-50/log(x[i]);
xue@1 2203 }
xue@1 2204 lmd/=(Count-2);
xue@1 2205
xue@1 2206 //lmd has been initialized
xue@1 2207 //coming up will be the recursive calculation of lmd by lgg
xue@1 2208
xue@1 2209 int iter=0;
xue@1 2210 double laste, lastdel, e=0, del=0, tmp;
xue@1 2211 do
xue@1 2212 {
xue@1 2213 iter++;
xue@1 2214 laste=e;
xue@1 2215 lastdel=del;
xue@1 2216 e=0, del=0;
xue@1 2217 for (int i=1; i<Count-1; i+=sample)
xue@1 2218 {
xue@1 2219 tmp=pow(x[i], lmd);
xue@1 2220 e=e+(y[i]+tmp-1)*(y[i]+tmp-1);
xue@1 2221 del=del+(y[i]+tmp-1)*tmp*log(x[i]);
xue@1 2222 }
xue@1 2223 if (laste && e>laste) lmd+=step*lastdel, step/=2;
xue@1 2224 else lmd+=-step*sample*del;
xue@1 2225 }
xue@1 2226 while (e && iter<=maxiter && (!laste || fabs(laste-e)/e>eps));
xue@1 2227 return sqrt(e/Count);
xue@1 2228 }//NegativeExp
xue@1 2229
xue@1 2230 //---------------------------------------------------------------------------
Chris@5 2231 /**
xue@1 2232 function: NL: noise level, calculated on 5% of total frames with least energy
xue@1 2233
xue@1 2234 In: data[Count]:
xue@1 2235 Wid: window width for power level estimation
xue@1 2236
xue@1 2237 Returns noise level, in rms.
xue@1 2238 */
xue@1 2239 double NL(double* data, int Count, int Wid)
xue@1 2240 {
xue@1 2241 int Fr=Count/Wid;
xue@1 2242 int Num=Fr/20+1;
xue@1 2243 double* ene=new double[Num], tmp;
xue@1 2244 for (int i=0; i<Num; i++) ene[i]=1e30;
xue@1 2245 for (int i=0; i<Fr; i++)
xue@1 2246 {
xue@1 2247 tmp=DCPower(&data[i*Wid], Wid, 0);
xue@1 2248 InsertInc(tmp, ene, Num);
xue@1 2249 }
xue@1 2250 double result=Avg(ene, Num, 0);
xue@1 2251 delete[] ene;
xue@1 2252 result=sqrt(result);
xue@1 2253 return result;
xue@1 2254 }//NL
xue@1 2255
xue@1 2256 //---------------------------------------------------------------------------
Chris@5 2257 /**
xue@1 2258 function Normalize: normalizes data to [-Maxi, Maxi], without zero shift
xue@1 2259
xue@1 2260 In: data[Count]: data to be normalized
xue@1 2261 Maxi: destination maximal absolute value
xue@1 2262 Out: data[Count]: normalized data
xue@1 2263
xue@1 2264 Returns the original maximal absolute value.
xue@1 2265 */
xue@1 2266 double Normalize(double* data, int Count, double Maxi)
xue@1 2267 {
xue@1 2268 double max=0;
xue@1 2269 double* ldata=data;
xue@1 2270 for (int i=0; i<Count; i++)
xue@1 2271 {
xue@1 2272 if (*ldata>max) max=*ldata;
xue@1 2273 else if (-*ldata>max) max=-*ldata;
xue@1 2274 ldata++;
xue@1 2275 }
xue@1 2276 if (max>0)
xue@1 2277 {
xue@1 2278 Maxi=Maxi/max;
xue@1 2279 for (int i=0; i<Count; i++) *(data++)*=Maxi;
xue@1 2280 }
xue@1 2281 return max;
xue@1 2282 }//Normalize
xue@1 2283
Chris@5 2284 /**
xue@1 2285 function Normalize2: normalizes data to a specified Euclidian norm
xue@1 2286
xue@1 2287 In: data[Count]: data to normalize
xue@1 2288 Norm: destination Euclidian norm
xue@1 2289 Out: data[Count]: normalized data.
xue@1 2290
xue@1 2291 Returns the original Euclidian norm.
xue@1 2292 */
xue@1 2293 double Normalize2(double* data, int Count, double Norm)
xue@1 2294 {
xue@1 2295 double norm=0;
xue@1 2296 for (int i=0; i<Count; i++) norm+=data[i]*data[i];
xue@1 2297 norm=sqrt(norm);
xue@1 2298 double mul=norm/Norm;
xue@1 2299 if (mul!=0) for (int i=0; i<Count; i++) data[i]/=mul;
xue@1 2300 return norm;
xue@1 2301 }//Normalize2
xue@1 2302
xue@1 2303 //---------------------------------------------------------------------------
Chris@5 2304 /**
xue@1 2305 function PhaseSpan: computes the unwrapped phase variation across the Nyquist range
xue@1 2306
xue@1 2307 In: data[Count]: time-domain data
xue@1 2308 aparams: a fftparams structure
xue@1 2309
xue@1 2310 Returns the difference between unwrapped phase angles at 0 and Nyquist frequency.
xue@1 2311 */
xue@1 2312 double PhaseSpan(double* data, int Count, void* aparams)
xue@1 2313 {
xue@1 2314 int Pad=1;
xue@1 2315 fftparams* params=(fftparams*)aparams;
xue@1 2316 double* Arg=new double[Count*Pad];
xue@1 2317 AllocateFFTBuffer(Count*Pad, Amp, w, x);
xue@1 2318 memset(Amp, 0, sizeof(double)*Count*Pad);
xue@1 2319 memcpy(&Amp[Count*(Pad-1)/2], data, sizeof(double)*Count);
xue@1 2320 ApplyWindow(Amp, Amp, params->Amp, Count);
xue@11 2321 RFFTC(Amp, Amp, Arg, Log2(Count*Pad), w, x, 0);
xue@1 2322
xue@1 2323 SmoothPhase(Arg, Count*Pad/2+1);
xue@1 2324 double result=Arg[Count*Pad/2]-Arg[0];
xue@1 2325 delete[] Arg;
xue@1 2326 FreeFFTBuffer(Amp);
xue@1 2327 return result;
xue@1 2328 }//PhaseSpan
xue@1 2329
xue@1 2330 //---------------------------------------------------------------------------
Chris@5 2331 /**
xue@1 2332 function PolyFit: least square polynomial fitting y=sum(i){a[i]*x^i}
xue@1 2333
xue@1 2334 In: x[N], y[N]: sample points
xue@1 2335 P: order of polynomial, P<N
xue@1 2336 Out: a[P+1]: coefficients of polynomial
xue@1 2337
xue@1 2338 No return value.
xue@1 2339 */
xue@1 2340 void PolyFit(int P, double* a, int N, double* x, double* y)
xue@1 2341 {
xue@1 2342 Alloc2(P+1, P+1, aa);
xue@1 2343 double ai0, bi, *bb=new double[P+1], *s=new double[N], *r=new double[N];
xue@1 2344 aa[0][0]=N; bi=0; for (int i=0; i<N; i++) s[i]=1, r[i]=y[i], bi+=y[i]; bb[0]=bi;
xue@1 2345
xue@1 2346 for (int i=1; i<=P; i++)
xue@1 2347 {
xue@1 2348 ai0=bi=0; for (int j=0; j<N; j++) {s[j]*=x[j], r[j]*=x[j]; ai0+=s[j], bi+=r[j];}
xue@1 2349 for (int j=0; j<=i; j++) aa[i-j][j]=ai0; bb[i]=bi;
xue@1 2350 }
xue@1 2351 for (int i=P+1; i<=2*P; i++)
xue@1 2352 {
xue@1 2353 ai0=0; for (int j=0; j<N; j++) {s[j]*=x[j]; ai0+=s[j];}
xue@1 2354 for (int j=i-P; j<=P; j++) aa[i-j][j]=ai0;
xue@1 2355 }
xue@1 2356 GESCP(P+1, a, aa, bb);
xue@1 2357 DeAlloc2(aa); delete[] bb; delete[] s; delete[] r;
xue@1 2358 }//PolyFit
xue@1 2359
xue@1 2360 //---------------------------------------------------------------------------
Chris@5 2361 /**
xue@1 2362 function Pow: vector power function
xue@1 2363
xue@1 2364 In: data[Count]: a vector
xue@1 2365 ex: expontnet
xue@1 2366 Out: data[Count]: point-wise $ex-th power of data[]
xue@1 2367
xue@1 2368 No return value.
xue@1 2369 */
xue@1 2370 void Pow(double* data, int Count, double ex)
xue@1 2371 {
xue@1 2372 for (int i=0; i<Count; i++)
xue@1 2373 data[i]=pow(data[i], ex);
xue@1 2374 }//Power
xue@1 2375
xue@1 2376 //---------------------------------------------------------------------------
Chris@5 2377 /**
xue@1 2378 Rectify: semi-wave rectification
xue@1 2379
xue@1 2380 In: data[Count]: data to rectify
xue@1 2381 th: rectification threshold: values below th are rectified to th
xue@1 2382 Out: data[Count]: recitified data
xue@1 2383
xue@1 2384 Returns number of preserved (i.e. not rectified) samples.
xue@1 2385 */
xue@1 2386 int Rectify(double* data, int Count, double th)
xue@1 2387 {
xue@1 2388 int Result=0;
xue@1 2389 for (int i=0; i<Count; i++)
xue@1 2390 {
xue@1 2391 if (data[i]<=th) data[i]=th;
xue@1 2392 else Result++;
xue@1 2393 }
xue@1 2394 return Result;
xue@1 2395 }//Rectify
xue@1 2396
xue@1 2397 //---------------------------------------------------------------------------
Chris@5 2398 /**
xue@1 2399 function Res: minimum absolute residue.
xue@1 2400
xue@1 2401 In: in: a number
xue@1 2402 mod: modulus
xue@1 2403
xue@1 2404 Returns the minimal absolute residue of $in devided by $mod.
xue@1 2405 */
xue@1 2406 double Res(double in, double mod)
xue@1 2407 {
xue@1 2408 int i=in/mod;
xue@1 2409 in=in-i*mod;
xue@1 2410 if (in>mod/2) in-=mod;
xue@1 2411 if (in<-mod/2) in+=mod;
xue@1 2412 return in;
xue@1 2413 }//Res
xue@1 2414
xue@1 2415 //---------------------------------------------------------------------------
Chris@5 2416 /**
xue@1 2417 function Romberg: Romberg algorithm for numerical integration
xue@1 2418
xue@1 2419 In: f: function to integrate
xue@1 2420 params: extra argument for calling f
xue@1 2421 a, b: integration boundaries
xue@1 2422 n: depth of sampling
xue@1 2423
xue@1 2424 Returns the integral of f(*, params) over [a, b].
xue@1 2425 */
xue@1 2426 double Romberg(int n, double(*f)(double, void*), double a, double b, void* params)
xue@1 2427 {
xue@1 2428 int np=1;
Chris@3 2429 double* r1=new double[n+1];
xue@1 2430 double* r2=new double[n+1];
xue@1 2431 double h=b-a, *swp;
xue@1 2432 r1[1]=h*(f(a, params)+f(b, params))/2;
xue@1 2433 for (int i=2; i<=n; i++)
xue@1 2434 {
xue@1 2435 double akh=a+0.5*h; r2[1]=f(akh, params);
xue@1 2436 for (int k=2; k<=np; k++) {akh+=h; r2[1]+=f(akh, params);} //akh=a+(k-0.5)h
xue@1 2437 r2[1]=0.5*(r1[1]+h*r2[1]);
xue@1 2438 double fj=4;
xue@1 2439 for (int j=2; j<=i; j++) {r2[j]=(fj*r2[j-1]-r1[j-1])/(fj-1); fj*=4;} //fj=4^(j-1)
xue@1 2440 h/=2; np*=2;
xue@1 2441 swp=r1; r1=r2; r2=swp;
xue@1 2442 }
xue@1 2443 h=r1[n];
xue@1 2444 delete[] r1;
xue@1 2445 delete[] r2;
xue@1 2446 return h;
xue@1 2447 }//Romberg
xue@1 2448
Chris@5 2449 /**
xue@1 2450 function Romberg: Romberg algorithm for numerical integration, may return before specified depth on
xue@1 2451 convergence.
xue@1 2452
xue@1 2453 In: f: function to integrate
xue@1 2454 params: extra argument for calling f
xue@1 2455 a, b: integration boundaries
xue@1 2456 n: depth of sampling
xue@1 2457 ep: convergence test threshold
xue@1 2458
xue@1 2459 Returns the integral of f(*, params) over [a, b].
xue@1 2460 */
xue@1 2461 double Romberg(double(*f)(double, void*), double a, double b, void* params, int n, double ep)
xue@1 2462 {
xue@1 2463 int i, np=1;
xue@1 2464 double* r1=new double[n+1];
xue@1 2465 double* r2=new double[n+1];
xue@1 2466 double h=b-a, *swp;
xue@1 2467 r1[1]=h*(f(a, params)+f(b, params))/2;
xue@1 2468 bool mep=false;
xue@1 2469 for (i=2; i<=n; i++)
xue@1 2470 {
xue@1 2471 double akh=a+0.5*h; r2[1]=f(akh, params);
xue@1 2472 for (int k=2; k<=np; k++) {akh+=h; r2[1]+=f(akh, params);} //akh=a+(k-0.5)h
xue@1 2473 r2[1]=0.5*(r1[1]+h*r2[1]);
xue@1 2474 double fj=4;
xue@1 2475 for (int j=2; j<=i; j++) {r2[j]=(fj*r2[j-1]-r1[j-1])/(fj-1); fj*=4;} //fj=4^(j-1)
xue@1 2476
xue@1 2477 if (fabs(r2[i]-r1[i-1])<ep)
xue@1 2478 {
xue@1 2479 if (mep) break;
xue@1 2480 else mep=true;
xue@1 2481 }
xue@1 2482 else mep=false;
xue@1 2483
xue@1 2484 h/=2; np*=2;
xue@1 2485 swp=r1; r1=r2; r2=swp;
xue@1 2486 }
xue@1 2487 if (i<=n) h=r2[i];
xue@1 2488 else h=r1[n];
xue@1 2489 delete[] r1;
xue@1 2490 delete[] r2;
xue@1 2491 return h;
xue@1 2492 }//Romberg
xue@1 2493
xue@1 2494 //---------------------------------------------------------------------------
xue@1 2495 //analog and digital sinc functions
xue@1 2496
xue@1 2497 //sinca(0)=1, sincd(0)=N, sinca(1)=sincd(1)=0.
Chris@5 2498 /**
xue@1 2499 function sinca: analog sinc function.
xue@1 2500
xue@1 2501 In: x: frequency
xue@1 2502
xue@1 2503 Returns sinc(x)=sin(pi*x)/(pi*x), sinca(0)=1, sinca(1)=0
xue@1 2504 */
xue@1 2505 double sinca(double x)
xue@1 2506 {
xue@1 2507 if (x==0) return 1;
xue@1 2508 return sin(M_PI*x)/(M_PI*x);
xue@1 2509 }//sinca
xue@1 2510
Chris@5 2511 /**
xue@1 2512 function sincd_unn: unnormalized discrete sinc function
xue@1 2513
xue@1 2514 In: x: frequency
xue@1 2515 N: scale (window size, DFT size)
xue@1 2516
xue@1 2517 Returns sinc(x)=sin(pi*x)/sin(pi*x/N), sincd(0)=N, sincd(1)=0.
xue@1 2518 */
xue@1 2519 double sincd_unn(double x, int N)
xue@1 2520 {
xue@1 2521 if (x==0) return N;
xue@1 2522 return sin(M_PI*x)/sin(M_PI*x/N);
xue@1 2523 }//sincd
xue@1 2524
xue@1 2525 //---------------------------------------------------------------------------
Chris@5 2526 /**
xue@1 2527 SmoothPhase: phase unwrapping on module mpi*PI, 2PI by default
xue@1 2528
xue@1 2529 In: Arg[Count]: phase angles to unwrap
xue@1 2530 mpi: unwrapping modulus, in pi's
xue@1 2531 Out: Arg[Count]: unwrapped phase
xue@1 2532
xue@1 2533 Returns the amount of unwrap, in pi's, of the last phase angle
xue@1 2534 */
xue@1 2535 double SmoothPhase(double* Arg, int Count, int mpi)
xue@1 2536 {
xue@1 2537 double m2pi=mpi*M_PI;
xue@1 2538 for (int i=1; i<Count-1; i++)
xue@1 2539 Arg[i]=Arg[i-1]+Res(Arg[i]-Arg[i-1], m2pi);
xue@1 2540 double tmp=Res(Arg[Count-1]-Arg[Count-2], m2pi);
xue@1 2541 double result=(Arg[Count-1]-Arg[Count-2]-tmp)/m2pi;
xue@1 2542 Arg[Count-1]=Arg[Count-2]+tmp;
xue@1 2543
xue@1 2544 return result;
xue@1 2545 }//SmoothPhase
xue@1 2546
xue@1 2547 //---------------------------------------------------------------------------
xue@1 2548 //the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2549
Chris@5 2550 /**
xue@1 2551 StiffB: computes stiffness coefficient from fundamental and another partial frequency based on the
xue@1 2552 stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2553
xue@1 2554 In: f0: fundamental frequency
xue@1 2555 m: 1-based partial index
xue@1 2556 fm: frequency of partial m
xue@1 2557
xue@1 2558 Returns stiffness coefficient B.
xue@1 2559 */
xue@1 2560 double StiffB(double f0, double fm, int m)
xue@1 2561 {
xue@1 2562 double f2=fm/m/f0;
xue@1 2563 return (f2*f2-1)/(m*m-1);
xue@1 2564 }//StiffB
xue@1 2565
xue@1 2566 //StiffF: partial frequency of a stiff string
Chris@5 2567 /**
xue@1 2568 StiffFm: computes a partial frequency from fundamental frequency and partial index based on the stiff
xue@1 2569 string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2570
xue@1 2571 In: f0: fundamental frequency
xue@1 2572 m: 1-based partial index
xue@1 2573 B: stiffness coefficient
xue@1 2574
xue@1 2575 Returns frequency of the m-th partial.
xue@1 2576 */
xue@1 2577 double StiffFm(double f0, int m, double B)
xue@1 2578 {
xue@1 2579 return m*f0*sqrt(1+B*(m*m-1));
xue@1 2580 }//StiffFm
xue@1 2581
Chris@5 2582 /**
xue@1 2583 StiffF0: computes fundamental frequency from another partial frequency and stiffness coefficient based
xue@1 2584 on the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2585
xue@1 2586 In: m: 1-based partial index
xue@1 2587 fm: frequency of partial m
xue@1 2588 B: stiffness coefficient
xue@1 2589
xue@1 2590 Returns the fundamental frequency.
xue@1 2591 */
xue@1 2592 double StiffF0(double fm, int m, double B)
xue@1 2593 {
xue@1 2594 return fm/m/sqrt(1+B*(m*m-1));
xue@1 2595 }//StiffF0
xue@1 2596
Chris@5 2597 /**
xue@1 2598 StiffM: computes 1-based partial index from partial frequency, fundamental frequency and stiffness
xue@1 2599 coefficient based on the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2600
xue@1 2601 In: f0: fundamental freqency
xue@1 2602 fm: a partial frequency
xue@1 2603 B: stiffness coefficient
xue@1 2604
xue@1 2605 Returns the 1-based partial index which will generate the specified partial frequency from the model
xue@1 2606 which, however, does not have to be an integer in this function.
xue@1 2607 */
xue@1 2608 double StiffM(double f0, double fm, double B)
xue@1 2609 {
xue@1 2610 if (B<1e-14) return fm/f0;
xue@1 2611 double b1=B-1, ff=fm/f0;
xue@1 2612 double delta=b1*b1+4*B*ff*ff;
xue@1 2613 if (delta<0)
xue@1 2614 return sqrt(b1/2/B);
xue@1 2615 else
xue@1 2616 return sqrt((b1+sqrt(delta))/2/B);
xue@1 2617 }//StiffMd
xue@1 2618
xue@1 2619 //---------------------------------------------------------------------------
Chris@5 2620 /**
xue@1 2621 TFFilter: time-frequency filtering with Hann-windowed overlap-add.
xue@1 2622
xue@1 2623 In: data[Count]: input data
xue@1 2624 Spans: time-frequency spans
xue@1 2625 wt, windp: type and extra parameter of FFT window
xue@1 2626 Sps: sampling rate
xue@1 2627 TOffst: optional offset applied to all time values in Spans, set to Spans timing of of data[0].
xue@1 2628 Pass: set to pass T-F content covered by Spans, clear to stop T-F content covered by Spans
xue@1 2629 Out: dataout[Count]: filtered data
xue@1 2630
xue@1 2631 No return value. Identical data and dataout allowed.
xue@1 2632 */
xue@1 2633 void TFFilter(double* data, double* dataout, int Count, int Wid, TTFSpans* Spans, bool Pass, WindowType wt, double windp, int Sps, int TOffst)
xue@1 2634 {
xue@1 2635 int HWid=Wid/2;
xue@1 2636 int Fr=Count/HWid-1;
xue@11 2637 int Order=Log2(Wid);
xue@1 2638
xue@1 2639 int** lspan=new int*[Fr];
xue@1 2640 double* lxspan=new double[Fr];
xue@1 2641
xue@1 2642 lspan[0]=new int[Fr*Wid];
xue@1 2643 for (int i=1; i<Fr; i++)
xue@1 2644 lspan[i]=&lspan[0][i*Wid];
xue@1 2645
xue@1 2646 //fill local filter span table
xue@1 2647 if (Pass)
xue@1 2648 memset(lspan[0], 0, sizeof(int)*Fr*Wid);
xue@1 2649 else
xue@1 2650 for (int i=0; i<Fr; i++)
xue@1 2651 for (int j=0; j<Wid; j++)
xue@1 2652 lspan[i][j]=1;
xue@1 2653
xue@1 2654 for (int i=0; i<Spans->Count; i++)
xue@1 2655 {
xue@1 2656 int lx1, lx2, ly1, ly2;
xue@1 2657 lx1=(Spans->Items[i].T1-TOffst)/HWid-1;
xue@1 2658 lx2=(Spans->Items[i].T2-1-TOffst)/HWid;
xue@1 2659 ly1=Spans->Items[i].F1*2/Sps*HWid+0.001;
xue@1 2660 ly2=Spans->Items[i].F2*2/Sps*HWid+1;
xue@1 2661 if (lx1<0) lx1=0;
xue@1 2662 if (lx2>=Fr) lx2=Fr-1;
xue@1 2663 if (ly1<0) ly1=0;
xue@1 2664 if (ly1>HWid) ly1=HWid;
xue@1 2665 if (Pass)
xue@1 2666 for (int x=lx1; x<=lx2; x++)
xue@1 2667 for (int y=ly1; y<=ly2; y++)
xue@1 2668 lspan[x][y]=1;
xue@1 2669 else
xue@1 2670 for (int x=lx1; x<=lx2; x++)
xue@1 2671 for (int y=ly1; y<=ly2; y++)
xue@1 2672 lspan[x][y]=0;
xue@1 2673 }
xue@1 2674 for (int i=0; i<Fr; i++)
xue@1 2675 {
xue@1 2676 lxspan[i]=0;
xue@1 2677 for (int j=0; j<=HWid; j++)
xue@1 2678 {
xue@1 2679 if (lspan[i][j])
xue@1 2680 lxspan[i]=lxspan[i]+1;
xue@1 2681 }
xue@1 2682 lxspan[i]/=(HWid+1);
xue@1 2683 }
xue@1 2684 double* winf=NewWindow(wt, Wid, 0, &windp);
xue@1 2685 double* wini=NewWindow(wtHann, Wid, NULL, NULL);
xue@1 2686 for (int i=0; i<Wid; i++)
xue@1 2687 if (winf[i]!=0) wini[i]=wini[i]/winf[i];
xue@1 2688 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 2689 double* tmpdata=new double[HWid];
xue@1 2690 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 2691
xue@1 2692 for (int i=0; i<Fr; i++)
xue@1 2693 {
xue@1 2694 if (lxspan[i]==0)
xue@1 2695 {
xue@1 2696 memcpy(&dataout[i*HWid], tmpdata, sizeof(double)*HWid);
xue@1 2697 memset(tmpdata, 0, sizeof(double)*HWid);
xue@1 2698 continue;
xue@1 2699 }
xue@1 2700 if (lxspan[i]==1)
xue@1 2701 {
xue@1 2702 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 2703 if (i>0)
xue@1 2704 for (int k=0; k<HWid; k++)
xue@1 2705 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2706 for (int k=HWid; k<Wid; k++)
xue@1 2707 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2708
xue@1 2709 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 2710 for (int k=0; k<HWid; k++)
xue@1 2711 dataout[i*HWid+k]+=ldata[k];
xue@1 2712 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2713 continue;
xue@1 2714 }
xue@1 2715 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 2716 if (i>0)
xue@1 2717 for (int k=0; k<HWid; k++)
xue@1 2718 ldata[k]=ldata[k]*winf[k];
xue@1 2719 for (int k=HWid; k<Wid; k++)
xue@1 2720 ldata[k]=ldata[k]*winf[k];
xue@1 2721
xue@1 2722 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 2723
xue@1 2724 if (!lspan[i][0]) x[0].x=x[0].y=0;
xue@1 2725 for (int j=1; j<=HWid; j++)
xue@1 2726 if (!lspan[i][j]) x[j].x=x[Wid-j].x=x[j].y=x[Wid-j].y=0;
xue@1 2727
xue@1 2728 CIFFTR(x, Order, w, ldata);
xue@1 2729
xue@1 2730 if (i>0)
xue@1 2731 for (int k=0; k<HWid; k++)
xue@1 2732 ldata[k]=ldata[k]*wini[k];
xue@1 2733 for (int k=HWid; k<Wid; k++)
xue@1 2734 ldata[k]=ldata[k]*wini[k];
xue@1 2735
xue@1 2736 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 2737 for (int k=0; k<HWid; k++)
xue@1 2738 dataout[i*HWid+k]+=ldata[k];
xue@1 2739 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2740 }
xue@1 2741 memcpy(&dataout[Fr*HWid], tmpdata, sizeof(double)*HWid);
xue@1 2742 memset(&dataout[Fr*HWid+HWid], 0, sizeof(double)*(Count-Fr*HWid-HWid));
xue@1 2743
xue@1 2744 FreeFFTBuffer(ldata);
xue@1 2745 delete[] lspan[0];
xue@1 2746 delete[] lspan;
xue@1 2747 delete[] lxspan;
xue@1 2748 delete[] tmpdata;
xue@1 2749 delete[] winf;
xue@1 2750 delete[] wini;
xue@1 2751 }//TFFilter
xue@1 2752 //version on integer data, where BytesPerSample specified the integer format.
xue@1 2753 void TFFilter(void* data, void* dataout, int BytesPerSample, int Count, int Wid, TTFSpans* Spans, bool Pass, WindowType wt, double windp, int Sps, int TOffst)
xue@1 2754 {
xue@1 2755 int HWid=Wid/2;
xue@1 2756 int Fr=Count/HWid-1;
xue@11 2757 int Order=Log2(Wid);
xue@1 2758
xue@1 2759 int** lspan=new int*[Fr];
xue@1 2760 double* lxspan=new double[Fr];
xue@1 2761
xue@1 2762 lspan[0]=new int[Fr*Wid];
xue@1 2763 for (int i=1; i<Fr; i++)
xue@1 2764 lspan[i]=&lspan[0][i*Wid];
xue@1 2765
xue@1 2766 //fill local filter span table
xue@1 2767 if (Pass)
xue@1 2768 memset(lspan[0], 0, sizeof(int)*Fr*Wid);
xue@1 2769 else
xue@1 2770 for (int i=0; i<Fr; i++)
xue@1 2771 for (int j=0; j<Wid; j++)
xue@1 2772 lspan[i][j]=1;
xue@1 2773
xue@1 2774 for (int i=0; i<Spans->Count; i++)
xue@1 2775 {
xue@1 2776 int lx1, lx2, ly1, ly2;
xue@1 2777 lx1=(Spans->Items[i].T1-TOffst)/HWid-1;
xue@1 2778 lx2=(Spans->Items[i].T2-1-TOffst)/HWid;
xue@1 2779 ly1=Spans->Items[i].F1*2/Sps*HWid+0.001;
xue@1 2780 ly2=Spans->Items[i].F2*2/Sps*HWid+1;
xue@1 2781 if (lx1<0) lx1=0;
xue@1 2782 if (lx2>=Fr) lx2=Fr-1;
xue@1 2783 if (ly1<0) ly1=0;
xue@1 2784 if (ly1>HWid) ly1=HWid;
xue@1 2785 if (Pass)
xue@1 2786 for (int x=lx1; x<=lx2; x++)
xue@1 2787 for (int y=ly1; y<=ly2; y++)
xue@1 2788 lspan[x][y]=1;
xue@1 2789 else
xue@1 2790 for (int x=lx1; x<=lx2; x++)
xue@1 2791 for (int y=ly1; y<=ly2; y++)
xue@1 2792 lspan[x][y]=0;
xue@1 2793 }
xue@1 2794 for (int i=0; i<Fr; i++)
xue@1 2795 {
xue@1 2796 lxspan[i]=0;
xue@1 2797 for (int j=0; j<=HWid; j++)
xue@1 2798 {
xue@1 2799 if (lspan[i][j])
xue@1 2800 lxspan[i]=lxspan[i]+1;
xue@1 2801 }
xue@1 2802 lxspan[i]/=(HWid+1);
xue@1 2803 }
xue@1 2804 double* winf=NewWindow(wt, Wid, 0, &windp);
xue@1 2805 double* wini=NewWindow(wtHann, Wid, NULL, NULL);
xue@1 2806 for (int i=0; i<Wid; i++)
xue@1 2807 if (winf[i]!=0) wini[i]=wini[i]/winf[i];
xue@1 2808 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 2809 double* tmpdata=new double[HWid];
xue@1 2810 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 2811
xue@1 2812 for (int i=0; i<Fr; i++)
xue@1 2813 {
xue@1 2814 if (lxspan[i]==0)
xue@1 2815 {
xue@1 2816 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2817 memset(tmpdata, 0, sizeof(double)*HWid);
xue@1 2818 continue;
xue@1 2819 }
xue@1 2820 if (lxspan[i]==1)
xue@1 2821 {
xue@1 2822 IntToDouble(ldata, &((char*)data)[i*HWid*BytesPerSample], BytesPerSample, Wid);
xue@1 2823 if (i>0)
xue@1 2824 for (int k=0; k<HWid; k++)
xue@1 2825 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2826 for (int k=HWid; k<Wid; k++)
xue@1 2827 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2828
xue@1 2829 for (int k=0; k<HWid; k++) tmpdata[k]+=ldata[k];
xue@1 2830 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2831 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2832 continue;
xue@1 2833 }
xue@1 2834 IntToDouble(ldata, &((char*)data)[i*HWid*BytesPerSample], BytesPerSample, Wid);
xue@1 2835 if (i>0)
xue@1 2836 for (int k=0; k<HWid; k++)
xue@1 2837 ldata[k]=ldata[k]*winf[k];
xue@1 2838 for (int k=HWid; k<Wid; k++)
xue@1 2839 ldata[k]=ldata[k]*winf[k];
xue@1 2840
xue@1 2841 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 2842
xue@1 2843 if (!lspan[i][0]) x[0].x=x[0].y=0;
xue@1 2844 for (int j=1; j<=HWid; j++)
xue@1 2845 if (!lspan[i][j]) x[j].x=x[Wid-j].x=x[j].y=x[Wid-j].y=0;
xue@1 2846
xue@1 2847 CIFFTR(x, Order, w, ldata);
xue@1 2848
xue@1 2849 if (i>0)
xue@1 2850 for (int k=0; k<HWid; k++)
xue@1 2851 ldata[k]=ldata[k]*wini[k];
xue@1 2852 for (int k=HWid; k<Wid; k++)
xue@1 2853 ldata[k]=ldata[k]*wini[k];
xue@1 2854
xue@1 2855
xue@1 2856 for (int k=0; k<HWid; k++)
xue@1 2857 tmpdata[k]+=ldata[k];
xue@1 2858 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2859 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2860 }
xue@1 2861 DoubleToInt(&((char*)dataout)[Fr*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2862 memset(&((char*)dataout)[(Fr*HWid+HWid)*BytesPerSample], 0, BytesPerSample*(Count-Fr*HWid-HWid));
xue@1 2863
xue@1 2864 FreeFFTBuffer(ldata);
xue@1 2865
xue@1 2866 delete[] lspan[0];
xue@1 2867 delete[] lspan;
xue@1 2868 delete[] lxspan;
xue@1 2869 delete[] tmpdata;
xue@1 2870 delete[] winf;
xue@1 2871 delete[] wini;
xue@1 2872 }//TFFilter
xue@1 2873
xue@1 2874
xue@1 2875