annotate procedures.cpp @ 2:fc19d45615d1

* Make all file names lower-case to avoid case ambiguity (some includes differed in case from the filenames they were trying to include). Also replace MinGW-specific mem.h with string.h
author Chris Cannam
date Tue, 05 Oct 2010 11:04:40 +0100
parents 6422640a802f
children 42c078b19e9a
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include <math.h>
Chris@2 4 #include <string.h>
xue@1 5 #include "procedures.h"
xue@1 6 #include "matrix.h"
xue@1 7 #include "opt.h"
Chris@2 8 #include "sinest.h"
xue@1 9
xue@1 10 //---------------------------------------------------------------------------
xue@1 11 //TGMM methods
xue@1 12
xue@1 13 //method TGMM::TGMM: default constructor
xue@1 14 TGMM::TGMM()
xue@1 15 {
xue@1 16 p=0, m=dev=0;
xue@1 17 }//TGMM
xue@1 18
xue@1 19 //method GMM:~TGMM: default destructor
xue@1 20 TGMM::~TGMM()
xue@1 21 {
xue@1 22 ReleaseGMM(p, m, dev)
xue@1 23 };
xue@1 24
xue@1 25 //---------------------------------------------------------------------------
xue@1 26 //TFSpans methods
xue@1 27
xue@1 28 //method TTFSpans: default constructor
xue@1 29 TTFSpans::TTFSpans()
xue@1 30 {
xue@1 31 Count=0;
xue@1 32 Capacity=100;
xue@1 33 Items=new TTFSpan[Capacity];
xue@1 34 }//TTFSpans
xue@1 35
xue@1 36 //method ~TTFSpans: default destructor
xue@1 37 TTFSpans::~TTFSpans()
xue@1 38 {
xue@1 39 delete[] Items;
xue@1 40 }//~TTFSpans
xue@1 41
xue@1 42 /*
xue@1 43 method Add: add a new span to the list
xue@1 44
xue@1 45 In: ATFSpan: the new span to add
xue@1 46 */
xue@1 47 void TTFSpans::Add(TTFSpan& ATFSpan)
xue@1 48 {
xue@1 49 if (Count==Capacity)
xue@1 50 {
xue@1 51 int OldCapacity=Capacity;
xue@1 52 Capacity+=50;
xue@1 53 TTFSpan* NewItems=new TTFSpan[Capacity];
xue@1 54 memcpy(NewItems, Items, sizeof(TTFSpan)*OldCapacity);
xue@1 55 delete[] Items;
xue@1 56 Items=NewItems;
xue@1 57 }
xue@1 58 Items[Count]=ATFSpan;
xue@1 59 Count++;
xue@1 60 }//Add
xue@1 61
xue@1 62 /*
xue@1 63 method Clear: discard the current content without freeing memory.
xue@1 64 */
xue@1 65 void TTFSpans::Clear()
xue@1 66 {
xue@1 67 Count=0;
xue@1 68 }//Clear
xue@1 69
xue@1 70 /*
xue@1 71 method Delete: delete a span from current list
xue@1 72
xue@1 73 In: Index: index to the span to delete
xue@1 74 */
xue@1 75 int TTFSpans::Delete(int Index)
xue@1 76 {
xue@1 77 if (Index<0 || Index>=Count)
xue@1 78 return 0;
xue@1 79 memmove(&Items[Index], &Items[Index+1], sizeof(TTFSpan)*(Count-1-Index));
xue@1 80 Count--;
xue@1 81 return 1;
xue@1 82 }//Delete
xue@1 83
xue@1 84 //---------------------------------------------------------------------------
xue@1 85 //SpecTrack methods
xue@1 86
xue@1 87 /*
xue@1 88 method TSpecTrack::Add: adds a SpecPeak to the track.
xue@1 89
xue@1 90 In: APeak: the SpecPeak to add.
xue@1 91 */
xue@1 92 int TSpecTrack::Add(TSpecPeak& APeak)
xue@1 93 {
xue@1 94 if (Count>=Capacity)
xue@1 95 {
xue@1 96 Peaks=(TSpecPeak*)realloc(Peaks, sizeof(TSpecPeak)*(Capacity*2));
xue@1 97 Capacity*=2;
xue@1 98 }
xue@1 99 int ind=LocatePeak(APeak);
xue@1 100 if (ind<0)
xue@1 101 {
xue@1 102 InsertPeak(APeak, -ind-1);
xue@1 103 ind=-ind-1;
xue@1 104 }
xue@1 105
xue@1 106 int t=APeak.t;
xue@1 107 double f=APeak.f;
xue@1 108 if (Count==1) t1=t2=t, fmin=fmax=f;
xue@1 109 else
xue@1 110 {
xue@1 111 if (t<t1) t1=t;
xue@1 112 else if (t>t2) t2=t;
xue@1 113 if (f<fmin) fmin=f;
xue@1 114 else if (f>fmax) fmax=f;
xue@1 115 }
xue@1 116 return ind;
xue@1 117 }//Add
xue@1 118
xue@1 119 /*
xue@1 120 method TSpecTrack::TSpecTrack: creates a SpecTrack with an inital capacity.
xue@1 121
xue@1 122 In: ACapacity: initial capacity, i.e. the number SpecPeak's to allocate storage space for.
xue@1 123 */
xue@1 124 TSpecTrack::TSpecTrack(int ACapacity)
xue@1 125 {
xue@1 126 Count=0;
xue@1 127 Capacity=ACapacity;
xue@1 128 Peaks=new TSpecPeak[Capacity];
xue@1 129 }//TSpecTrack
xue@1 130
xue@1 131 //method TSpecTrack::~TSpecTrack: default destructor.
xue@1 132 TSpecTrack::~TSpecTrack()
xue@1 133 {
xue@1 134 delete[] Peaks;
xue@1 135 }//TSpecTrack
xue@1 136
xue@1 137 /*
xue@1 138 method InsertPeak: inserts a new SpecPeak into the track at a given index. Internal use only.
xue@1 139
xue@1 140 In: APeak: the SpecPeak to insert.
xue@1 141 index: the position in the list to place the new SpecPeak. Original SpecPeak's at and after this
xue@1 142 position are shifted by 1 posiiton.
xue@1 143 */
xue@1 144 void TSpecTrack::InsertPeak(TSpecPeak& APeak, int index)
xue@1 145 {
xue@1 146 memmove(&Peaks[index+1], &Peaks[index], sizeof(TSpecPeak)*(Count-index));
xue@1 147 Peaks[index]=APeak;
xue@1 148 Count++;
xue@1 149 }//InsertPeak
xue@1 150
xue@1 151 /*
xue@1 152 method TSpecTrack::LocatePeak: looks for a SpecPeak in the track that has the same time (t) as APeak.
xue@1 153
xue@1 154 In: APeak: a SpecPeak
xue@1 155
xue@1 156 Returns the index in this track of the first SpecPeak that has the same time stamp as APeak. However,
xue@1 157 if there is no peak with that time stamp, the method returns -1 if APeaks comes before the first
xue@1 158 SpecPeak, -2 if between 1st and 2nd SpecPeak's, -3 if between 2nd and 3rd SpecPeak's, etc.
xue@1 159 */
xue@1 160 int TSpecTrack::LocatePeak(TSpecPeak& APeak)
xue@1 161 {
xue@1 162 if (APeak.t<Peaks[0].t) return -1;
xue@1 163 if (APeak.t>Peaks[Count-1].t) return -Count-1;
xue@1 164
xue@1 165 if (APeak.t==Peaks[0].t) return 0;
xue@1 166 else if (APeak.t==Peaks[Count-1].t) return Count-1;
xue@1 167
xue@1 168 int a=0, b=Count-1, c=(a+b)/2;
xue@1 169 while (a<c)
xue@1 170 {
xue@1 171 if (APeak.t==Peaks[c].t) return c;
xue@1 172 else if (APeak.t<Peaks[c].t) {b=c; c=(a+b)/2;}
xue@1 173 else {a=c; c=(a+b)/2;}
xue@1 174 }
xue@1 175 return -a-2;
xue@1 176 }//LocatePeak
xue@1 177
xue@1 178 //---------------------------------------------------------------------------
xue@1 179 /*
xue@1 180 function: ACPower: AC power
xue@1 181
xue@1 182 In: data[Count]: a signal
xue@1 183
xue@1 184 Returns the power of its AC content.
xue@1 185 */
xue@1 186 double ACPower(double* data, int Count, void*)
xue@1 187 {
xue@1 188 if (Count<=0) return 0;
xue@1 189 double power=0, avg=0, tmp;
xue@1 190 for (int i=0; i<Count; i++)
xue@1 191 {
xue@1 192 tmp=*(data++);
xue@1 193 power+=tmp*tmp;
xue@1 194 avg+=tmp;
xue@1 195 }
xue@1 196 power=(power-avg*avg)/Count;
xue@1 197 return power;
xue@1 198 }//ACPower
xue@1 199
xue@1 200 //---------------------------------------------------------------------------
xue@1 201 /*
xue@1 202 function Add: vector addition
xue@1 203
xue@1 204 In: dest[Count], source[Count]: two vectors
xue@1 205 Out: dest[Count]: their sum
xue@1 206
xue@1 207 No return value.
xue@1 208 */
xue@1 209 void Add(double* dest, double* source, int Count)
xue@1 210 {
xue@1 211 for (int i=0; i<Count; i++) *(dest++)+=*(source++);
xue@1 212 }//Add
xue@1 213
xue@1 214 /*
xue@1 215 function Add: vector addition
xue@1 216
xue@1 217 In: addend[count], adder[count]: two vectors
xue@1 218 Out: out[count]: their sum
xue@1 219
xue@1 220 No return value.
xue@1 221 */
xue@1 222 void Add(double* out, double* addend, double* adder, int count)
xue@1 223 {
xue@1 224 for (int i=0; i<count; i++) *(out++)=*(addend++)+*(adder++);
xue@1 225 }//Add
xue@1 226
xue@1 227 //---------------------------------------------------------------------------
xue@1 228
xue@1 229 /*
xue@1 230 function ApplyWindow: applies window function to signal buffer.
xue@1 231
xue@1 232 In: Buffer[Size]: signal to be windowed
xue@1 233 Weight[Size]: the window
xue@1 234 Out: OutBuffer[Size]: windowed signal
xue@1 235
xue@1 236 No return value;
xue@1 237 */
xue@1 238 void ApplyWindow(double* OutBuffer, double* Buffer, double* Weights, int Size)
xue@1 239 {
xue@1 240 for (int i=0; i<Size; i++) *(OutBuffer++)=*(Buffer++)**(Weights++);
xue@1 241 }//ApplyWindow
xue@1 242
xue@1 243 //---------------------------------------------------------------------------
xue@1 244 /*
xue@1 245 function Avg: average
xue@1 246
xue@1 247 In: data[Count]: a data array
xue@1 248
xue@1 249 Returns the average of the array.
xue@1 250 */
xue@1 251 double Avg(double* data, int Count, void*)
xue@1 252 {
xue@1 253 if (Count<=0) return 0;
xue@1 254 double avg=0;
xue@1 255 for (int i=0; i<Count; i++) avg+=*(data++);
xue@1 256 avg/=Count;
xue@1 257 return avg;
xue@1 258 }//Avg
xue@1 259
xue@1 260 //---------------------------------------------------------------------------
xue@1 261 /*
xue@1 262 function AvgFilter: get slow-varying wave trace by averaging
xue@1 263
xue@1 264 In: data[Count]: input signal
xue@1 265 HWid: half the size of the averaging window
xue@1 266 Out: datout[Count]: the slow-varying part of data[].
xue@1 267
xue@1 268 No return value.
xue@1 269 */
xue@1 270 void AvgFilter(double* dataout, double* data, int Count, int HWid)
xue@1 271 {
xue@1 272 double sum=0;
xue@1 273
xue@1 274 dataout[0]=data[0];
xue@1 275
xue@1 276 for (int i=1; i<=HWid; i++)
xue@1 277 {
xue@1 278 sum+=data[2*i-1]+data[2*i];
xue@1 279 dataout[i]=sum/(2*i+1);
xue@1 280 }
xue@1 281
xue@1 282 for (int i=HWid+1; i<Count-HWid; i++)
xue@1 283 {
xue@1 284 sum=sum+data[i+HWid]-data[i-HWid-1];
xue@1 285 dataout[i]=sum/(2*HWid+1);
xue@1 286 }
xue@1 287
xue@1 288 for (int i=Count-HWid; i<Count; i++)
xue@1 289 {
xue@1 290 sum=sum-data[2*i-Count-1]-data[2*i-Count];
xue@1 291 dataout[i]=sum/(2*(Count-i)-1);
xue@1 292 }
xue@1 293 }//AvgFilter
xue@1 294
xue@1 295 //---------------------------------------------------------------------------
xue@1 296 /*
xue@1 297 function CalculateSpectrogram: computes the spectrogram of a signal
xue@1 298
xue@1 299 In: data[Count]: the time-domain signal
xue@1 300 start, end: start and end points marking the section for which the spectrogram is to be computed
xue@1 301 Wid, Offst: frame size and hop size
xue@1 302 Window: window function
xue@1 303 amp: a pre-amplifier
xue@1 304 half: specifies if the spectral values at Wid/2 are to be retried
xue@1 305 Out: Spec[][Wid/2] or Spec[][Wid/2+1]: amplitude spectrogram
xue@1 306 ph[][][Wid/2] or Ph[][Wid/2+1]: phase spectrogram
xue@1 307
xue@1 308 No return value. The caller is repsonse to arrange storage spance of output buffers.
xue@1 309 */
xue@1 310 void CalculateSpectrogram(double* data, int Count, int start, int end, int Wid, int Offst, double* Window, double** Spec, double** Ph, double amp, bool half)
xue@1 311 {
xue@1 312 AllocateFFTBuffer(Wid, fft, w, x);
xue@1 313
xue@1 314 int Fr=(end-start-Wid)/Offst+1;
xue@1 315
xue@1 316 for (int i=0; i<Fr; i++)
xue@1 317 {
xue@1 318 RFFTCW(&data[i*Offst+start], Window, 0, 0, log2(Wid), w, x);
xue@1 319
xue@1 320 if (Spec)
xue@1 321 {
xue@1 322 for (int j=0; j<Wid/2; j++)
xue@1 323 Spec[i][j]=sqrt(x[j].x*x[j].x+x[j].y*x[j].y)*amp;
xue@1 324 if (half)
xue@1 325 Spec[i][Wid/2]=sqrt(x[Wid/2].x*x[Wid/2].x+x[Wid/2].y*x[Wid/2].y)*amp;
xue@1 326 }
xue@1 327 if (Ph)
xue@1 328 {
xue@1 329 for (int j=0; j<=Wid/2; j++)
xue@1 330 Ph[i][j]=Atan2(x[j].y, x[j].x);
xue@1 331 if (half)
xue@1 332 Ph[i][Wid/2]=Atan2(x[Wid/2].y, x[Wid/2].x);
xue@1 333 }
xue@1 334 }
xue@1 335 FreeFFTBuffer(fft);
xue@1 336 }//CalculateSpectrogram
xue@1 337
xue@1 338 //---------------------------------------------------------------------------
xue@1 339 /*
xue@1 340 function Conv: simple convolution
xue@1 341
xue@1 342 In: in1[N1], in2[N2]: two sequences
xue@1 343 Out: out[N1+N2-1]: their convolution
xue@1 344
xue@1 345 No return value.
xue@1 346 */
xue@1 347 void Conv(double* out, int N1, double* in1, int N2, double* in2)
xue@1 348 {
xue@1 349 int N=N1+N1-1;
xue@1 350 memset(out, 0, sizeof(double)*N);
xue@1 351 for (int n1=0; n1<N1; n1++)
xue@1 352 for (int n2=0; n2<N2; n2++)
xue@1 353 out[n1+n2]+=in1[n1]*in2[n2];
xue@1 354 }//Conv
xue@1 355
xue@1 356 //---------------------------------------------------------------------------
xue@1 357 /*
xue@1 358 function Correlation: computes correlation coefficient of 2 vectors a & b, equals cos(aOb).
xue@1 359
xue@1 360 In: a[Count], b[Count]: two vectors
xue@1 361
xue@1 362 Returns their correlation coefficient.
xue@1 363 */
xue@1 364 double Correlation(double* a, double* b, int Count)
xue@1 365 {
xue@1 366 double aa=0, bb=0, ab=0;
xue@1 367 for (int i=0; i<Count; i++)
xue@1 368 {
xue@1 369 aa+=*a**a;
xue@1 370 bb+=*b**b;
xue@1 371 ab+=*(a++)**(b++);
xue@1 372 }
xue@1 373 return ab/sqrt(aa*bb);
xue@1 374 }//Correlation
xue@1 375
xue@1 376 //---------------------------------------------------------------------------
xue@1 377 /*
xue@1 378 function DCAmplitude: DC amplitude
xue@1 379
xue@1 380 In: data[Count]: a signal
xue@1 381
xue@1 382 Returns its DC amplitude (=AC amplitude without DC removing)
xue@1 383 */
xue@1 384 double DCAmplitude(double* data, int Count, void*)
xue@1 385 {
xue@1 386 if (Count<=0) return 0;
xue@1 387 double power=0, tmp;
xue@1 388 for (int i=0; i<Count; i++)
xue@1 389 {
xue@1 390 tmp=*(data++);
xue@1 391 power+=tmp*tmp;
xue@1 392 }
xue@1 393 power/=Count;
xue@1 394 return sqrt(2*power);
xue@1 395 }//DCAmplitude
xue@1 396
xue@1 397 /*
xue@1 398 function DCPower: DC power
xue@1 399
xue@1 400 In: data[Count]: a signal
xue@1 401
xue@1 402 Returns its DC power.
xue@1 403 */
xue@1 404 double DCPower(double* data, int Count, void*)
xue@1 405 {
xue@1 406 if (Count<=0) return 0;
xue@1 407 double power=0, tmp;
xue@1 408 for (int i=0; i<Count; i++)
xue@1 409 {
xue@1 410 tmp=*(data++);
xue@1 411 power+=tmp*tmp;
xue@1 412 }
xue@1 413 power/=Count;
xue@1 414 return power;
xue@1 415 }//DCPower
xue@1 416
xue@1 417 //---------------------------------------------------------------------------
xue@1 418 /*
xue@1 419 DCT: discrete cosine transform, direct computation. For fast DCT, see fft.cpp.
xue@1 420
xue@1 421 In: input[N]: a signal
xue@1 422 Out: output[N]: its DCT
xue@1 423
xue@1 424 No return value.
xue@1 425 */
xue@1 426 void DCT( double* output, double* input, int N)
xue@1 427 {
xue@1 428 double Wn;
xue@1 429
xue@1 430 for (int n=0; n<N; n++)
xue@1 431 {
xue@1 432 output[n]=0;
xue@1 433 Wn=n*M_PI/2/N;
xue@1 434 for (int k=0; k<N; k++)
xue@1 435 output[n]+=input[k]*cos((2*k+1)*Wn);
xue@1 436 if (n==0) output[n]*=1.4142135623730950488016887242097/N;
xue@1 437 else output[n]*=2.0/N;
xue@1 438 }
xue@1 439 }//DCT
xue@1 440
xue@1 441 /*
xue@1 442 function IDCT: inverse discrete cosine transform, direct computation. For fast IDCT, see fft.cpp.
xue@1 443
xue@1 444 In: input[N]: a signal
xue@1 445 Out: output[N]: its IDCT
xue@1 446
xue@1 447 No return value.
xue@1 448 */
xue@1 449 void IDCT(double* output, double* input, int N)
xue@1 450 {
xue@1 451 for (int k=0; k<N; k++)
xue@1 452 {
xue@1 453 double Wk=(2*k+1)*M_PI/2/N;
xue@1 454 output[k]=input[0]/1.4142135623730950488016887242097;
xue@1 455 for (int n=1; n<N; n++)
xue@1 456 output[k]+=input[n]*cos(n*Wk);
xue@1 457 }
xue@1 458 }//IDCT
xue@1 459
xue@1 460 //---------------------------------------------------------------------------
xue@1 461 /*
xue@1 462 function DeDC: removes DC component of a signal
xue@1 463
xue@1 464 In: data[Count]: the signal
xue@1 465 HWid: half of averaging window size
xue@1 466 Out: data[Count]: de-DC-ed signal
xue@1 467
xue@1 468 No return value.
xue@1 469 */
xue@1 470 void DeDC(double* data, int Count, int HWid)
xue@1 471 {
xue@1 472 double* data2=new double[Count];
xue@1 473 AvgFilter(data2, data, Count, HWid);
xue@1 474 for (int i=0; i<Count; i++)
xue@1 475 *(data++)-=*(data2++);
xue@1 476 delete[] data2;
xue@1 477 }//DeDC
xue@1 478
xue@1 479 /*
xue@1 480 function DeDC_static: removes DC component statically
xue@1 481
xue@1 482 In: data[Count]: the signal
xue@1 483 Out: data[Count]: DC-removed signal
xue@1 484
xue@1 485 No return value.
xue@1 486 */
xue@1 487 void DeDC_static(double* data, int Count)
xue@1 488 {
xue@1 489 double avg=Avg(data, Count, 0);
xue@1 490 for (int i=0; i<Count; i++) *(data++)-=avg;
xue@1 491 }//DeDC_static
xue@1 492
xue@1 493 //---------------------------------------------------------------------------
xue@1 494 /*
xue@1 495 function DoubleToInt: converts double-precision floating point array to integer array
xue@1 496
xue@1 497 In: in[Count]: the double array
xue@1 498 BytesPerSample: bytes per sample of destination integers
xue@1 499 Out: out[Count]: the integer array
xue@1 500
xue@1 501 No return value.
xue@1 502 */
xue@1 503 void DoubleToInt(void* out, int BytesPerSample, double* in, int Count)
xue@1 504 {
xue@1 505 if (BytesPerSample==1){unsigned char* out8=(unsigned char*)out; for (int k=0; k<Count; k++) *(out8++)=*(in++)+128.5;}
xue@1 506 else {__int16* out16=(__int16*)out; for (int k=0; k<Count; k++) *(out16++)=floor(*(in++)+0.5);}
xue@1 507 }//DoubleToInt
xue@1 508
xue@1 509 /*
xue@1 510 function DoubleToIntAdd: adds double-precision floating point array to integer array
xue@1 511
xue@1 512 In: in[Count]: the double array
xue@1 513 out[Count]: the integer array
xue@1 514 BytesPerSample: bytes per sample of destination integers
xue@1 515 Out: out[Count]: the sum of the two arrays
xue@1 516
xue@1 517 No return value.
xue@1 518 */
xue@1 519 void DoubleToIntAdd(void* out, int BytesPerSample, double* in, int Count)
xue@1 520 {
xue@1 521 if (BytesPerSample==1)
xue@1 522 {
xue@1 523 unsigned char* out8=(unsigned char*)out;
xue@1 524 for (int k=0; k<Count; k++){*out8=*out8+*in+128.5; out8++; in++;}
xue@1 525 }
xue@1 526 else
xue@1 527 {
xue@1 528 __int16* out16=(__int16*)out;
xue@1 529 for (int k=0; k<Count; k++){*out16=*out16+floor(*in+0.5); out16++; in++;}
xue@1 530 }
xue@1 531 }//DoubleToIntAdd
xue@1 532
xue@1 533 //---------------------------------------------------------------------------
xue@1 534 /*
xue@1 535 DPower: in-frame power variation
xue@1 536
xue@1 537 In: data[Count]: a signal
xue@1 538
xue@1 539 returns the different between AC powers of its first and second halves.
xue@1 540 */
xue@1 541 double DPower(double* data, int Count, void*)
xue@1 542 {
xue@1 543 double ene1=ACPower(data, Count/2, 0);
xue@1 544 double ene2=ACPower(&data[Count/2], Count/2, 0);
xue@1 545 return ene2-ene1;
xue@1 546 }//DPower
xue@1 547
xue@1 548 //---------------------------------------------------------------------------
xue@1 549 /*
xue@1 550 funciton Energy: energy
xue@1 551
xue@1 552 In: data[Count]: a signal
xue@1 553
xue@1 554 Returns its total energy
xue@1 555 */
xue@1 556 double Energy(double* data, int Count)
xue@1 557 {
xue@1 558 double result=0;
xue@1 559 for (int i=0; i<Count; i++) result+=data[i]*data[i];
xue@1 560 return result;
xue@1 561 }//Energy
xue@1 562
xue@1 563 //---------------------------------------------------------------------------
xue@1 564 /*
xue@1 565 function ExpOnsetFilter: onset filter with exponential impulse response h(t)=Aexp(-t/Tr)-Bexp(-t/Ta),
xue@1 566 A=1-exp(-1/Tr), B=1-exp(-1/Ta).
xue@1 567
xue@1 568 In: data[Count]: signal to filter
xue@1 569 Tr, Ta: time constants of h(t)
xue@1 570 Out: dataout[Count]: filtered signal, normalized by multiplying a factor.
xue@1 571
xue@1 572 Returns the normalization factor. Identical data and dataout is allowed.
xue@1 573 */
xue@1 574 double ExpOnsetFilter(double* dataout, double* data, int Count, double Tr, double Ta)
xue@1 575 {
xue@1 576 double FA=0, FB=0;
xue@1 577 double EA=exp(-1.0/Tr), EB=exp(-1.0/Ta);
xue@1 578 double A=1-EA, B=1-EB;
xue@1 579 double NormFactor=1/sqrt((1-EA)*(1-EA)/(1-EA*EA)+(1-EB)*(1-EB)/(1-EB*EB)-2*(1-EA)*(1-EB)/(1-EA*EB));
xue@1 580 for (int i=0; i<Count; i++)
xue@1 581 {
xue@1 582 FA=FA*EA+*data;
xue@1 583 FB=FB*EB+*(data++);
xue@1 584 *(dataout++)=(A*FA-B*FB)*NormFactor;
xue@1 585 }
xue@1 586 return NormFactor;
xue@1 587 }//ExpOnsetFilter
xue@1 588
xue@1 589 /*
xue@1 590 function ExpOnsetFilter_balanced: exponential onset filter without starting step response. It
xue@1 591 extends the input signal at the front end by bal*Ta samples by repeating the its value at 0, then
xue@1 592 applies the onset filter on the extended signal instead.
xue@1 593
xue@1 594 In: data[Count]: signal to filter
xue@1 595 Tr, Ta: time constants to the impulse response of onset filter, see ExpOnsetFilter().
xue@1 596 bal: balancing factor
xue@1 597 Out: dataout[Count]: filtered signal, normalized by multiplying a factor.
xue@1 598
xue@1 599 Returns the normalization factor. Identical data and dataout is allowed.
xue@1 600 */
xue@1 601 double ExpOnsetFilter_balanced(double* dataout, double* data, int Count, double Tr, double Ta, int bal)
xue@1 602 {
xue@1 603 double* tmpdata=new double[int(Count+bal*Ta)];
xue@1 604 double* ltmpdata=tmpdata;
xue@1 605 for (int i=0; i<bal*Ta; i++) *(ltmpdata++)=data[0];
xue@1 606 memcpy(ltmpdata, data, sizeof(double)*Count);
xue@1 607 double result=ExpOnsetFilter(tmpdata, tmpdata, bal*Ta+Count, Tr, Ta);
xue@1 608 memcpy(dataout, ltmpdata, sizeof(double)*Count);
xue@1 609 delete[] tmpdata;
xue@1 610 return result;
xue@1 611 }//ExpOnsetFilter_balanced
xue@1 612
xue@1 613 //---------------------------------------------------------------------------
xue@1 614 /*
xue@1 615 function ExtractLinearComponent: Legendre linear component
xue@1 616
xue@1 617 In: data[Count+1]: a signal
xue@1 618 Out: dataout[Count+1]: its Legendre linear component, optional.
xue@1 619
xue@1 620 Returns the coefficient to the linear component.
xue@1 621 */
xue@1 622 double ExtractLinearComponent(double* dataout, double* data, int Count)
xue@1 623 {
xue@1 624 double tmp=0;
xue@1 625 int N=Count*2;
xue@1 626 for (int n=0; n<=Count; n++) tmp+=n**(data++);
xue@1 627 tmp=tmp*24/N/(N+1)/(N+2);
xue@1 628 if (dataout)
xue@1 629 for (int n=0; n<=Count; n++) *(dataout++)=tmp*n;
xue@1 630 return tmp;
xue@1 631 }//ExtractLinearComponent
xue@1 632
xue@1 633 //---------------------------------------------------------------------------
xue@1 634 /*
xue@1 635 function FFTConv: fast convolution of two series by FFT overlap-add. In an overlap-add scheme it is
xue@1 636 assumed that one of the convolvends is short compared to the other one, which can be potentially
xue@1 637 infinitely long. The long convolvend is devided into short segments, each of which is convolved with
xue@1 638 the short convolvend, the results of which are then assembled into the final result. The minimal delay
xue@1 639 from input to output is the amount of overlap, which is the size of the short convolvend minus 1.
xue@1 640
xue@1 641 In: source1[size1]: convolvend
xue@1 642 source2[size2]: second convolvend
xue@1 643 zero: position of first point in convoluton result, relative to main output buffer.
xue@1 644 pre_buffer[-zero]: buffer hosting values to be overlap-added to the start of the result.
xue@1 645 Out: dest[size1]: the middle part of convolution result
xue@1 646 pre_buffer[-zero]: now updated by adding beginning part of the convolution result
xue@1 647 post_buffer[size2+zero]: end part of the convolution result
xue@1 648
xue@1 649 No return value. Identical dest and source1 allowed.
xue@1 650
xue@1 651 The convolution result has length size1+size2 (counting one trailing zero). If zero lies in the range
xue@1 652 between -size2 and 0, then the first -zero samples are added to pre_buffer[], next size1 samples are
xue@1 653 saved to dest[], and the last size2+zero sampled are saved to post_buffer[]; if not, the middle size1
xue@1 654 samples are saved to dest[], while pre_buffer[] and post_buffer[] are not used.
xue@1 655 */
xue@1 656 void FFTConv(double* dest, double* source1, int size1, double* source2, int size2, int zero, double* pre_buffer, double* post_buffer)
xue@1 657 {
xue@1 658 int order=log2(size2-1)+1+1;
xue@1 659 int Wid=1<<order;
xue@1 660 int HWid=Wid/2;
xue@1 661 int Fr=size1/HWid;
xue@1 662 int res=size1-HWid*Fr;
xue@1 663 bool trunc=false;
xue@1 664 if (zero<-size2+1 || zero>0) zero=-size2/2, trunc=true;
xue@1 665 if (pre_buffer==NULL || (post_buffer==NULL && size2+zero!=0)) trunc=true;
xue@1 666
xue@1 667 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 668 int* hbitinv=CreateBitInvTable(order-1);
xue@1 669 cdouble* x2=new cdouble[Wid];
xue@1 670 double* tmp=new double[HWid];
xue@1 671 memset(tmp, 0, sizeof(double)*HWid);
xue@1 672
xue@1 673 memcpy(fft, source2, sizeof(double)*size2);
xue@1 674 memset(&fft[size2], 0, sizeof(double)*(Wid-size2));
xue@1 675 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 676
xue@1 677 double r1, r2, i1, i2;
xue@1 678 int ind, ind_;
xue@1 679 for (int i=0; i<Fr; i++)
xue@1 680 {
xue@1 681 memcpy(fft, &source1[i*HWid], sizeof(double)*HWid);
xue@1 682 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 683
xue@1 684 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 685
xue@1 686 for (int j=0; j<Wid; j++)
xue@1 687 {
xue@1 688 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 689 x1[j].x=r1*r2-i1*i2;
xue@1 690 x1[j].y=r1*i2+r2*i1;
xue@1 691 }
xue@1 692 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 693 for (int j=0; j<HWid; j++) tmp[j]+=fft[j];
xue@1 694
xue@1 695 ind=i*HWid+zero; //(i+1)*HWid<=size1
xue@1 696 ind_=ind+HWid; //ind_=(i+1)*HWid+zero<=size1
xue@1 697 if (ind<0)
xue@1 698 {
xue@1 699 if (!trunc)
xue@1 700 memdoubleadd(pre_buffer, tmp, -ind);
xue@1 701 memcpy(dest, &tmp[-ind], sizeof(double)*(HWid+ind));
xue@1 702 }
xue@1 703 else
xue@1 704 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 705 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 706 }
xue@1 707
xue@1 708 if (res>0)
xue@1 709 {
xue@1 710 memcpy(fft, &source1[Fr*HWid], sizeof(double)*res);
xue@1 711 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 712
xue@1 713 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 714
xue@1 715 for (int j=0; j<Wid; j++)
xue@1 716 {
xue@1 717 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 718 x1[j].x=r1*r2-i1*i2;
xue@1 719 x1[j].y=r1*i2+r2*i1;
xue@1 720 }
xue@1 721 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 722 for (int j=0; j<HWid; j++)
xue@1 723 tmp[j]+=fft[j];
xue@1 724
xue@1 725 ind=Fr*HWid+zero; //Fr*HWid=size1-res, ind=size1-res+zero<size1
xue@1 726 ind_=ind+HWid; //ind_=size1 -res+zero+HWid
xue@1 727 if (ind<0)
xue@1 728 {
xue@1 729 if (!trunc)
xue@1 730 memdoubleadd(pre_buffer, tmp, -ind);
xue@1 731 memcpy(dest, &tmp[-ind], sizeof(double)*(HWid+ind));
xue@1 732 }
xue@1 733 else if (ind_>size1)
xue@1 734 {
xue@1 735 memcpy(&dest[ind], tmp, sizeof(double)*(size1-ind));
xue@1 736 if (!trunc && post_buffer)
xue@1 737 {
xue@1 738 if (ind_>size1+size2+zero)
xue@1 739 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(size2+zero));
xue@1 740 else
xue@1 741 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(ind_-size1));
xue@1 742 }
xue@1 743 }
xue@1 744 else
xue@1 745 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 746 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 747 Fr++;
xue@1 748 }
xue@1 749
xue@1 750 ind=Fr*HWid+zero;
xue@1 751 ind_=ind+HWid;
xue@1 752
xue@1 753 if (ind<size1)
xue@1 754 {
xue@1 755 if (ind_>size1)
xue@1 756 {
xue@1 757 memcpy(&dest[ind], tmp, sizeof(double)*(size1-ind));
xue@1 758 if (!trunc && post_buffer)
xue@1 759 {
xue@1 760 if (ind_>size1+size2+zero)
xue@1 761 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(size2+zero));
xue@1 762 else
xue@1 763 memcpy(post_buffer, &tmp[size1-ind], sizeof(double)*(ind_-size1));
xue@1 764 }
xue@1 765 }
xue@1 766 else
xue@1 767 memcpy(&dest[ind], tmp, sizeof(double)*HWid);
xue@1 768 }
xue@1 769 else //ind>=size1 => ind_>=size1+size2+zero
xue@1 770 {
xue@1 771 if (!trunc && post_buffer)
xue@1 772 memcpy(&post_buffer[ind-size1], tmp, sizeof(double)*(size1+size2+zero-ind));
xue@1 773 }
xue@1 774
xue@1 775 FreeFFTBuffer(fft);
xue@1 776 delete[] x2;
xue@1 777 delete[] tmp;
xue@1 778 delete[] hbitinv;
xue@1 779 }//FFTConv
xue@1 780
xue@1 781 /*
xue@1 782 function FFTConv: the simplified version using two output buffers instead of three. This is almost
xue@1 783 equivalent to setting zero=-size2 in the three-output-buffer version (so that post_buffer no longer
xue@1 784 exists), except that this version requires size2 (renamed HWid) be a power of 2, and pre_buffer point
xue@1 785 to the END of the storage (so that pre_buffer=dest automatically connects the two buffers in a
xue@1 786 continuous memory block).
xue@1 787
xue@1 788 In: source1[size1]: convolvend
xue@1 789 source2[HWid]: second convolved, HWid be a power of 2
xue@1 790 pre_buffer[-HWid:-1]: buffer hosting values to be overlap-added to the start of the result.
xue@1 791 Out: dest[size1]: main output buffer, now hosting end part of the result (after HWid samples).
xue@1 792 pre_buffer[-HWid:-1]: now updated by added the start of the result
xue@1 793
xue@1 794 No return value.
xue@1 795 */
xue@1 796 void FFTConv(double* dest, double* source1, int size1, double* source2, int HWid, double* pre_buffer)
xue@1 797 {
xue@1 798 int Wid=HWid*2;
xue@1 799 int order=log2(Wid);
xue@1 800 int Fr=size1/HWid;
xue@1 801 int res=size1-HWid*Fr;
xue@1 802
xue@1 803 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 804 cdouble *x2=new cdouble[Wid];
xue@1 805 double *tmp=new double[HWid];
xue@1 806 int* hbitinv=CreateBitInvTable(order-1);
xue@1 807
xue@1 808 memcpy(fft, source2, sizeof(double)*HWid);
xue@1 809 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 810 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 811
xue@1 812 double r1, r2, i1, i2;
xue@1 813 for (int i=0; i<Fr; i++)
xue@1 814 {
xue@1 815 memcpy(fft, &source1[i*HWid], sizeof(double)*HWid);
xue@1 816 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 817
xue@1 818 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 819
xue@1 820 for (int j=0; j<Wid; j++)
xue@1 821 {
xue@1 822 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 823 x1[j].x=r1*r2-i1*i2;
xue@1 824 x1[j].y=r1*i2+r2*i1;
xue@1 825 }
xue@1 826 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 827
xue@1 828 if (i==0)
xue@1 829 {
xue@1 830 if (pre_buffer!=NULL)
xue@1 831 {
xue@1 832 double* destl=&pre_buffer[-HWid+1];
xue@1 833 for (int j=0; j<HWid-1; j++) destl[j]+=fft[j];
xue@1 834 }
xue@1 835 }
xue@1 836 else
xue@1 837 {
xue@1 838 for (int j=0; j<HWid-1; j++) tmp[j+1]+=fft[j];
xue@1 839 memcpy(&dest[(i-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 840 }
xue@1 841 memcpy(tmp, &fft[HWid-1], sizeof(double)*HWid);
xue@1 842 }
xue@1 843
xue@1 844 if (res>0)
xue@1 845 {
xue@1 846 if (Fr==0) memset(tmp, 0, sizeof(double)*HWid);
xue@1 847
xue@1 848 memcpy(fft, &source1[Fr*HWid], sizeof(double)*res);
xue@1 849 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 850
xue@1 851 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 852 for (int j=0; j<Wid; j++)
xue@1 853 {
xue@1 854 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 855 x1[j].x=r1*r2-i1*i2;
xue@1 856 x1[j].y=r1*i2+r2*i1;
xue@1 857 }
xue@1 858 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 859
xue@1 860 if (Fr==0)
xue@1 861 {
xue@1 862 if (pre_buffer!=NULL)
xue@1 863 {
xue@1 864 double* destl=&pre_buffer[-HWid+1];
xue@1 865 for (int j=0; j<HWid-1; j++) destl[j]+=fft[j];
xue@1 866 }
xue@1 867 }
xue@1 868 else
xue@1 869 {
xue@1 870 for (int j=0; j<HWid-1; j++) tmp[j+1]+=fft[j];
xue@1 871 memcpy(&dest[(Fr-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 872 }
xue@1 873
xue@1 874 memcpy(&dest[Fr*HWid], &fft[HWid-1], sizeof(double)*res);
xue@1 875 }
xue@1 876 else
xue@1 877 memcpy(&dest[(Fr-1)*HWid], tmp, sizeof(double)*HWid);
xue@1 878
xue@1 879 FreeFFTBuffer(fft);
xue@1 880 delete[] x2; delete[] tmp; delete[] hbitinv;
xue@1 881 }//FFTConv
xue@1 882
xue@1 883 /*
xue@1 884 function FFTConv: fast convolution of two series by FFT overlap-add. Same as the three-output-buffer
xue@1 885 version above but using integer output buffers as well as integer source1.
xue@1 886
xue@1 887 In: source1[size1]: convolvend
xue@1 888 bps: bytes per sample of integer units in source1[].
xue@1 889 source2[size2]: second convolvend
xue@1 890 zero: position of first point in convoluton result, relative to main output buffer.
xue@1 891 pre_buffer[-zero]: buffer hosting values to be overlap-added to the start of the result.
xue@1 892 Out: dest[size1]: the middle part of convolution result
xue@1 893 pre_buffer[-zero]: now updated by adding beginning part of the convolution result
xue@1 894 post_buffer[size2+zero]: end part of the convolution result
xue@1 895
xue@1 896 No return value. Identical dest and source1 allowed.
xue@1 897 */
xue@1 898 void FFTConv(unsigned char* dest, unsigned char* source1, int bps, int size1, double* source2, int size2, int zero, unsigned char* pre_buffer, unsigned char* post_buffer)
xue@1 899 {
xue@1 900 int order=log2(size2-1)+1+1;
xue@1 901 int Wid=1<<order;
xue@1 902 int HWid=Wid/2;
xue@1 903 int Fr=size1/HWid;
xue@1 904 int res=size1-HWid*Fr;
xue@1 905 bool trunc=false;
xue@1 906 if (zero<-size2+1 || zero>0) zero=-size2/2, trunc=true;
xue@1 907 if (pre_buffer==NULL || (post_buffer==NULL && size2+zero!=0)) trunc=true;
xue@1 908
xue@1 909 AllocateFFTBuffer(Wid, fft, w, x1);
xue@1 910 cdouble* x2=new cdouble[Wid];
xue@1 911 double* tmp=new double[HWid];
xue@1 912 memset(tmp, 0, sizeof(double)*HWid);
xue@1 913 int* hbitinv=CreateBitInvTable(order-1);
xue@1 914
xue@1 915 memcpy(fft, source2, sizeof(double)*size2);
xue@1 916 memset(&fft[size2], 0, sizeof(double)*(Wid-size2));
xue@1 917 RFFTC(fft, 0, 0, order, w, x2, hbitinv);
xue@1 918
xue@1 919 double r1, r2, i1, i2;
xue@1 920 int ind, ind_;
xue@1 921 for (int i=0; i<Fr; i++)
xue@1 922 {
xue@1 923 IntToDouble(fft, &source1[i*HWid*bps], bps, HWid);
xue@1 924 memset(&fft[HWid], 0, sizeof(double)*HWid);
xue@1 925
xue@1 926 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 927
xue@1 928 for (int j=0; j<Wid; j++)
xue@1 929 {
xue@1 930 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 931 x1[j].x=r1*r2-i1*i2;
xue@1 932 x1[j].y=r1*i2+r2*i1;
xue@1 933 }
xue@1 934 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 935 for (int j=0; j<HWid; j++) tmp[j]+=fft[j];
xue@1 936
xue@1 937 ind=i*HWid+zero; //(i+1)*HWid<=size1
xue@1 938 ind_=ind+HWid; //ind_=(i+1)*HWid+zero<=size1
xue@1 939 if (ind<0)
xue@1 940 {
xue@1 941 if (!trunc)
xue@1 942 DoubleToIntAdd(pre_buffer, bps, tmp, -ind);
xue@1 943 DoubleToInt(dest, bps, &tmp[-ind], HWid+ind);
xue@1 944 }
xue@1 945 else
xue@1 946 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 947 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 948 }
xue@1 949
xue@1 950 if (res>0)
xue@1 951 {
xue@1 952 IntToDouble(fft, &source1[Fr*HWid*bps], bps, res);
xue@1 953 memset(&fft[res], 0, sizeof(double)*(Wid-res));
xue@1 954
xue@1 955 RFFTC(fft, 0, 0, order, w, x1, hbitinv);
xue@1 956
xue@1 957 for (int j=0; j<Wid; j++)
xue@1 958 {
xue@1 959 r1=x1[j].x, r2=x2[j].x, i1=x1[j].y, i2=x2[j].y;
xue@1 960 x1[j].x=r1*r2-i1*i2;
xue@1 961 x1[j].y=r1*i2+r2*i1;
xue@1 962 }
xue@1 963 CIFFTR(x1, order, w, fft, hbitinv);
xue@1 964 for (int j=0; j<HWid; j++)
xue@1 965 tmp[j]+=fft[j];
xue@1 966
xue@1 967 ind=Fr*HWid+zero; //Fr*HWid=size1-res, ind=size1-res+zero<size1
xue@1 968 ind_=ind+HWid; //ind_=size1 -res+zero+HWid
xue@1 969 if (ind<0)
xue@1 970 {
xue@1 971 if (!trunc)
xue@1 972 DoubleToIntAdd(pre_buffer, bps, tmp, -ind);
xue@1 973 DoubleToInt(dest, bps, &tmp[-ind], HWid+ind);
xue@1 974 }
xue@1 975 else if (ind_>size1)
xue@1 976 {
xue@1 977 DoubleToInt(&dest[ind*bps], bps, tmp, size1-ind);
xue@1 978 if (!trunc && post_buffer)
xue@1 979 {
xue@1 980 if (ind_>size1+size2+zero)
xue@1 981 DoubleToInt(post_buffer, bps, &tmp[size1-ind], size2+zero);
xue@1 982 else
xue@1 983 DoubleToInt(post_buffer, bps, &tmp[size1-ind], ind_-size1);
xue@1 984 }
xue@1 985 }
xue@1 986 else
xue@1 987 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 988 memcpy(tmp, &fft[HWid], sizeof(double)*HWid);
xue@1 989 Fr++;
xue@1 990 }
xue@1 991
xue@1 992 ind=Fr*HWid+zero;
xue@1 993 ind_=ind+HWid;
xue@1 994
xue@1 995 if (ind<size1)
xue@1 996 {
xue@1 997 if (ind_>size1)
xue@1 998 {
xue@1 999 DoubleToInt(&dest[ind*bps], bps, tmp, size1-ind);
xue@1 1000 if (!trunc && post_buffer)
xue@1 1001 {
xue@1 1002 if (ind_>size1+size2+zero)
xue@1 1003 DoubleToInt(post_buffer, bps, &tmp[size1-ind], size2+zero);
xue@1 1004 else
xue@1 1005 DoubleToInt(post_buffer, bps, &tmp[size1-ind], ind_-size1);
xue@1 1006 }
xue@1 1007 }
xue@1 1008 else
xue@1 1009 DoubleToInt(&dest[ind*bps], bps, tmp, HWid);
xue@1 1010 }
xue@1 1011 else //ind>=size1 => ind_>=size1+size2+zero
xue@1 1012 {
xue@1 1013 if (!trunc && post_buffer)
xue@1 1014 DoubleToInt(&post_buffer[(ind-size1)*bps], bps, tmp, size1+size2+zero-ind);
xue@1 1015 }
xue@1 1016
xue@1 1017 FreeFFTBuffer(fft);
xue@1 1018 delete[] x2;
xue@1 1019 delete[] tmp;
xue@1 1020 delete[] hbitinv;
xue@1 1021 }//FFTConv
xue@1 1022
xue@1 1023 //---------------------------------------------------------------------------
xue@1 1024 /*
xue@1 1025 function FFTFilter: FFT with cosine-window overlap-add: This FFT filter is not an actural LTI system,
xue@1 1026 but an block processing with overlap-add. In this function the blocks are overlapped by 50% and summed
xue@1 1027 up with Hann windowing.
xue@1 1028
xue@1 1029 In: data[Count]: input data
xue@1 1030 Wid: DFT size
xue@1 1031 On, Off: cut-off frequencies of FFT filter. On<Off: band-pass; On>Off: band-stop.
xue@1 1032 Out: dataout[Count]: filtered data
xue@1 1033
xue@1 1034 No return value. Identical data and dataout allowed
xue@1 1035 */
xue@1 1036 void FFTFilter(double* dataout, double* data, int Count, int Wid, int On, int Off)
xue@1 1037 {
xue@1 1038 int Order=log2(Wid);
xue@1 1039 int HWid=Wid/2;
xue@1 1040 int Fr=(Count-Wid)/HWid+1;
xue@1 1041 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 1042
xue@1 1043 double* win=new double[Wid];
xue@1 1044 for (int i=0; i<Wid; i++) win[i]=sqrt((1-cos(2*M_PI*i/Wid))/2);
xue@1 1045 double* tmpdata=new double[HWid];
xue@1 1046 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 1047
xue@1 1048 for (int i=0; i<Fr; i++)
xue@1 1049 {
xue@1 1050 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 1051 if (i>0)
xue@1 1052 for (int k=0; k<HWid; k++)
xue@1 1053 ldata[k]=ldata[k]*win[k];
xue@1 1054 for (int k=HWid; k<Wid; k++)
xue@1 1055 ldata[k]=ldata[k]*win[k];
xue@1 1056
xue@1 1057 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 1058
xue@1 1059 if (On<Off) //band pass: keep [On, Off) and set other bins to zero
xue@1 1060 {
xue@1 1061 memset(x, 0, On*sizeof(cdouble));
xue@1 1062 if (On>=1)
xue@1 1063 memset(&x[Wid-On+1], 0, (On-1)*sizeof(cdouble));
xue@1 1064 if (Off*2<=Wid)
xue@1 1065 memset(&x[Off], 0, (Wid-Off*2+1)*sizeof(cdouble));
xue@1 1066 }
xue@1 1067 else //band stop: set [Off, On) to zero.
xue@1 1068 {
xue@1 1069 memset(&x[Off], 0, sizeof(cdouble)*(On-Off));
xue@1 1070 memset(&x[Wid-On+1], 0, sizeof(double)*(On-Off));
xue@1 1071 }
xue@1 1072
xue@1 1073 CIFFTR(x, Order, w, ldata);
xue@1 1074
xue@1 1075 if (i>0) for (int k=0; k<HWid; k++) ldata[k]=ldata[k]*win[k];
xue@1 1076 for (int k=HWid; k<Wid; k++) ldata[k]=ldata[k]*win[k];
xue@1 1077
xue@1 1078 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 1079 for (int k=0; k<HWid; k++) dataout[i*HWid+k]+=ldata[k];
xue@1 1080 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 1081 }
xue@1 1082
xue@1 1083 memcpy(&dataout[Fr*HWid], tmpdata, HWid*sizeof(double));
xue@1 1084 memset(&dataout[Fr*HWid+HWid], 0, (Count-Fr*HWid-HWid)*sizeof(double));
xue@1 1085
xue@1 1086 delete[] win;
xue@1 1087 delete[] tmpdata;
xue@1 1088 FreeFFTBuffer(ldata);
xue@1 1089 }//FFTFilter
xue@1 1090
xue@1 1091 /*
xue@1 1092 funtion FFTFilterOLA: FFTFilter with overlap-add support. This is a true LTI filter whose impulse
xue@1 1093 response is constructed using IFFT. The filtering is implemented by fast convolution.
xue@1 1094
xue@1 1095 In: data[Count]: input data
xue@1 1096 Wid: FFT size
xue@1 1097 On, Off: cut-off frequencies, in bins, of the filter
xue@1 1098 pre_buffer[Wid]: buffer hosting sampled to be added with the start of output
xue@1 1099 Out: dataout[Count]: main output buffer, hosting the last $Count samples of output.
xue@1 1100 pre_buffer[Wid]: now updated by adding the first Wid samples of output
xue@1 1101
xue@1 1102 No return value. The complete output contains Count+Wid effective samples (including final 0); firt
xue@1 1103 $Wid are added to pre_buffer[], next Count samples saved to dataout[].
xue@1 1104 */
xue@1 1105 void FFTFilterOLA(double* dataout, double* data, int Count, int Wid, int On, int Off, double* pre_buffer)
xue@1 1106 {
xue@1 1107 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1108 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1109 for (int i=On+1; i<Off; i++) x[i].x=x[Wid-i].x=1-2*(i%2);
xue@1 1110 CIFFTR(x, log2(Wid), w, spec);
xue@1 1111 FFTConv(dataout, data, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1112 FreeFFTBuffer(spec);
xue@1 1113 }//FFTFilterOLA
xue@1 1114 //version for integer input and output, where BytesPerSample specifies the integer format.
xue@1 1115 void FFTFilterOLA(unsigned char* dataout, unsigned char* data, int BytesPerSample, int Count, int Wid, int On, int Off, unsigned char* pre_buffer)
xue@1 1116 {
xue@1 1117 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1118 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1119 for (int i=On+1; i<Off; i++) x[i].x=x[Wid-i].x=1-2*(i%2);
xue@1 1120 CIFFTR(x, log2(Wid), w, spec);
xue@1 1121 FFTConv(dataout, data, BytesPerSample, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1122 FreeFFTBuffer(spec);
xue@1 1123 }//FFTFilterOLA
xue@1 1124
xue@1 1125 /*
xue@1 1126 function FFTFilterOLA: FFT filter with overlap-add support.
xue@1 1127
xue@1 1128 In: data[Count]: input data
xue@1 1129 amp[0:HWid]: amplitude response
xue@1 1130 ph[0:HWid]: phase response, where ph[0]=ph[HWid]=0;
xue@1 1131 pre_buffer[Wid]: buffer hosting sampled to be added to the beginning of the output
xue@1 1132 Out: dataout[Count]: main output buffer, hosting the middle $Count samples of output.
xue@1 1133 pre_buffer[Wid]: now updated by adding the first Wid/2 samples of output
xue@1 1134
xue@1 1135 No return value.
xue@1 1136 */
xue@1 1137 void FFTFilterOLA(double* dataout, double* data, int Count, double* amp, double* ph, int Wid, double* pre_buffer)
xue@1 1138 {
xue@1 1139 int HWid=Wid/2;
xue@1 1140 AllocateFFTBuffer(Wid, spec, w, x);
xue@1 1141 x[0].x=amp[0], x[0].y=0;
xue@1 1142 for (int i=1; i<HWid; i++)
xue@1 1143 {
xue@1 1144 x[i].x=x[Wid-i].x=amp[i]*cos(ph[i]);
xue@1 1145 x[i].y=amp[i]*sin(ph[i]);
xue@1 1146 x[Wid-i].y=-x[i].y;
xue@1 1147 }
xue@1 1148 x[HWid].x=amp[HWid], x[HWid].y=0;
xue@1 1149 CIFFTR(x, log2(Wid), w, spec);
xue@1 1150 FFTConv(dataout, data, Count, spec, Wid, -Wid, pre_buffer, NULL);
xue@1 1151 FreeFFTBuffer(spec);
xue@1 1152 }//FFTFilterOLA
xue@1 1153
xue@1 1154 /*
xue@1 1155 function FFTMask: masks a band of a signal with noise
xue@1 1156
xue@1 1157 In: data[Count]: input signal
xue@1 1158 DigiOn, DigiOff: cut-off frequences of the band to mask
xue@1 1159 maskcoef: masking noise amplifier. If set to 1 than the mask level is set to the highest signal
xue@1 1160 level in the masking band.
xue@1 1161 Out: dataout[Count]: output data
xue@1 1162
xue@1 1163 No return value.
xue@1 1164 */
xue@1 1165 double FFTMask(double* dataout, double* data, int Count, int Wid, double DigiOn, double DigiOff, double maskcoef)
xue@1 1166 {
xue@1 1167 int Order=log2(Wid);
xue@1 1168 int HWid=Wid/2;
xue@1 1169 int Fr=(Count-Wid)/HWid+1;
xue@1 1170 int On=Wid*DigiOn, Off=Wid*DigiOff;
xue@1 1171 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 1172
xue@1 1173 double* winhann=new double[Wid];
xue@1 1174 double* winhamm=new double[Wid];
xue@1 1175 for (int i=0; i<Wid; i++)
xue@1 1176 {winhamm[i]=0.54-0.46*cos(2*M_PI*i/Wid); winhann[i]=(1-cos(2*M_PI*i/Wid))/2/winhamm[i];}
xue@1 1177 double* tmpdata=new double[HWid];
xue@1 1178 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 1179 double max, randfi;
xue@1 1180
xue@1 1181 max=0;
xue@1 1182 for (int i=0; i<Fr; i++)
xue@1 1183 {
xue@1 1184 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 1185 if (i>0)
xue@1 1186 for (int k=0; k<HWid; k++)
xue@1 1187 ldata[k]=ldata[k]*winhamm[k];
xue@1 1188 for (int k=HWid; k<Wid; k++)
xue@1 1189 ldata[k]=ldata[k]*winhamm[k];
xue@1 1190
xue@1 1191 RFFTC(ldata, ldata, NULL, Order, w, x, 0);
xue@1 1192
xue@1 1193 for (int k=On; k<Off; k++)
xue@1 1194 {
xue@1 1195 x[k].x=x[Wid-k].x=x[k].y=x[Wid-k].y=0;
xue@1 1196 if (max<ldata[k]) max=ldata[k];
xue@1 1197 }
xue@1 1198
xue@1 1199 CIFFTR(x, Order, w, ldata);
xue@1 1200
xue@1 1201 if (i>0)
xue@1 1202 for (int k=0; k<HWid; k++) ldata[k]=ldata[k]*winhann[k];
xue@1 1203 for (int k=HWid; k<Wid; k++) ldata[k]=ldata[k]*winhann[k];
xue@1 1204
xue@1 1205 for (int k=0; k<HWid; k++) tmpdata[k]+=ldata[k];
xue@1 1206 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 1207 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 1208 }
xue@1 1209 memcpy(&dataout[Fr*HWid], tmpdata, HWid*sizeof(double));
xue@1 1210
xue@1 1211 max*=maskcoef;
xue@1 1212
xue@1 1213 for (int i=0; i<Wid; i++)
xue@1 1214 winhann[i]=winhann[i]*winhamm[i];
xue@1 1215
xue@1 1216 for (int i=0; i<Fr; i++)
xue@1 1217 {
xue@1 1218 memset(x, 0, sizeof(cdouble)*Wid);
xue@1 1219 for (int k=On; k<Off; k++)
xue@1 1220 {
xue@1 1221 randfi=rand()*M_PI*2/RAND_MAX;
xue@1 1222 x[k].x=x[Wid-k].x=max*cos(randfi);
xue@1 1223 x[k].y=max*sin(randfi);
xue@1 1224 x[Wid-k].y=-x[k].y;
xue@1 1225 }
xue@1 1226
xue@1 1227 CIFFTR(x, Order, w, ldata);
xue@1 1228
xue@1 1229 if (i>0)
xue@1 1230 for (int k=0; k<HWid; k++)
xue@1 1231 ldata[k]=ldata[k]*winhann[k];
xue@1 1232 for (int k=HWid; k<Wid; k++)
xue@1 1233 ldata[k]=ldata[k]*winhann[k];
xue@1 1234
xue@1 1235 for (int k=0; k<Wid; k++) dataout[i*HWid+k]+=ldata[k];
xue@1 1236 }
xue@1 1237
xue@1 1238 memset(&dataout[Fr*HWid+HWid], 0, (Count-Fr*HWid-HWid)*sizeof(double));
xue@1 1239
xue@1 1240 delete[] winhann;
xue@1 1241 delete[] winhamm;
xue@1 1242 delete[] tmpdata;
xue@1 1243 FreeFFTBuffer(ldata);
xue@1 1244
xue@1 1245 return max;
xue@1 1246 }//FFTMask
xue@1 1247
xue@1 1248 //---------------------------------------------------------------------------
xue@1 1249 /*
xue@1 1250 function FindInc: find the element in ordered list data that is closest to value.
xue@1 1251
xue@1 1252 In: data[Count]: a ordered list
xue@1 1253 value: the value to locate in the list
xue@1 1254
xue@1 1255 Returns the index of the element in the sorted list which is closest to $value.
xue@1 1256 */
xue@1 1257 int FindInc(double value, double* data, int Count)
xue@1 1258 {
xue@1 1259 if (value>=data[Count-1]) return Count-1;
xue@1 1260 if (value<data[0]) return 0;
xue@1 1261 int end=InsertInc(value, data, Count, false);
xue@1 1262 if (fabs(value-data[end-1])<fabs(value-data[end])) return end-1;
xue@1 1263 else return end;
xue@1 1264 }//FindInc
xue@1 1265
xue@1 1266 //---------------------------------------------------------------------------
xue@1 1267 /*
xue@1 1268 function Gaussian: Gaussian function
xue@1 1269
xue@1 1270 In: Vector[Dim]: a vector
xue@1 1271 Mean[Dim]: mean of Gaussian function
xue@1 1272 Dev[Fim]: diagonal autocorrelation matrix of Gaussian function
xue@1 1273
xue@1 1274 Returns the value of Gaussian function at Vector[].
xue@1 1275 */
xue@1 1276 double Gaussian(int Dim, double* Vector, double* Mean, double* Dev)
xue@1 1277 {
xue@1 1278 double bmt=0, tmp;
xue@1 1279 for (int dim=0; dim<Dim; dim++)
xue@1 1280 {
xue@1 1281 tmp=Vector[dim]-Mean[dim];
xue@1 1282 bmt+=tmp*tmp/Dev[dim];
xue@1 1283 }
xue@1 1284 bmt=-bmt/2;
xue@1 1285 tmp=log(Dev[0]);
xue@1 1286 for (int dim=1; dim<Dim; dim++) tmp+=log(Dev[dim]);
xue@1 1287 bmt-=tmp/2;
xue@1 1288 bmt-=Dim*log(M_PI*2)/2;
xue@1 1289 bmt=exp(bmt);
xue@1 1290 return bmt;
xue@1 1291 }//Gaussian
xue@1 1292
xue@1 1293
xue@1 1294 //---------------------------------------------------------------------------
xue@1 1295 /*
xue@1 1296 function Hamming: calculates the amplitude spectrum of Hamming window at a given frequency
xue@1 1297
xue@1 1298 In: f: frequency
xue@1 1299 T: size of Hamming window
xue@1 1300
xue@1 1301 Returns the amplitude spectrum at specified frequency.
xue@1 1302 */
xue@1 1303 double Hamming(double f, double T)
xue@1 1304 {
xue@1 1305 double omg0=2*M_PI/T;
xue@1 1306 double omg=f*2*M_PI;
xue@1 1307 cdouble c1, c2, c3;
xue@1 1308 cdouble nj(0, -1);
xue@1 1309 cdouble pj(0, 1);
xue@1 1310 double a=0.54, b=0.46;
xue@1 1311
xue@1 1312 cdouble c=1.0-exp(nj*T*omg);
xue@1 1313 double half=0.5;
xue@1 1314
xue@1 1315 if (fabs(omg)<1e-100)
xue@1 1316 c1=a*T;
xue@1 1317 else
xue@1 1318 c1=a*c/(pj*omg);
xue@1 1319
xue@1 1320 if (fabs(omg+omg0)<1e-100)
xue@1 1321 c2=b*0.5*T;
xue@1 1322 else
xue@1 1323 c2=c*b*half/(nj*cdouble(omg+omg0));
xue@1 1324
xue@1 1325 if (fabs(omg-omg0)<1e-100)
xue@1 1326 c3=b*0.5*T;
xue@1 1327 else
xue@1 1328 c3=b*c*half/(nj*cdouble(omg-omg0));
xue@1 1329
xue@1 1330 c=c1+c2+c3;
xue@1 1331 return abs(c);
xue@1 1332 }//Hamming*/
xue@1 1333
xue@1 1334 //---------------------------------------------------------------------------
xue@1 1335 /*
xue@1 1336 function HannSq: computes the square norm of Hann window spectrum (window-size-normalized)
xue@1 1337
xue@1 1338 In: x: frequency, in bins
xue@1 1339 N: size of Hann window
xue@1 1340
xue@1 1341 Return the square norm.
xue@1 1342 */
xue@1 1343 double HannSq(double x, double N)
xue@1 1344 {
xue@1 1345 double re, im;
xue@1 1346 double pim=M_PI*x;
xue@1 1347 double pimf=pim/N;
xue@1 1348 double pif=M_PI/N;
xue@1 1349
xue@1 1350 double sinpim=sin(pim);
xue@1 1351 double sinpimf=sin(pimf);
xue@1 1352 double sinpimplus1f=sin(pimf+pif);
xue@1 1353 double sinpimminus1f=sin(pimf-pif);
xue@1 1354
xue@1 1355 double spmdivbyspmf, spmdivbyspmpf, spmdivbyspmmf;
xue@1 1356
xue@1 1357 if (sinpimf==0)
xue@1 1358 spmdivbyspmf=N, spmdivbyspmpf=spmdivbyspmmf=0;
xue@1 1359 else if (sinpimplus1f==0)
xue@1 1360 spmdivbyspmpf=-N, spmdivbyspmf=spmdivbyspmmf=0;
xue@1 1361 else if (sinpimminus1f==0)
xue@1 1362 spmdivbyspmmf=-N, spmdivbyspmf=spmdivbyspmpf=0;
xue@1 1363 else
xue@1 1364 spmdivbyspmf=sinpim/sinpimf, spmdivbyspmpf=sinpim/sinpimplus1f, spmdivbyspmmf=sinpim/sinpimminus1f;
xue@1 1365
xue@1 1366 re=0.5*spmdivbyspmf-0.25*cos(pif)*(spmdivbyspmpf+spmdivbyspmmf);
xue@1 1367 im=0.25*sin(pif)*(-spmdivbyspmpf+spmdivbyspmmf);
xue@1 1368
xue@1 1369 return (re*re+im*im)/(N*N);
xue@1 1370 }//HannSq
xue@1 1371
xue@1 1372 /*
xue@1 1373 function Hann: computes the Hann window amplitude spectrum (window-size-normalized).
xue@1 1374
xue@1 1375 In: x: frequency, in bins
xue@1 1376 N: size of Hann window
xue@1 1377
xue@1 1378 Return the amplitude spectrum evaluated at x. Maximum 0.5 is reached at x=0. Time 2 to normalize
xue@1 1379 maximum to 1.
xue@1 1380 */
xue@1 1381 double Hann(double x, double N)
xue@1 1382 {
xue@1 1383 double pim=M_PI*x;
xue@1 1384 double pif=M_PI/N;
xue@1 1385 double pimf=pif*x;
xue@1 1386
xue@1 1387 double sinpim=sin(pim);
xue@1 1388 double tanpimf=tan(pimf);
xue@1 1389 double tanpimplus1f=tan(pimf+pif);
xue@1 1390 double tanpimminus1f=tan(pimf-pif);
xue@1 1391
xue@1 1392 double spmdivbyspmf, spmdivbyspmpf, spmdivbyspmmf;
xue@1 1393
xue@1 1394 if (fabs(tanpimf)<1e-10)
xue@1 1395 spmdivbyspmf=N, spmdivbyspmpf=spmdivbyspmmf=0;
xue@1 1396 else if (fabs(tanpimplus1f)<1e-10)
xue@1 1397 spmdivbyspmpf=-N, spmdivbyspmf=spmdivbyspmmf=0;
xue@1 1398 else if (fabs(tanpimminus1f)<1e-10)
xue@1 1399 spmdivbyspmmf=-N, spmdivbyspmf=spmdivbyspmpf=0;
xue@1 1400 else
xue@1 1401 spmdivbyspmf=sinpim/tanpimf, spmdivbyspmpf=sinpim/tanpimplus1f, spmdivbyspmmf=sinpim/tanpimminus1f;
xue@1 1402
xue@1 1403 double result=0.5*spmdivbyspmf-0.25*(spmdivbyspmpf+spmdivbyspmmf);
xue@1 1404
xue@1 1405 return result/N;
xue@1 1406 }//HannC
xue@1 1407
xue@1 1408 /*
xue@1 1409 function HxPeak2: fine spectral peak detection. This does detection and high-precision LSE estimation
xue@1 1410 in one go. However, since in practise most peaks are spurious, LSE estimation is not necessary on
xue@1 1411 them. Accordingly, HxPeak2 is deprecated in favour of faster but coarser peak picking methods, such as
xue@1 1412 QIFFT, which leaves fine estimation to a later stage of processing.
xue@1 1413
xue@1 1414 In: F, dF, ddF: pointers to functions that compute LSE peak energy for, plus its 1st and 2nd
xue@1 1415 derivatives against, a given frequency.
xue@1 1416 params: pointer to a data structure (l_hx) hosting input data fed to F, dF, and ddF
xue@1 1417 (st, en): frequency range, in bins, to search for peaks in
xue@1 1418 epf: convergence detection threshold
xue@1 1419 Out: hps[return value]: peak frequencies
xue@1 1420 vps[return value]; peak amplitudes
xue@1 1421
xue@1 1422 Returns the number of peaks detected.
xue@1 1423 */
xue@1 1424 int HxPeak2(double*& hps, double*& vhps, double (*F)(double, void*), double (*dF)(double, void*), double(*ddF)(double, void*), void* params, double st, double en, double epf)
xue@1 1425 {
xue@1 1426 struct l_hx {int N; union {double B; struct {int k1; int k2;};}; cdouble* x; double dhxpeak; double hxpeak;} *p=(l_hx *)params;
xue@1 1427 int dfshift=int(&((l_hx*)0)->dhxpeak);
xue@1 1428 int fshift=int(&((l_hx*)0)->hxpeak);
xue@1 1429 double B=p->B;
xue@1 1430 int count=0;
xue@1 1431
xue@1 1432 int den=ceil(en), dst=floor(st);
xue@1 1433 if (den-dst<3) den++, dst--;
xue@1 1434 if (den-dst<3) den++, dst--;
xue@1 1435 if (dst<1) dst=1;
xue@1 1436
xue@1 1437 double step=0.5;
xue@1 1438 int num=(den-dst)/step+1;
xue@1 1439 bool allochps=false, allocvhps=false;
xue@1 1440 if (hps==NULL) allochps=true, hps=new double[num];
xue@1 1441 if (vhps==NULL) allocvhps=true, vhps=new double[num];
xue@1 1442
xue@1 1443 {
xue@1 1444 double* inp=new double[num];
xue@1 1445 for (int i=0; i<num; i++)
xue@1 1446 {
xue@1 1447 double lf=dst+step*i;
xue@1 1448 p->k1=ceil(lf-B); if (p->k1<0) p->k1=0;
xue@1 1449 p->k2=floor(lf+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1450 inp[i]=F(lf, params);
xue@1 1451 }
xue@1 1452
xue@1 1453 for (int i=1; i<num-1; i++)
xue@1 1454 {
xue@1 1455 if (inp[i]>=inp[i-1] && inp[i]>=inp[i+1]) //inp[i]=F(dst+step*i)
xue@1 1456 {
xue@1 1457 if (inp[i]==inp[i-1] && inp[i]==inp[i+1]) continue;
xue@1 1458 double fa=dst+step*(i-1), fb=dst+step*(i+1);
xue@1 1459 double ff=dst+step*i;
xue@1 1460 p->k1=ceil(ff-B); if (p->k1<0) p->k1=0;
xue@1 1461 p->k2=floor(ff+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1462
xue@1 1463 double tmp=Newton1dmax(ff, fa, fb, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1464
xue@1 1465 //although we have selected inp[i] to be a local maximum, different truncation
xue@1 1466 // of local spectrum implies it may not hold as the truncation of inp[i] is
xue@1 1467 // used for recalculating inp[i-1] and inp[i+1] in init_Newton method. In this
xue@1 1468 // case we retry the sub-maximal frequency to see if it becomes a local maximum
xue@1 1469 // when the spectrum is truncated to centre on it.
xue@1 1470
xue@1 1471 if (tmp==-0.5 || tmp==-0.7) //y(fa)<=y(ff)<y(fb) or y(ff)<y(fa)<y(fb)
xue@1 1472 {
xue@1 1473 tmp=Newton1dmax(fb, ff, 2*fb-ff, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1474 if (tmp==-0.5 || tmp==-0.7) continue;
xue@1 1475 /*
xue@1 1476 double ff2=(ff+fb)/2;
xue@1 1477 p->k1=ceil(ff2-B); if (p->k1<0) p->k1=0;
xue@1 1478 p->k2=floor(ff2+B); if (p->k2>=p->N/2) p->k2=p->N/2-1;
xue@1 1479 tmp=Newton1dmax(ff2, ff, fb, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1480 p->k1=ceil(ff-B); if (p->k1<0) p->k1=0;
xue@1 1481 p->k2=floor(ff+B); if (p->k2>=p->N/2) p->k2=p->N/2-1; */
xue@1 1482 }
xue@1 1483 else if (tmp==-0.6 || tmp==-0.8) //y(fb)<=y(ff)<y(fa)
xue@1 1484 {
xue@1 1485 tmp=Newton1dmax(fa, 2*fa-ff, ff, ddF, params, dfshift, fshift, dF, dfshift, epf);
xue@1 1486 if (tmp==-0.6 || tmp==-0.8) continue;
xue@1 1487 }
xue@1 1488 if (tmp<0 /*tmp==-0.5 || tmp==-0.6 || tmp==-1 || tmp==-2 || tmp==-3*/)
xue@1 1489 {
xue@1 1490 Search1Dmax(ff, params, F, dst+step*(i-1), dst+step*(i+1), &vhps[count], epf);
xue@1 1491 }
xue@1 1492 else
xue@1 1493 {
xue@1 1494 vhps[count]=p->hxpeak;
xue@1 1495 }
xue@1 1496 if (ff>=st && ff<=en && ff>dst+step*(i-0.99) && ff<dst+step*(i+0.99))
xue@1 1497 {
xue@1 1498 // if (count==0 || fabs(tmp-hps[count-1])>0.1)
xue@1 1499 // {
xue@1 1500 hps[count]=ff;
xue@1 1501 count++;
xue@1 1502 // }
xue@1 1503 }
xue@1 1504 }
xue@1 1505 }
xue@1 1506 delete[] inp;
xue@1 1507 }
xue@1 1508
xue@1 1509 if (allochps) hps=(double*)realloc(hps, sizeof(double)*count);
xue@1 1510 if (allocvhps) vhps=(double*)realloc(vhps, sizeof(double)*count);
xue@1 1511 return count;
xue@1 1512 }//HxPeak2
xue@1 1513
xue@1 1514 //---------------------------------------------------------------------------
xue@1 1515 /*
xue@1 1516 function InsertDec: inserts value into sorted decreasing list
xue@1 1517
xue@1 1518 In: data[Count]: a sorted decreasing list.
xue@1 1519 value: the value to be added
xue@1 1520 Out: data[Count]: the list with $value inserted if the latter is larger than its last entry, in which
xue@1 1521 case the original last entry is discarded.
xue@1 1522
xue@1 1523 Returns the index where $value is located in data[], or -1 if $value is smaller than or equal to
xue@1 1524 data[Count-1].
xue@1 1525 */
xue@1 1526 int InsertDec(int value, int* data, int Count)
xue@1 1527 {
xue@1 1528 if (Count<=0) return -1;
xue@1 1529 if (value<=data[Count-1]) return -1;
xue@1 1530 if (value>data[0])
xue@1 1531 {
xue@1 1532 memmove(&data[1], &data[0], sizeof(int)*(Count-1));
xue@1 1533 data[0]=value;
xue@1 1534 return 0;
xue@1 1535 }
xue@1 1536
xue@1 1537 //now Count>=2
xue@1 1538 int head=0, end=Count-1, mid;
xue@1 1539
xue@1 1540 //D(head)>=value>D(end)
xue@1 1541 while (end-head>1)
xue@1 1542 {
xue@1 1543 mid=(head+end)/2;
xue@1 1544 if (value<=data[mid]) head=mid;
xue@1 1545 else end=mid;
xue@1 1546 }
xue@1 1547
xue@1 1548 //D(head=end-1)>=value>D(end)
xue@1 1549 memmove(&data[end+1], &data[end], sizeof(int)*(Count-end-1));
xue@1 1550 data[end]=value;
xue@1 1551 return end;
xue@1 1552 }//InsertDec
xue@1 1553 //the double version
xue@1 1554 int InsertDec(double value, double* data, int Count)
xue@1 1555 {
xue@1 1556 if (Count<=0) return -1;
xue@1 1557 if (value<=data[Count-1]) return -1;
xue@1 1558 if (value>data[0])
xue@1 1559 {
xue@1 1560 memmove(&data[1], &data[0], sizeof(double)*(Count-1));
xue@1 1561 data[0]=value;
xue@1 1562 return 0;
xue@1 1563 }
xue@1 1564
xue@1 1565 //now Count>=2
xue@1 1566 int head=0, end=Count-1, mid;
xue@1 1567
xue@1 1568 //D(head)>=value>D(end)
xue@1 1569 while (end-head>1)
xue@1 1570 {
xue@1 1571 mid=(head+end)/2;
xue@1 1572 if (value<=data[mid]) head=mid;
xue@1 1573 else end=mid;
xue@1 1574 }
xue@1 1575
xue@1 1576 //D(head=end-1)>=value>D(end)
xue@1 1577 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1578 data[end]=value;
xue@1 1579 return end;
xue@1 1580 }//InsertDec
xue@1 1581
xue@1 1582 /*
xue@1 1583 function InsertDec: inserts value and attached integer into sorted decreasing list
xue@1 1584
xue@1 1585 In: data[Count]: a sorted decreasing list
xue@1 1586 indices[Count]: a list of integers attached to entries of data[]
xue@1 1587 value, index: the value to be added and its attached integer
xue@1 1588 Out: data[Count], indices[Count]: the lists with $value and $index inserted if $value is larger than
xue@1 1589 the last entry of data[], in which case the original last entries are discarded.
xue@1 1590
xue@1 1591 Returns the index where $value is located in data[], or -1 if $value is smaller than or equal to
xue@1 1592 data[Count-1].
xue@1 1593 */
xue@1 1594 int InsertDec(double value, int index, double* data, int* indices, int Count)
xue@1 1595 {
xue@1 1596 if (Count<=0) return -1;
xue@1 1597 if (value<=data[Count-1]) return -1;
xue@1 1598 if (value>data[0])
xue@1 1599 {
xue@1 1600 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1601 memmove(&indices[1], indices, sizeof(int)*(Count-1));
xue@1 1602 data[0]=value, indices[0]=index;
xue@1 1603 return 0;
xue@1 1604 }
xue@1 1605
xue@1 1606 //now Count>=2
xue@1 1607 int head=0, end=Count-1, mid;
xue@1 1608
xue@1 1609 //D(head)>=value>D(end)
xue@1 1610 while (end-head>1)
xue@1 1611 {
xue@1 1612 mid=(head+end)/2;
xue@1 1613 if (value<=data[mid]) head=mid;
xue@1 1614 else end=mid;
xue@1 1615 }
xue@1 1616
xue@1 1617 //D(head=end-1)>=value>D(end)
xue@1 1618 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1619 memmove(&indices[end+1], &indices[end], sizeof(int)*(Count-end-1));
xue@1 1620 data[end]=value, indices[end]=index;
xue@1 1621 return end;
xue@1 1622 }//InsertDec
xue@1 1623
xue@1 1624 /*
xue@1 1625 InsertInc: inserts value into sorted increasing list.
xue@1 1626
xue@1 1627 In: data[Count]: a sorted increasing list.
xue@1 1628 Capacity: maximal size of data[]
xue@1 1629 value: the value to be added
xue@1 1630 Compare: pointer to function that compare two values
xue@1 1631 Out: data[Count]: the list with $value inserted. If the original list is full (Count=Capacity) then
xue@1 1632 either $value, or the last entry of data[], whichever is larger, is discarded.
xue@1 1633
xue@1 1634 Returns the index where $value is located in data[], or -1 if it is not inserted, which happens if
xue@1 1635 Count=Capacity and $value is larger than or equal to the last entry in data[Capacity].
xue@1 1636 */
xue@1 1637 int InsertInc(void* value, void** data, int Count, int Capacity, int (*Compare)(void*, void*))
xue@1 1638 {
xue@1 1639 if (Capacity<=0) return -1;
xue@1 1640 if (Count>Capacity) Count=Capacity;
xue@1 1641
xue@1 1642 //Compare(A,B)<0 if A<B, =0 if A=B, >0 if A>B
xue@1 1643 int PosToInsert;
xue@1 1644 if (Count==0) PosToInsert=0;
xue@1 1645 else if (Compare(value, data[Count-1])>0) PosToInsert=Count;
xue@1 1646 else if (Compare(value, data[0])<0) PosToInsert=0;
xue@1 1647 else
xue@1 1648 {
xue@1 1649 //now Count>=2
xue@1 1650 int head=0, end=Count-1, mid;
xue@1 1651
xue@1 1652 //D(head)<=value<D(end)
xue@1 1653 while (end-head>1)
xue@1 1654 {
xue@1 1655 mid=(head+end)/2;
xue@1 1656 if (Compare(value, data[mid])>=0) head=mid;
xue@1 1657 else end=mid;
xue@1 1658 }
xue@1 1659 //D(head=end-1)<=value<D(end)
xue@1 1660 PosToInsert=end;
xue@1 1661 }
xue@1 1662
xue@1 1663 if (Count<Capacity)
xue@1 1664 {
xue@1 1665 memmove(&data[PosToInsert+1], &data[PosToInsert], sizeof(void*)*(Count-PosToInsert));
xue@1 1666 data[PosToInsert]=value;
xue@1 1667 }
xue@1 1668 else //Count==Capacity
xue@1 1669 {
xue@1 1670 if (PosToInsert>=Capacity) return -1;
xue@1 1671 memmove(&data[PosToInsert+1], &data[PosToInsert], sizeof(void*)*(Count-PosToInsert-1));
xue@1 1672 data[PosToInsert]=value;
xue@1 1673 }
xue@1 1674 return PosToInsert;
xue@1 1675 }//InsertInc
xue@1 1676
xue@1 1677 /*
xue@1 1678 function InsertInc: inserts value into sorted increasing list
xue@1 1679
xue@1 1680 In: data[Count]: a sorted increasing list.
xue@1 1681 value: the value to be added
xue@1 1682 doinsert: specifies whether the actually insertion is to be performed
xue@1 1683 Out: data[Count]: the list with $value inserted if the latter is smaller than its last entry, in which
xue@1 1684 case the original last entry of data[] is discarded.
xue@1 1685
xue@1 1686 Returns the index where $value is located in data[], or -1 if value is larger than or equal to
xue@1 1687 data[Count-1].
xue@1 1688 */
xue@1 1689 int InsertInc(double value, double* data, int Count, bool doinsert)
xue@1 1690 {
xue@1 1691 if (Count<=0) return -1;
xue@1 1692 if (value>=data[Count-1]) return -1;
xue@1 1693 if (value<data[0])
xue@1 1694 {
xue@1 1695 memmove(&data[1], &data[0], sizeof(double)*(Count-1));
xue@1 1696 if (doinsert) data[0]=value;
xue@1 1697 return 0;
xue@1 1698 }
xue@1 1699
xue@1 1700 //now Count>=2
xue@1 1701 int head=0, end=Count-1, mid;
xue@1 1702
xue@1 1703 //D(head)<=value<D(end)
xue@1 1704 while (end-head>1)
xue@1 1705 {
xue@1 1706 mid=(head+end)/2;
xue@1 1707 if (value>=data[mid]) head=mid;
xue@1 1708 else end=mid;
xue@1 1709 }
xue@1 1710
xue@1 1711 //D(head=end-1)<=value<D(end)
xue@1 1712 if (doinsert)
xue@1 1713 {
xue@1 1714 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1715 data[end]=value;
xue@1 1716 }
xue@1 1717 return end;
xue@1 1718 }//InsertInc
xue@1 1719 //version where data[] is int.
xue@1 1720 int InsertInc(double value, int* data, int Count, bool doinsert)
xue@1 1721 {
xue@1 1722 if (Count<=0) return -1;
xue@1 1723 if (value>=data[Count-1]) return -1;
xue@1 1724 if (value<data[0])
xue@1 1725 {
xue@1 1726 memmove(&data[1], &data[0], sizeof(int)*(Count-1));
xue@1 1727 if (doinsert) data[0]=value;
xue@1 1728 return 0;
xue@1 1729 }
xue@1 1730
xue@1 1731 //now Count>=2
xue@1 1732 int head=0, end=Count-1, mid;
xue@1 1733
xue@1 1734 //D(head)<=value<D(end)
xue@1 1735 while (end-head>1)
xue@1 1736 {
xue@1 1737 mid=(head+end)/2;
xue@1 1738 if (value>=data[mid]) head=mid;
xue@1 1739 else end=mid;
xue@1 1740 }
xue@1 1741
xue@1 1742 //D(head=end-1)<=value<D(end)
xue@1 1743 if (doinsert)
xue@1 1744 {
xue@1 1745 memmove(&data[end+1], &data[end], sizeof(int)*(Count-end-1));
xue@1 1746 data[end]=value;
xue@1 1747 }
xue@1 1748 return end;
xue@1 1749 }//InsertInc
xue@1 1750
xue@1 1751 /*
xue@1 1752 function InsertInc: inserts value and attached integer into sorted increasing list
xue@1 1753
xue@1 1754 In: data[Count]: a sorted increasing list
xue@1 1755 indices[Count]: a list of integers attached to entries of data[]
xue@1 1756 value, index: the value to be added and its attached integer
xue@1 1757 Out: data[Count], indices[Count]: the lists with $value and $index inserted if $value is smaller than
xue@1 1758 the last entry of data[], in which case the original last entries are discarded.
xue@1 1759
xue@1 1760 Returns the index where $value is located in data[], or -1 if $value is larger than or equal to
xue@1 1761 data[Count-1].
xue@1 1762 */
xue@1 1763 int InsertInc(double value, int index, double* data, int* indices, int Count)
xue@1 1764 {
xue@1 1765 if (Count<=0) return -1;
xue@1 1766 if (value>=data[Count-1]) return -1;
xue@1 1767 if (value<data[0])
xue@1 1768 {
xue@1 1769 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1770 memmove(&indices[1], indices, sizeof(int)*(Count-1));
xue@1 1771 data[0]=value, indices[0]=index;
xue@1 1772 return 0;
xue@1 1773 }
xue@1 1774
xue@1 1775 //now Count>=2
xue@1 1776 int head=0, end=Count-1, mid;
xue@1 1777
xue@1 1778 //D(head)>=value>D(end)
xue@1 1779 while (end-head>1)
xue@1 1780 {
xue@1 1781 mid=(head+end)/2;
xue@1 1782 if (value>=data[mid]) head=mid;
xue@1 1783 else end=mid;
xue@1 1784 }
xue@1 1785
xue@1 1786 //D(head=end-1)>=value>D(end)
xue@1 1787 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1788 memmove(&indices[end+1], &indices[end], sizeof(int)*(Count-end-1));
xue@1 1789 data[end]=value, indices[end]=index;
xue@1 1790 return end;
xue@1 1791 }//InsertInc
xue@1 1792 //version where indices[] is double-precision floating point.
xue@1 1793 int InsertInc(double value, double index, double* data, double* indices, int Count)
xue@1 1794 {
xue@1 1795 if (Count<=0) return -1;
xue@1 1796 if (value>=data[Count-1]) return -1;
xue@1 1797 if (value<data[0])
xue@1 1798 {
xue@1 1799 memmove(&data[1], data, sizeof(double)*(Count-1));
xue@1 1800 memmove(&indices[1], indices, sizeof(double)*(Count-1));
xue@1 1801 data[0]=value, indices[0]=index;
xue@1 1802 return 0;
xue@1 1803 }
xue@1 1804
xue@1 1805 //now Count>=2
xue@1 1806 int head=0, end=Count-1, mid;
xue@1 1807
xue@1 1808 //D(head)>=value>D(end)
xue@1 1809 while (end-head>1)
xue@1 1810 {
xue@1 1811 mid=(head+end)/2;
xue@1 1812 if (value>=data[mid]) head=mid;
xue@1 1813 else end=mid;
xue@1 1814 }
xue@1 1815
xue@1 1816 //D(head=end-1)>=value>D(end)
xue@1 1817 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end-1));
xue@1 1818 memmove(&indices[end+1], &indices[end], sizeof(double)*(Count-end-1));
xue@1 1819 data[end]=value, indices[end]=index;
xue@1 1820 return end;
xue@1 1821 }//InsertInc
xue@1 1822
xue@1 1823 /*
xue@1 1824 function InsertIncApp: inserts value into flexible-length sorted increasing list
xue@1 1825
xue@1 1826 In: data[Count]: a sorted increasing list.
xue@1 1827 value: the value to be added
xue@1 1828 Out: data[Count+1]: the list with $value inserted.
xue@1 1829
xue@1 1830 Returns the index where $value is located in data[], or -1 if Count<0. data[] must have Count+1
xue@1 1831 storage units on calling.
xue@1 1832 */
xue@1 1833 int InsertIncApp(double value, double* data, int Count)
xue@1 1834 {
xue@1 1835 if (Count<0) return -1;
xue@1 1836 if (Count==0){data[0]=value; return 0;}
xue@1 1837 if (value>=data[Count-1]){data[Count]=value; return Count;}
xue@1 1838 if (value<data[0])
xue@1 1839 {
xue@1 1840 memmove(&data[1], &data[0], sizeof(double)*Count);
xue@1 1841 data[0]=value;
xue@1 1842 return 0;
xue@1 1843 }
xue@1 1844
xue@1 1845 //now Count>=2
xue@1 1846 int head=0, end=Count-1, mid;
xue@1 1847
xue@1 1848 //D(head)<=value<D(end)
xue@1 1849 while (end-head>1)
xue@1 1850 {
xue@1 1851 mid=(head+end)/2;
xue@1 1852 if (value>=data[mid]) head=mid;
xue@1 1853 else end=mid;
xue@1 1854 }
xue@1 1855
xue@1 1856 //D(head=end-1)<=value<D(end)
xue@1 1857 memmove(&data[end+1], &data[end], sizeof(double)*(Count-end));
xue@1 1858 data[end]=value;
xue@1 1859
xue@1 1860 return end;
xue@1 1861 }//InsertIncApp
xue@1 1862
xue@1 1863 //---------------------------------------------------------------------------
xue@1 1864 /*
xue@1 1865 function InstantFreq; calculates instantaneous frequency from spectrum, evaluated at bin k
xue@1 1866
xue@1 1867 In: x[hwid]: spectrum with scale 2hwid
xue@1 1868 k: reference frequency, in bins
xue@1 1869 mode: must be 1.
xue@1 1870
xue@1 1871 Returns an instantaneous frequency near bin k.
xue@1 1872 */
xue@1 1873 double InstantFreq(int k, int hwid, cdouble* x, int mode)
xue@1 1874 {
xue@1 1875 double result;
xue@1 1876 switch(mode)
xue@1 1877 {
xue@1 1878 //mode 1: the phase vocoder method, based on J. Brown, where the spectrogram
xue@1 1879 // MUST be calculated using rectangular window
xue@1 1880 case 1:
xue@1 1881 {
xue@1 1882 if (k<1) k=1;
xue@1 1883 if (k>hwid-2) k=hwid-2;
xue@1 1884 double hr=0.5*(x[k].x-0.5*(x[k+1].x+x[k-1].x)), hi=0.5*(x[k].y-0.5*(x[k+1].y+x[k-1].y));
xue@1 1885 double ph0=Atan2(hi, hr);
xue@1 1886 double c=cos(M_PI/hwid), s=sin(M_PI/hwid);
xue@1 1887 hr=0.5*(x[k].x-0.5*(x[k+1].x*c-x[k+1].y*s+x[k-1].x*c+x[k-1].y*s));
xue@1 1888 hi=0.5*(x[k].y-0.5*(x[k+1].y*c+x[k+1].x*s+x[k-1].y*c-x[k-1].x*s));
xue@1 1889 double ph1=Atan2(hi, hr);
xue@1 1890 result=(ph1-ph0)/(2*M_PI);
xue@1 1891 if (result<-0.5) result+=1;
xue@1 1892 if (result>0.5) result-=1;
xue@1 1893 result+=k*0.5/hwid;
xue@1 1894 break;
xue@1 1895 }
xue@1 1896 case 2:
xue@1 1897 break;
xue@1 1898 }
xue@1 1899 return result;
xue@1 1900 }//InstantFreq
xue@1 1901
xue@1 1902 /*
xue@1 1903 function InstantFreq; calculates "frequency spectrum", a sequence of frequencies evaluated at DFT bins
xue@1 1904
xue@1 1905 In: x[hwid]: spectrum with scale 2hwid
xue@1 1906 mode: must be 1.
xue@1 1907 Out: freqspec[hwid]: the frequency spectrum
xue@1 1908
xue@1 1909 No return value.
xue@1 1910 */
xue@1 1911 void InstantFreq(double* freqspec, int hwid, cdouble* x, int mode)
xue@1 1912 {
xue@1 1913 for (int i=0; i<hwid; i++)
xue@1 1914 freqspec[i]=InstantFreq(i, hwid, x, mode);
xue@1 1915 }//InstantFreq
xue@1 1916
xue@1 1917 //---------------------------------------------------------------------------
xue@1 1918 /*
xue@1 1919 function IntToDouble: copy content of integer array to double array
xue@1 1920
xue@1 1921 In: in: pointer to integer array
xue@1 1922 BytesPerSample: number of bytes each integer takes
xue@1 1923 Count: size of integer array, in integers
xue@1 1924 Out: vector out[Count].
xue@1 1925
xue@1 1926 No return value.
xue@1 1927
xue@1 1928 This version is currently commented out in favour of the version implemented in QuickSpec.cpp which
xue@1 1929 supports 24-bit integers.
xue@1 1930 *//*
xue@1 1931 void IntToDouble(double* out, void* in, int BytesPerSample, int Count)
xue@1 1932 {
xue@1 1933 if (BytesPerSample==1){unsigned char* in8=(unsigned char*)in; for (int k=0; k<Count; k++) *(out++)=*(in8++)-128.0;}
xue@1 1934 else {__int16* in16=(__int16*)in; for (int k=0; k<Count; k++) *(out++)=*(in16++);}
xue@1 1935 }//IntToDouble*/
xue@1 1936
xue@1 1937 //---------------------------------------------------------------------------
xue@1 1938 /*
xue@1 1939 function IPHannC: inner product with Hann window spectrum
xue@1 1940
xue@1 1941 In: x[N]: spectrum
xue@1 1942 f: reference frequency
xue@1 1943 K1, K2: spectral truncation bounds
xue@1 1944
xue@1 1945 Returns the absolute value of the inner product of x[K1:K2] with the corresponding band of the
xue@1 1946 spectrum of a sinusoid at frequency f.
xue@1 1947 */
xue@1 1948 double IPHannC(double f, cdouble* x, int N, int K1, int K2)
xue@1 1949 {
xue@1 1950 int M; double c[4], iH2;
xue@1 1951 windowspec(wtHann, N, &M, c, &iH2);
xue@1 1952 return abs(IPWindowC(f, x, N, M, c, iH2, K1, K2));
xue@1 1953 }//IPHannC
xue@1 1954
xue@1 1955
xue@1 1956 //---------------------------------------------------------------------------
xue@1 1957 /*
xue@1 1958 function lse: linear regression y=ax+b
xue@1 1959
xue@1 1960 In: x[Count], y[Count]: input points
xue@1 1961 Out: a, b: LSE estimation of coefficients in y=ax+b
xue@1 1962
xue@1 1963 No return value.
xue@1 1964 */
xue@1 1965 void lse(double* x, double* y, int Count, double& a, double& b)
xue@1 1966 {
xue@1 1967 double sx=0, sy=0, sxx=0, sxy=0;
xue@1 1968 for (int i=0; i<Count; i++)
xue@1 1969 {
xue@1 1970 sx+=x[i];
xue@1 1971 sy+=y[i];
xue@1 1972 sxx+=x[i]*x[i];
xue@1 1973 sxy+=x[i]*y[i];
xue@1 1974 }
xue@1 1975 b=(sxx*sy-sx*sxy)/(Count*sxx-sx*sx);
xue@1 1976 a=(sy-Count*b)/sx;
xue@1 1977 }//lse
xue@1 1978
xue@1 1979 //--------------------------------------------------------------------------
xue@1 1980 /*
xue@1 1981 memdoubleadd: vector addition
xue@1 1982
xue@1 1983 In: dest[count], source[count]: addends
xue@1 1984 Out: dest[count]: sum
xue@1 1985
xue@1 1986 No return value.
xue@1 1987 */
xue@1 1988 void memdoubleadd(double* dest, double* source, int count)
xue@1 1989 {
xue@1 1990 for (int i=0; i<count; i++){*dest=*dest+*source; dest++; source++;}
xue@1 1991 }//memdoubleadd
xue@1 1992
xue@1 1993 //--------------------------------------------------------------------------
xue@1 1994 /*
xue@1 1995 function Mel: converts frequency in Hz to frequency in mel.
xue@1 1996
xue@1 1997 In: f: frequency, in Hz
xue@1 1998
xue@1 1999 Returns the frequency measured on mel scale.
xue@1 2000 */
xue@1 2001 double Mel(double f)
xue@1 2002 {
xue@1 2003 return 1127.01048*log(1+f/700);
xue@1 2004 }//Mel
xue@1 2005
xue@1 2006 /*
xue@1 2007 function InvMel: converts frequency in mel to frequency in Hz.
xue@1 2008
xue@1 2009 In: f: frequency, in mel.
xue@1 2010
xue@1 2011 Returns the frequency in Hz.
xue@1 2012 */
xue@1 2013 double InvMel(double mel)
xue@1 2014 {
xue@1 2015 return 700*(exp(mel/1127.01048)-1);
xue@1 2016 }//InvMel
xue@1 2017
xue@1 2018 /*
xue@1 2019 function MFCC: calculates MFCC.
xue@1 2020
xue@1 2021 In: Data[FrameWidth]: data
xue@1 2022 NumBands: number of frequency bands on mel scale
xue@1 2023 Bands[3*NumBands]: mel frequency bands, comes as $NumBands triples, each containing the lower,
xue@1 2024 middle and high frequencies, in bins, of one band, from which a weighting window is created to
xue@1 2025 weight individual bins.
xue@1 2026 Ceps_Order: number of MFC coefficients (i.e. DCT coefficients)
xue@1 2027 W, X: FFT buffers
xue@1 2028 Out: C[Ceps_Order]: MFCC
xue@1 2029 Amps[NumBands]: log spectrum on MF bands
xue@1 2030
xue@1 2031 No return value. Use MFCCPrepareBands() to retrieve Bands[].
xue@1 2032 */
xue@1 2033 void MFCC(int FrameWidth, int NumBands, int Ceps_Order, double* Data, double* Bands, double* C, double* Amps, cdouble* W, cdouble* X)
xue@1 2034 {
xue@1 2035 double tmp, b2s, b2c, b2e;
xue@1 2036
xue@1 2037 RFFTC(Data, 0, 0, log2(FrameWidth), W, X, 0);
xue@1 2038 for (int i=0; i<=FrameWidth/2; i++) Amps[i]=X[i].x*X[i].x+X[i].y*X[i].y;
xue@1 2039
xue@1 2040 for (int i=0; i<NumBands; i++)
xue@1 2041 {
xue@1 2042 tmp=0;
xue@1 2043 b2s=Bands[3*i], b2c=Bands[3*i+1], b2e=Bands[3*i+2];
xue@1 2044
xue@1 2045 for (int j=ceil(b2s); j<ceil(b2c); j++)
xue@1 2046 tmp+=Amps[j]*(j-b2s)/(b2c-b2s);
xue@1 2047 for (int j=ceil(b2c); j<b2e; j++)
xue@1 2048 tmp+=Amps[j]*(b2e-j)/(b2e-b2c);
xue@1 2049
xue@1 2050 if (tmp<3.7200759760208359629596958038631e-44)
xue@1 2051 Amps[i]=-100;
xue@1 2052 else
xue@1 2053 Amps[i]=log(tmp);
xue@1 2054 }
xue@1 2055
xue@1 2056 for (int i=0; i<Ceps_Order; i++)
xue@1 2057 {
xue@1 2058 tmp=Amps[0]*cos(M_PI*(i+1)/2/NumBands);
xue@1 2059 for (int j=1; j<NumBands; j++)
xue@1 2060 tmp+=Amps[j]*cos(M_PI*(i+0.5)*(j+0.5)/NumBands);
xue@1 2061 C[i]=tmp;
xue@1 2062 }
xue@1 2063 }//MFCC
xue@1 2064
xue@1 2065 /*
xue@1 2066 function MFCCPrepareBands: returns a array of OVERLAPPING bands given in triples, whose 1st and 3rd
xue@1 2067 entries are the start and end of a band, in bins, and the 2nd is a middle frequency.
xue@1 2068
xue@1 2069 In: SamplesPerSec: sampling rate
xue@1 2070 NumberOfBins: FFT size
xue@1 2071 NumberOfBands: number of mel-frequency bands
xue@1 2072
xue@1 2073 Returns pointer to the array of triples.
xue@1 2074 */
xue@1 2075 double* MFCCPrepareBands(int NumberOfBands, int SamplesPerSec, int NumberOfBins)
xue@1 2076 {
xue@1 2077 double* Bands=new double[NumberOfBands*3];
xue@1 2078 double naqfreq=SamplesPerSec/2.0; //naqvist freq
xue@1 2079 double binwid=SamplesPerSec*1.0/NumberOfBins;
xue@1 2080 double naqmel=Mel(naqfreq);
xue@1 2081 double b=naqmel/(NumberOfBands+1);
xue@1 2082
xue@1 2083 Bands[0]=0;
xue@1 2084 Bands[1]=InvMel(b)/binwid;
xue@1 2085 Bands[2]=InvMel(b*2)/binwid;
xue@1 2086 for (int i=1; i<NumberOfBands; i++)
xue@1 2087 {
xue@1 2088 Bands[3*i]=Bands[3*i-2];
xue@1 2089 Bands[3*i+1]=Bands[3*i-1];
xue@1 2090 Bands[3*i+2]=InvMel(b*(i+2))/binwid;
xue@1 2091 }
xue@1 2092 return Bands;
xue@1 2093 }//MFCCPrepareBands
xue@1 2094
xue@1 2095 //---------------------------------------------------------------------------
xue@1 2096 /*
xue@1 2097 function Multi: vector-constant multiplication
xue@1 2098
xue@1 2099 In: data[count]: a vector
xue@1 2100 mul: a constant
xue@1 2101 Out: data[count]: their product
xue@1 2102
xue@1 2103 No return value.
xue@1 2104 */
xue@1 2105 void Multi(double* data, int count, double mul)
xue@1 2106 {
xue@1 2107 for (int i=0; i<count; i++){*data=*data*mul; data++;}
xue@1 2108 }//Multi
xue@1 2109
xue@1 2110 /*
xue@1 2111 function Multi: vector-constant multiplication
xue@1 2112
xue@1 2113 In: in[count]: a vector
xue@1 2114 mul: a constant
xue@1 2115 Out: out[count]: their product
xue@1 2116
xue@1 2117 No return value.
xue@1 2118 */
xue@1 2119 void Multi(double* out, double* in, int count, double mul)
xue@1 2120 {
xue@1 2121 for (int i=0; i<count; i++) *(out++)=*(in++)*mul;
xue@1 2122 }//Multi
xue@1 2123
xue@1 2124 /*
xue@1 2125 function Multi: vector-constant multiply-addition
xue@1 2126
xue@1 2127 In: in[count], adder[count]: vectors
xue@1 2128 mul: a constant
xue@1 2129 Out: out[count]: in[]+adder[]*mul
xue@1 2130
xue@1 2131 No return value.
xue@1 2132 */
xue@1 2133 void MultiAdd(double* out, double* in, double* adder, int count, double mul)
xue@1 2134 {
xue@1 2135 for (int i=0; i<count; i++) *(out++)=*(in++)+*(adder++)*mul;
xue@1 2136 }//MultiAdd
xue@1 2137
xue@1 2138 //---------------------------------------------------------------------------
xue@1 2139 /*
xue@1 2140 function NearestPeak: finds a peak value in an array that is nearest to a given index
xue@1 2141
xue@1 2142 In: data[count]: an array
xue@1 2143 anindex: an index
xue@1 2144
xue@1 2145 Returns the index to a peak of data[] that is closest to anindex. In case of two cloest indices,
xue@1 2146 returns the index to the higher peak of the two.
xue@1 2147 */
xue@1 2148 int NearestPeak(double* data, int count, int anindex)
xue@1 2149 {
xue@1 2150 int upind=anindex, downind=anindex;
xue@1 2151 if (anindex<1) anindex=1;
xue@1 2152 if (anindex>count-2) anindex=count-2;
xue@1 2153
xue@1 2154 if (data[anindex]>data[anindex-1] && data[anindex]>data[anindex+1]) return anindex;
xue@1 2155
xue@1 2156 if (data[anindex]<data[anindex-1])
xue@1 2157 while (downind>0 && data[downind-1]>data[downind]) downind--;
xue@1 2158 if (data[anindex]<data[anindex+1])
xue@1 2159 while (upind<count-1 && data[upind]<data[upind+1]) upind++;
xue@1 2160
xue@1 2161 if (upind==anindex) return downind;
xue@1 2162 if (downind==anindex) return upind;
xue@1 2163
xue@1 2164 if (anindex-downind<upind-anindex) return downind;
xue@1 2165 else if (anindex-downind>upind-anindex) return upind;
xue@1 2166 else if (data[upind]<data[downind]) return downind;
xue@1 2167 else return upind;
xue@1 2168 }//NearestPeak
xue@1 2169
xue@1 2170 //---------------------------------------------------------------------------
xue@1 2171 /*
xue@1 2172 function NegativeExp: fits the curve y=1-x^lmd.
xue@1 2173
xue@1 2174 In: x[Count], y[Count]: sample points to fit, x[0]=0, x[Count-1]=1, y[0]=1, y[Count-1]=0
xue@1 2175 Out: lmd: coefficient of y=1-x^lmd.
xue@1 2176
xue@1 2177 Returns rms fitting error.
xue@1 2178 */
xue@1 2179 double NegativeExp(double* x, double* y, int Count, double& lmd, int sample, double step, double eps, int maxiter)
xue@1 2180 {
xue@1 2181 lmd=0;
xue@1 2182 for (int i=1; i<Count-1; i++)
xue@1 2183 {
xue@1 2184 if (y[i]<1)
xue@1 2185 lmd+=log(1-y[i])/log(x[i]);
xue@1 2186 else
xue@1 2187 lmd+=-50/log(x[i]);
xue@1 2188 }
xue@1 2189 lmd/=(Count-2);
xue@1 2190
xue@1 2191 //lmd has been initialized
xue@1 2192 //coming up will be the recursive calculation of lmd by lgg
xue@1 2193
xue@1 2194 int iter=0;
xue@1 2195 double laste, lastdel, e=0, del=0, tmp;
xue@1 2196 do
xue@1 2197 {
xue@1 2198 iter++;
xue@1 2199 laste=e;
xue@1 2200 lastdel=del;
xue@1 2201 e=0, del=0;
xue@1 2202 for (int i=1; i<Count-1; i+=sample)
xue@1 2203 {
xue@1 2204 tmp=pow(x[i], lmd);
xue@1 2205 e=e+(y[i]+tmp-1)*(y[i]+tmp-1);
xue@1 2206 del=del+(y[i]+tmp-1)*tmp*log(x[i]);
xue@1 2207 }
xue@1 2208 if (laste && e>laste) lmd+=step*lastdel, step/=2;
xue@1 2209 else lmd+=-step*sample*del;
xue@1 2210 }
xue@1 2211 while (e && iter<=maxiter && (!laste || fabs(laste-e)/e>eps));
xue@1 2212 return sqrt(e/Count);
xue@1 2213 }//NegativeExp
xue@1 2214
xue@1 2215 //---------------------------------------------------------------------------
xue@1 2216 /*
xue@1 2217 function: NL: noise level, calculated on 5% of total frames with least energy
xue@1 2218
xue@1 2219 In: data[Count]:
xue@1 2220 Wid: window width for power level estimation
xue@1 2221
xue@1 2222 Returns noise level, in rms.
xue@1 2223 */
xue@1 2224 double NL(double* data, int Count, int Wid)
xue@1 2225 {
xue@1 2226 int Fr=Count/Wid;
xue@1 2227 int Num=Fr/20+1;
xue@1 2228 double* ene=new double[Num], tmp;
xue@1 2229 for (int i=0; i<Num; i++) ene[i]=1e30;
xue@1 2230 for (int i=0; i<Fr; i++)
xue@1 2231 {
xue@1 2232 tmp=DCPower(&data[i*Wid], Wid, 0);
xue@1 2233 InsertInc(tmp, ene, Num);
xue@1 2234 }
xue@1 2235 double result=Avg(ene, Num, 0);
xue@1 2236 delete[] ene;
xue@1 2237 result=sqrt(result);
xue@1 2238 return result;
xue@1 2239 }//NL
xue@1 2240
xue@1 2241 //---------------------------------------------------------------------------
xue@1 2242 /*
xue@1 2243 function Normalize: normalizes data to [-Maxi, Maxi], without zero shift
xue@1 2244
xue@1 2245 In: data[Count]: data to be normalized
xue@1 2246 Maxi: destination maximal absolute value
xue@1 2247 Out: data[Count]: normalized data
xue@1 2248
xue@1 2249 Returns the original maximal absolute value.
xue@1 2250 */
xue@1 2251 double Normalize(double* data, int Count, double Maxi)
xue@1 2252 {
xue@1 2253 double max=0;
xue@1 2254 double* ldata=data;
xue@1 2255 for (int i=0; i<Count; i++)
xue@1 2256 {
xue@1 2257 if (*ldata>max) max=*ldata;
xue@1 2258 else if (-*ldata>max) max=-*ldata;
xue@1 2259 ldata++;
xue@1 2260 }
xue@1 2261 if (max>0)
xue@1 2262 {
xue@1 2263 Maxi=Maxi/max;
xue@1 2264 for (int i=0; i<Count; i++) *(data++)*=Maxi;
xue@1 2265 }
xue@1 2266 return max;
xue@1 2267 }//Normalize
xue@1 2268
xue@1 2269 /*
xue@1 2270 function Normalize2: normalizes data to a specified Euclidian norm
xue@1 2271
xue@1 2272 In: data[Count]: data to normalize
xue@1 2273 Norm: destination Euclidian norm
xue@1 2274 Out: data[Count]: normalized data.
xue@1 2275
xue@1 2276 Returns the original Euclidian norm.
xue@1 2277 */
xue@1 2278 double Normalize2(double* data, int Count, double Norm)
xue@1 2279 {
xue@1 2280 double norm=0;
xue@1 2281 for (int i=0; i<Count; i++) norm+=data[i]*data[i];
xue@1 2282 norm=sqrt(norm);
xue@1 2283 double mul=norm/Norm;
xue@1 2284 if (mul!=0) for (int i=0; i<Count; i++) data[i]/=mul;
xue@1 2285 return norm;
xue@1 2286 }//Normalize2
xue@1 2287
xue@1 2288 //---------------------------------------------------------------------------
xue@1 2289 /*
xue@1 2290 function PhaseSpan: computes the unwrapped phase variation across the Nyquist range
xue@1 2291
xue@1 2292 In: data[Count]: time-domain data
xue@1 2293 aparams: a fftparams structure
xue@1 2294
xue@1 2295 Returns the difference between unwrapped phase angles at 0 and Nyquist frequency.
xue@1 2296 */
xue@1 2297 double PhaseSpan(double* data, int Count, void* aparams)
xue@1 2298 {
xue@1 2299 int Pad=1;
xue@1 2300 fftparams* params=(fftparams*)aparams;
xue@1 2301 double* Arg=new double[Count*Pad];
xue@1 2302 AllocateFFTBuffer(Count*Pad, Amp, w, x);
xue@1 2303 memset(Amp, 0, sizeof(double)*Count*Pad);
xue@1 2304 memcpy(&Amp[Count*(Pad-1)/2], data, sizeof(double)*Count);
xue@1 2305 ApplyWindow(Amp, Amp, params->Amp, Count);
xue@1 2306 RFFTC(Amp, Amp, Arg, log2(Count*Pad), w, x, 0);
xue@1 2307
xue@1 2308 SmoothPhase(Arg, Count*Pad/2+1);
xue@1 2309 double result=Arg[Count*Pad/2]-Arg[0];
xue@1 2310 delete[] Arg;
xue@1 2311 FreeFFTBuffer(Amp);
xue@1 2312 return result;
xue@1 2313 }//PhaseSpan
xue@1 2314
xue@1 2315 //---------------------------------------------------------------------------
xue@1 2316 /*
xue@1 2317 function PolyFit: least square polynomial fitting y=sum(i){a[i]*x^i}
xue@1 2318
xue@1 2319 In: x[N], y[N]: sample points
xue@1 2320 P: order of polynomial, P<N
xue@1 2321 Out: a[P+1]: coefficients of polynomial
xue@1 2322
xue@1 2323 No return value.
xue@1 2324 */
xue@1 2325 void PolyFit(int P, double* a, int N, double* x, double* y)
xue@1 2326 {
xue@1 2327 Alloc2(P+1, P+1, aa);
xue@1 2328 double ai0, bi, *bb=new double[P+1], *s=new double[N], *r=new double[N];
xue@1 2329 aa[0][0]=N; bi=0; for (int i=0; i<N; i++) s[i]=1, r[i]=y[i], bi+=y[i]; bb[0]=bi;
xue@1 2330
xue@1 2331 for (int i=1; i<=P; i++)
xue@1 2332 {
xue@1 2333 ai0=bi=0; for (int j=0; j<N; j++) {s[j]*=x[j], r[j]*=x[j]; ai0+=s[j], bi+=r[j];}
xue@1 2334 for (int j=0; j<=i; j++) aa[i-j][j]=ai0; bb[i]=bi;
xue@1 2335 }
xue@1 2336 for (int i=P+1; i<=2*P; i++)
xue@1 2337 {
xue@1 2338 ai0=0; for (int j=0; j<N; j++) {s[j]*=x[j]; ai0+=s[j];}
xue@1 2339 for (int j=i-P; j<=P; j++) aa[i-j][j]=ai0;
xue@1 2340 }
xue@1 2341 GESCP(P+1, a, aa, bb);
xue@1 2342 DeAlloc2(aa); delete[] bb; delete[] s; delete[] r;
xue@1 2343 }//PolyFit
xue@1 2344
xue@1 2345 //---------------------------------------------------------------------------
xue@1 2346 /*
xue@1 2347 function Pow: vector power function
xue@1 2348
xue@1 2349 In: data[Count]: a vector
xue@1 2350 ex: expontnet
xue@1 2351 Out: data[Count]: point-wise $ex-th power of data[]
xue@1 2352
xue@1 2353 No return value.
xue@1 2354 */
xue@1 2355 void Pow(double* data, int Count, double ex)
xue@1 2356 {
xue@1 2357 for (int i=0; i<Count; i++)
xue@1 2358 data[i]=pow(data[i], ex);
xue@1 2359 }//Power
xue@1 2360
xue@1 2361 //---------------------------------------------------------------------------
xue@1 2362 /*
xue@1 2363 Rectify: semi-wave rectification
xue@1 2364
xue@1 2365 In: data[Count]: data to rectify
xue@1 2366 th: rectification threshold: values below th are rectified to th
xue@1 2367 Out: data[Count]: recitified data
xue@1 2368
xue@1 2369 Returns number of preserved (i.e. not rectified) samples.
xue@1 2370 */
xue@1 2371 int Rectify(double* data, int Count, double th)
xue@1 2372 {
xue@1 2373 int Result=0;
xue@1 2374 for (int i=0; i<Count; i++)
xue@1 2375 {
xue@1 2376 if (data[i]<=th) data[i]=th;
xue@1 2377 else Result++;
xue@1 2378 }
xue@1 2379 return Result;
xue@1 2380 }//Rectify
xue@1 2381
xue@1 2382 //---------------------------------------------------------------------------
xue@1 2383 /*
xue@1 2384 function Res: minimum absolute residue.
xue@1 2385
xue@1 2386 In: in: a number
xue@1 2387 mod: modulus
xue@1 2388
xue@1 2389 Returns the minimal absolute residue of $in devided by $mod.
xue@1 2390 */
xue@1 2391 double Res(double in, double mod)
xue@1 2392 {
xue@1 2393 int i=in/mod;
xue@1 2394 in=in-i*mod;
xue@1 2395 if (in>mod/2) in-=mod;
xue@1 2396 if (in<-mod/2) in+=mod;
xue@1 2397 return in;
xue@1 2398 }//Res
xue@1 2399
xue@1 2400 //---------------------------------------------------------------------------
xue@1 2401 /*
xue@1 2402 function Romberg: Romberg algorithm for numerical integration
xue@1 2403
xue@1 2404 In: f: function to integrate
xue@1 2405 params: extra argument for calling f
xue@1 2406 a, b: integration boundaries
xue@1 2407 n: depth of sampling
xue@1 2408
xue@1 2409 Returns the integral of f(*, params) over [a, b].
xue@1 2410 */
xue@1 2411 double Romberg(int n, double(*f)(double, void*), double a, double b, void* params)
xue@1 2412 {
xue@1 2413 int np=1;
xue@1 2414 double* r1=new double[n+1];.
xue@1 2415 double* r2=new double[n+1];
xue@1 2416 double h=b-a, *swp;
xue@1 2417 r1[1]=h*(f(a, params)+f(b, params))/2;
xue@1 2418 for (int i=2; i<=n; i++)
xue@1 2419 {
xue@1 2420 double akh=a+0.5*h; r2[1]=f(akh, params);
xue@1 2421 for (int k=2; k<=np; k++) {akh+=h; r2[1]+=f(akh, params);} //akh=a+(k-0.5)h
xue@1 2422 r2[1]=0.5*(r1[1]+h*r2[1]);
xue@1 2423 double fj=4;
xue@1 2424 for (int j=2; j<=i; j++) {r2[j]=(fj*r2[j-1]-r1[j-1])/(fj-1); fj*=4;} //fj=4^(j-1)
xue@1 2425 h/=2; np*=2;
xue@1 2426 swp=r1; r1=r2; r2=swp;
xue@1 2427 }
xue@1 2428 h=r1[n];
xue@1 2429 delete[] r1;
xue@1 2430 delete[] r2;
xue@1 2431 return h;
xue@1 2432 }//Romberg
xue@1 2433
xue@1 2434 /*
xue@1 2435 function Romberg: Romberg algorithm for numerical integration, may return before specified depth on
xue@1 2436 convergence.
xue@1 2437
xue@1 2438 In: f: function to integrate
xue@1 2439 params: extra argument for calling f
xue@1 2440 a, b: integration boundaries
xue@1 2441 n: depth of sampling
xue@1 2442 ep: convergence test threshold
xue@1 2443
xue@1 2444 Returns the integral of f(*, params) over [a, b].
xue@1 2445 */
xue@1 2446 double Romberg(double(*f)(double, void*), double a, double b, void* params, int n, double ep)
xue@1 2447 {
xue@1 2448 int i, np=1;
xue@1 2449 double* r1=new double[n+1];
xue@1 2450 double* r2=new double[n+1];
xue@1 2451 double h=b-a, *swp;
xue@1 2452 r1[1]=h*(f(a, params)+f(b, params))/2;
xue@1 2453 bool mep=false;
xue@1 2454 for (i=2; i<=n; i++)
xue@1 2455 {
xue@1 2456 double akh=a+0.5*h; r2[1]=f(akh, params);
xue@1 2457 for (int k=2; k<=np; k++) {akh+=h; r2[1]+=f(akh, params);} //akh=a+(k-0.5)h
xue@1 2458 r2[1]=0.5*(r1[1]+h*r2[1]);
xue@1 2459 double fj=4;
xue@1 2460 for (int j=2; j<=i; j++) {r2[j]=(fj*r2[j-1]-r1[j-1])/(fj-1); fj*=4;} //fj=4^(j-1)
xue@1 2461
xue@1 2462 if (fabs(r2[i]-r1[i-1])<ep)
xue@1 2463 {
xue@1 2464 if (mep) break;
xue@1 2465 else mep=true;
xue@1 2466 }
xue@1 2467 else mep=false;
xue@1 2468
xue@1 2469 h/=2; np*=2;
xue@1 2470 swp=r1; r1=r2; r2=swp;
xue@1 2471 }
xue@1 2472 if (i<=n) h=r2[i];
xue@1 2473 else h=r1[n];
xue@1 2474 delete[] r1;
xue@1 2475 delete[] r2;
xue@1 2476 return h;
xue@1 2477 }//Romberg
xue@1 2478
xue@1 2479 //---------------------------------------------------------------------------
xue@1 2480 //analog and digital sinc functions
xue@1 2481
xue@1 2482 //sinca(0)=1, sincd(0)=N, sinca(1)=sincd(1)=0.
xue@1 2483 /*
xue@1 2484 function sinca: analog sinc function.
xue@1 2485
xue@1 2486 In: x: frequency
xue@1 2487
xue@1 2488 Returns sinc(x)=sin(pi*x)/(pi*x), sinca(0)=1, sinca(1)=0
xue@1 2489 */
xue@1 2490 double sinca(double x)
xue@1 2491 {
xue@1 2492 if (x==0) return 1;
xue@1 2493 return sin(M_PI*x)/(M_PI*x);
xue@1 2494 }//sinca
xue@1 2495
xue@1 2496 /*
xue@1 2497 function sincd_unn: unnormalized discrete sinc function
xue@1 2498
xue@1 2499 In: x: frequency
xue@1 2500 N: scale (window size, DFT size)
xue@1 2501
xue@1 2502 Returns sinc(x)=sin(pi*x)/sin(pi*x/N), sincd(0)=N, sincd(1)=0.
xue@1 2503 */
xue@1 2504 double sincd_unn(double x, int N)
xue@1 2505 {
xue@1 2506 if (x==0) return N;
xue@1 2507 return sin(M_PI*x)/sin(M_PI*x/N);
xue@1 2508 }//sincd
xue@1 2509
xue@1 2510 //---------------------------------------------------------------------------
xue@1 2511 /*
xue@1 2512 SmoothPhase: phase unwrapping on module mpi*PI, 2PI by default
xue@1 2513
xue@1 2514 In: Arg[Count]: phase angles to unwrap
xue@1 2515 mpi: unwrapping modulus, in pi's
xue@1 2516 Out: Arg[Count]: unwrapped phase
xue@1 2517
xue@1 2518 Returns the amount of unwrap, in pi's, of the last phase angle
xue@1 2519 */
xue@1 2520 double SmoothPhase(double* Arg, int Count, int mpi)
xue@1 2521 {
xue@1 2522 double m2pi=mpi*M_PI;
xue@1 2523 for (int i=1; i<Count-1; i++)
xue@1 2524 Arg[i]=Arg[i-1]+Res(Arg[i]-Arg[i-1], m2pi);
xue@1 2525 double tmp=Res(Arg[Count-1]-Arg[Count-2], m2pi);
xue@1 2526 double result=(Arg[Count-1]-Arg[Count-2]-tmp)/m2pi;
xue@1 2527 Arg[Count-1]=Arg[Count-2]+tmp;
xue@1 2528
xue@1 2529 return result;
xue@1 2530 }//SmoothPhase
xue@1 2531
xue@1 2532 //---------------------------------------------------------------------------
xue@1 2533 //the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2534
xue@1 2535 /*
xue@1 2536 StiffB: computes stiffness coefficient from fundamental and another partial frequency based on the
xue@1 2537 stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2538
xue@1 2539 In: f0: fundamental frequency
xue@1 2540 m: 1-based partial index
xue@1 2541 fm: frequency of partial m
xue@1 2542
xue@1 2543 Returns stiffness coefficient B.
xue@1 2544 */
xue@1 2545 double StiffB(double f0, double fm, int m)
xue@1 2546 {
xue@1 2547 double f2=fm/m/f0;
xue@1 2548 return (f2*f2-1)/(m*m-1);
xue@1 2549 }//StiffB
xue@1 2550
xue@1 2551 //StiffF: partial frequency of a stiff string
xue@1 2552 /*
xue@1 2553 StiffFm: computes a partial frequency from fundamental frequency and partial index based on the stiff
xue@1 2554 string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2555
xue@1 2556 In: f0: fundamental frequency
xue@1 2557 m: 1-based partial index
xue@1 2558 B: stiffness coefficient
xue@1 2559
xue@1 2560 Returns frequency of the m-th partial.
xue@1 2561 */
xue@1 2562 double StiffFm(double f0, int m, double B)
xue@1 2563 {
xue@1 2564 return m*f0*sqrt(1+B*(m*m-1));
xue@1 2565 }//StiffFm
xue@1 2566
xue@1 2567 /*
xue@1 2568 StiffF0: computes fundamental frequency from another partial frequency and stiffness coefficient based
xue@1 2569 on the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2570
xue@1 2571 In: m: 1-based partial index
xue@1 2572 fm: frequency of partial m
xue@1 2573 B: stiffness coefficient
xue@1 2574
xue@1 2575 Returns the fundamental frequency.
xue@1 2576 */
xue@1 2577 double StiffF0(double fm, int m, double B)
xue@1 2578 {
xue@1 2579 return fm/m/sqrt(1+B*(m*m-1));
xue@1 2580 }//StiffF0
xue@1 2581
xue@1 2582 /*
xue@1 2583 StiffM: computes 1-based partial index from partial frequency, fundamental frequency and stiffness
xue@1 2584 coefficient based on the stiff string partial frequency model f[m]=mf[1]*sqrt(1+B(m*m-1)).
xue@1 2585
xue@1 2586 In: f0: fundamental freqency
xue@1 2587 fm: a partial frequency
xue@1 2588 B: stiffness coefficient
xue@1 2589
xue@1 2590 Returns the 1-based partial index which will generate the specified partial frequency from the model
xue@1 2591 which, however, does not have to be an integer in this function.
xue@1 2592 */
xue@1 2593 double StiffM(double f0, double fm, double B)
xue@1 2594 {
xue@1 2595 if (B<1e-14) return fm/f0;
xue@1 2596 double b1=B-1, ff=fm/f0;
xue@1 2597 double delta=b1*b1+4*B*ff*ff;
xue@1 2598 if (delta<0)
xue@1 2599 return sqrt(b1/2/B);
xue@1 2600 else
xue@1 2601 return sqrt((b1+sqrt(delta))/2/B);
xue@1 2602 }//StiffMd
xue@1 2603
xue@1 2604 //---------------------------------------------------------------------------
xue@1 2605 /*
xue@1 2606 TFFilter: time-frequency filtering with Hann-windowed overlap-add.
xue@1 2607
xue@1 2608 In: data[Count]: input data
xue@1 2609 Spans: time-frequency spans
xue@1 2610 wt, windp: type and extra parameter of FFT window
xue@1 2611 Sps: sampling rate
xue@1 2612 TOffst: optional offset applied to all time values in Spans, set to Spans timing of of data[0].
xue@1 2613 Pass: set to pass T-F content covered by Spans, clear to stop T-F content covered by Spans
xue@1 2614 Out: dataout[Count]: filtered data
xue@1 2615
xue@1 2616 No return value. Identical data and dataout allowed.
xue@1 2617 */
xue@1 2618 void TFFilter(double* data, double* dataout, int Count, int Wid, TTFSpans* Spans, bool Pass, WindowType wt, double windp, int Sps, int TOffst)
xue@1 2619 {
xue@1 2620 int HWid=Wid/2;
xue@1 2621 int Fr=Count/HWid-1;
xue@1 2622 int Order=log2(Wid);
xue@1 2623
xue@1 2624 int** lspan=new int*[Fr];
xue@1 2625 double* lxspan=new double[Fr];
xue@1 2626
xue@1 2627 lspan[0]=new int[Fr*Wid];
xue@1 2628 for (int i=1; i<Fr; i++)
xue@1 2629 lspan[i]=&lspan[0][i*Wid];
xue@1 2630
xue@1 2631 //fill local filter span table
xue@1 2632 if (Pass)
xue@1 2633 memset(lspan[0], 0, sizeof(int)*Fr*Wid);
xue@1 2634 else
xue@1 2635 for (int i=0; i<Fr; i++)
xue@1 2636 for (int j=0; j<Wid; j++)
xue@1 2637 lspan[i][j]=1;
xue@1 2638
xue@1 2639 for (int i=0; i<Spans->Count; i++)
xue@1 2640 {
xue@1 2641 int lx1, lx2, ly1, ly2;
xue@1 2642 lx1=(Spans->Items[i].T1-TOffst)/HWid-1;
xue@1 2643 lx2=(Spans->Items[i].T2-1-TOffst)/HWid;
xue@1 2644 ly1=Spans->Items[i].F1*2/Sps*HWid+0.001;
xue@1 2645 ly2=Spans->Items[i].F2*2/Sps*HWid+1;
xue@1 2646 if (lx1<0) lx1=0;
xue@1 2647 if (lx2>=Fr) lx2=Fr-1;
xue@1 2648 if (ly1<0) ly1=0;
xue@1 2649 if (ly1>HWid) ly1=HWid;
xue@1 2650 if (Pass)
xue@1 2651 for (int x=lx1; x<=lx2; x++)
xue@1 2652 for (int y=ly1; y<=ly2; y++)
xue@1 2653 lspan[x][y]=1;
xue@1 2654 else
xue@1 2655 for (int x=lx1; x<=lx2; x++)
xue@1 2656 for (int y=ly1; y<=ly2; y++)
xue@1 2657 lspan[x][y]=0;
xue@1 2658 }
xue@1 2659 for (int i=0; i<Fr; i++)
xue@1 2660 {
xue@1 2661 lxspan[i]=0;
xue@1 2662 for (int j=0; j<=HWid; j++)
xue@1 2663 {
xue@1 2664 if (lspan[i][j])
xue@1 2665 lxspan[i]=lxspan[i]+1;
xue@1 2666 }
xue@1 2667 lxspan[i]/=(HWid+1);
xue@1 2668 }
xue@1 2669 double* winf=NewWindow(wt, Wid, 0, &windp);
xue@1 2670 double* wini=NewWindow(wtHann, Wid, NULL, NULL);
xue@1 2671 for (int i=0; i<Wid; i++)
xue@1 2672 if (winf[i]!=0) wini[i]=wini[i]/winf[i];
xue@1 2673 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 2674 double* tmpdata=new double[HWid];
xue@1 2675 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 2676
xue@1 2677 for (int i=0; i<Fr; i++)
xue@1 2678 {
xue@1 2679 if (lxspan[i]==0)
xue@1 2680 {
xue@1 2681 memcpy(&dataout[i*HWid], tmpdata, sizeof(double)*HWid);
xue@1 2682 memset(tmpdata, 0, sizeof(double)*HWid);
xue@1 2683 continue;
xue@1 2684 }
xue@1 2685 if (lxspan[i]==1)
xue@1 2686 {
xue@1 2687 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 2688 if (i>0)
xue@1 2689 for (int k=0; k<HWid; k++)
xue@1 2690 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2691 for (int k=HWid; k<Wid; k++)
xue@1 2692 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2693
xue@1 2694 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 2695 for (int k=0; k<HWid; k++)
xue@1 2696 dataout[i*HWid+k]+=ldata[k];
xue@1 2697 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2698 continue;
xue@1 2699 }
xue@1 2700 memcpy(ldata, &data[i*HWid], Wid*sizeof(double));
xue@1 2701 if (i>0)
xue@1 2702 for (int k=0; k<HWid; k++)
xue@1 2703 ldata[k]=ldata[k]*winf[k];
xue@1 2704 for (int k=HWid; k<Wid; k++)
xue@1 2705 ldata[k]=ldata[k]*winf[k];
xue@1 2706
xue@1 2707 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 2708
xue@1 2709 if (!lspan[i][0]) x[0].x=x[0].y=0;
xue@1 2710 for (int j=1; j<=HWid; j++)
xue@1 2711 if (!lspan[i][j]) x[j].x=x[Wid-j].x=x[j].y=x[Wid-j].y=0;
xue@1 2712
xue@1 2713 CIFFTR(x, Order, w, ldata);
xue@1 2714
xue@1 2715 if (i>0)
xue@1 2716 for (int k=0; k<HWid; k++)
xue@1 2717 ldata[k]=ldata[k]*wini[k];
xue@1 2718 for (int k=HWid; k<Wid; k++)
xue@1 2719 ldata[k]=ldata[k]*wini[k];
xue@1 2720
xue@1 2721 memcpy(&dataout[i*HWid], tmpdata, HWid*sizeof(double));
xue@1 2722 for (int k=0; k<HWid; k++)
xue@1 2723 dataout[i*HWid+k]+=ldata[k];
xue@1 2724 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2725 }
xue@1 2726 memcpy(&dataout[Fr*HWid], tmpdata, sizeof(double)*HWid);
xue@1 2727 memset(&dataout[Fr*HWid+HWid], 0, sizeof(double)*(Count-Fr*HWid-HWid));
xue@1 2728
xue@1 2729 FreeFFTBuffer(ldata);
xue@1 2730 delete[] lspan[0];
xue@1 2731 delete[] lspan;
xue@1 2732 delete[] lxspan;
xue@1 2733 delete[] tmpdata;
xue@1 2734 delete[] winf;
xue@1 2735 delete[] wini;
xue@1 2736 }//TFFilter
xue@1 2737 //version on integer data, where BytesPerSample specified the integer format.
xue@1 2738 void TFFilter(void* data, void* dataout, int BytesPerSample, int Count, int Wid, TTFSpans* Spans, bool Pass, WindowType wt, double windp, int Sps, int TOffst)
xue@1 2739 {
xue@1 2740 int HWid=Wid/2;
xue@1 2741 int Fr=Count/HWid-1;
xue@1 2742 int Order=log2(Wid);
xue@1 2743
xue@1 2744 int** lspan=new int*[Fr];
xue@1 2745 double* lxspan=new double[Fr];
xue@1 2746
xue@1 2747 lspan[0]=new int[Fr*Wid];
xue@1 2748 for (int i=1; i<Fr; i++)
xue@1 2749 lspan[i]=&lspan[0][i*Wid];
xue@1 2750
xue@1 2751 //fill local filter span table
xue@1 2752 if (Pass)
xue@1 2753 memset(lspan[0], 0, sizeof(int)*Fr*Wid);
xue@1 2754 else
xue@1 2755 for (int i=0; i<Fr; i++)
xue@1 2756 for (int j=0; j<Wid; j++)
xue@1 2757 lspan[i][j]=1;
xue@1 2758
xue@1 2759 for (int i=0; i<Spans->Count; i++)
xue@1 2760 {
xue@1 2761 int lx1, lx2, ly1, ly2;
xue@1 2762 lx1=(Spans->Items[i].T1-TOffst)/HWid-1;
xue@1 2763 lx2=(Spans->Items[i].T2-1-TOffst)/HWid;
xue@1 2764 ly1=Spans->Items[i].F1*2/Sps*HWid+0.001;
xue@1 2765 ly2=Spans->Items[i].F2*2/Sps*HWid+1;
xue@1 2766 if (lx1<0) lx1=0;
xue@1 2767 if (lx2>=Fr) lx2=Fr-1;
xue@1 2768 if (ly1<0) ly1=0;
xue@1 2769 if (ly1>HWid) ly1=HWid;
xue@1 2770 if (Pass)
xue@1 2771 for (int x=lx1; x<=lx2; x++)
xue@1 2772 for (int y=ly1; y<=ly2; y++)
xue@1 2773 lspan[x][y]=1;
xue@1 2774 else
xue@1 2775 for (int x=lx1; x<=lx2; x++)
xue@1 2776 for (int y=ly1; y<=ly2; y++)
xue@1 2777 lspan[x][y]=0;
xue@1 2778 }
xue@1 2779 for (int i=0; i<Fr; i++)
xue@1 2780 {
xue@1 2781 lxspan[i]=0;
xue@1 2782 for (int j=0; j<=HWid; j++)
xue@1 2783 {
xue@1 2784 if (lspan[i][j])
xue@1 2785 lxspan[i]=lxspan[i]+1;
xue@1 2786 }
xue@1 2787 lxspan[i]/=(HWid+1);
xue@1 2788 }
xue@1 2789 double* winf=NewWindow(wt, Wid, 0, &windp);
xue@1 2790 double* wini=NewWindow(wtHann, Wid, NULL, NULL);
xue@1 2791 for (int i=0; i<Wid; i++)
xue@1 2792 if (winf[i]!=0) wini[i]=wini[i]/winf[i];
xue@1 2793 AllocateFFTBuffer(Wid, ldata, w, x);
xue@1 2794 double* tmpdata=new double[HWid];
xue@1 2795 memset(tmpdata, 0, HWid*sizeof(double));
xue@1 2796
xue@1 2797 for (int i=0; i<Fr; i++)
xue@1 2798 {
xue@1 2799 if (lxspan[i]==0)
xue@1 2800 {
xue@1 2801 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2802 memset(tmpdata, 0, sizeof(double)*HWid);
xue@1 2803 continue;
xue@1 2804 }
xue@1 2805 if (lxspan[i]==1)
xue@1 2806 {
xue@1 2807 IntToDouble(ldata, &((char*)data)[i*HWid*BytesPerSample], BytesPerSample, Wid);
xue@1 2808 if (i>0)
xue@1 2809 for (int k=0; k<HWid; k++)
xue@1 2810 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2811 for (int k=HWid; k<Wid; k++)
xue@1 2812 ldata[k]=ldata[k]*winf[k]*wini[k];
xue@1 2813
xue@1 2814 for (int k=0; k<HWid; k++) tmpdata[k]+=ldata[k];
xue@1 2815 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2816 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2817 continue;
xue@1 2818 }
xue@1 2819 IntToDouble(ldata, &((char*)data)[i*HWid*BytesPerSample], BytesPerSample, Wid);
xue@1 2820 if (i>0)
xue@1 2821 for (int k=0; k<HWid; k++)
xue@1 2822 ldata[k]=ldata[k]*winf[k];
xue@1 2823 for (int k=HWid; k<Wid; k++)
xue@1 2824 ldata[k]=ldata[k]*winf[k];
xue@1 2825
xue@1 2826 RFFTC(ldata, NULL, NULL, Order, w, x, 0);
xue@1 2827
xue@1 2828 if (!lspan[i][0]) x[0].x=x[0].y=0;
xue@1 2829 for (int j=1; j<=HWid; j++)
xue@1 2830 if (!lspan[i][j]) x[j].x=x[Wid-j].x=x[j].y=x[Wid-j].y=0;
xue@1 2831
xue@1 2832 CIFFTR(x, Order, w, ldata);
xue@1 2833
xue@1 2834 if (i>0)
xue@1 2835 for (int k=0; k<HWid; k++)
xue@1 2836 ldata[k]=ldata[k]*wini[k];
xue@1 2837 for (int k=HWid; k<Wid; k++)
xue@1 2838 ldata[k]=ldata[k]*wini[k];
xue@1 2839
xue@1 2840
xue@1 2841 for (int k=0; k<HWid; k++)
xue@1 2842 tmpdata[k]+=ldata[k];
xue@1 2843 DoubleToInt(&((char*)dataout)[i*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2844 memcpy(tmpdata, &ldata[HWid], HWid*sizeof(double));
xue@1 2845 }
xue@1 2846 DoubleToInt(&((char*)dataout)[Fr*HWid*BytesPerSample], BytesPerSample, tmpdata, HWid);
xue@1 2847 memset(&((char*)dataout)[(Fr*HWid+HWid)*BytesPerSample], 0, BytesPerSample*(Count-Fr*HWid-HWid));
xue@1 2848
xue@1 2849 FreeFFTBuffer(ldata);
xue@1 2850
xue@1 2851 delete[] lspan[0];
xue@1 2852 delete[] lspan;
xue@1 2853 delete[] lxspan;
xue@1 2854 delete[] tmpdata;
xue@1 2855 delete[] winf;
xue@1 2856 delete[] wini;
xue@1 2857 }//TFFilter
xue@1 2858
xue@1 2859
xue@1 2860