annotate sinest.h @ 2:fc19d45615d1

* Make all file names lower-case to avoid case ambiguity (some includes differed in case from the filenames they were trying to include). Also replace MinGW-specific mem.h with string.h
author Chris Cannam
date Tue, 05 Oct 2010 11:04:40 +0100
parents SinEst.h@6422640a802f
children 5f3c32dc6e17
rev   line source
xue@1 1 #ifndef SinEstH
xue@1 2 #define SinEstH
xue@1 3
xue@1 4 /*
xue@1 5 SinEst.cpp - sinusoid estimation algorithms
xue@1 6 */
xue@1 7
xue@1 8
Chris@2 9 #include <string.h>
xue@1 10 #include "xcomplex.h"
xue@1 11 #include "arrayalloc.h"
xue@1 12 #include "matrix.h"
xue@1 13 #ifdef I
xue@1 14 #undef I
xue@1 15 #endif
xue@1 16
xue@1 17 //--since function derivative------------------------------------------------
xue@1 18 double ddsincd_unn(double x, int N);
xue@1 19 double dsincd_unn(double x, int N);
xue@1 20
xue@1 21 //--window spectrum and derivatives------------------------------------------
xue@1 22 cdouble* Window(cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 23 void dWindow(cdouble* dx, cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 24 void ddWindow(cdouble* ddx, cdouble* dx, cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 25
xue@1 26 //--spectral projection routines---------------------------------------------
xue@1 27 cdouble IPWindowC(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2);
xue@1 28
xue@1 29 double IPWindow(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2, bool returnamplitude);
xue@1 30 double IPWindow(double f, void* params);
xue@1 31 double ddIPWindow(double f, void* params);
xue@1 32 double ddIPWindow(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2, double& dipwindow, double& ipwindow);
xue@1 33
xue@1 34 double sIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, cdouble* ej2ph=0);
xue@1 35 double sIPWindow(double f, void* params);
xue@1 36 double dsIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& sip);
xue@1 37 double dsIPWindow(double f, void* params);
xue@1 38 double ddsIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& dsip, double& sip);
xue@1 39 double ddsIPWindow(double f, void* params);
xue@1 40 double ddsIPWindow_unn(double f, cdouble* x, int N, int M, double* c, int K1, int K2, double& dsipwindow, double& sipwindow, cdouble* w_unn=0);
xue@1 41
xue@1 42 double sIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, cdouble* ej2ph=0);
xue@1 43 double sIPWindowC(double f, void* params);
xue@1 44 double dsIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& sip);
xue@1 45 double dsIPWindowC(double f, void* params);
xue@1 46 double ddsIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& dsip, double& sip);
xue@1 47 double ddsIPWindowC(double f, void* params);
xue@1 48
xue@1 49 //--least-square sinusoid estimation routines--------------------------------
xue@1 50 double LSESinusoid(cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf=1e-6);
xue@1 51 void LSESinusoid(double& f, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf=1e-6);
xue@1 52 double LSESinusoid(int f1, int f2, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf);
xue@1 53 int LSESinusoid(double& f, double f1, double f2, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf);
xue@1 54 double LSESinusoidMP(double& f, double f1, double f2, cdouble** x, int Fr, int N, double B, int M, double* c, double iH2, double* a, double* ph, double epf);
xue@1 55
xue@1 56 //--multi-sinusoid spectral projection routines------------------------------
xue@1 57 void IPMulti(int I, double* f, cdouble* lmd, cdouble* x, int Wid, int K1, int K2, int M, double* c, double eps=0);
xue@1 58 void IPMulti(int I, double* f, cdouble* lmd, cfloat* x, int Wid, int K1, int K2, int M, double* c, double eps=0, double* sens=0, double* r1=0);
xue@1 59 void IPMultiSens(int I, double* f, int Wid, int K1, int K2, int M, double* c, double* sens, double eps=0);
xue@1 60 double IPMulti(int I, double* f, cdouble* lmd, cdouble* x, int Wid, int M, double* c, double iH2, int B);
xue@1 61 double IPMulti_Direct(int I, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, double iH2, int B);
xue@1 62 double IPMulti_GS(int I, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, double iH2, int B, double** L=0, double** Q=0);
xue@1 63 cdouble* IPMulti(int I, int J, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, cdouble** wt=0, cdouble** Q=0, double** L=0, MList* RetList=0);
xue@1 64
xue@1 65 //--dual-sinusoid spectral projection routines-------------------------------
xue@1 66 double WindowDuo(double df, int N, double* d, int M, cdouble* w);
xue@1 67 double ddWindowDuo(double df, int N, double* d, int M, double& dwindow, double& window, cdouble* w);
xue@1 68 double sIPWindowDuo(double f1, double f2, cdouble* x, int N, double* c, double* d, int M, double iH2, int K1, int K2, cdouble& lmd1, cdouble& lmd2);
xue@1 69 double sIPWindowDuo(double f2, void* params);
xue@1 70 void ddsIPWindowDuo(double* ddsip2, double f1, double f2, cdouble* x, int N, double* c, double* d, int M, double iH2, int K1, int K2, cdouble& lmd1, cdouble& lmd2);
xue@1 71 double ddsIPWindowDuo(double f2, void* params);
xue@1 72 int LSEDuo(double& f2, double fmin, double fmax, double f1, cdouble* x, int N, double B, double* c, double* d, int M, double iH2, cdouble& r1, cdouble &r2, double epf);
xue@1 73
xue@1 74 //--time-frequency reassignment----------------------------------------------
xue@1 75 void TFReas(double& f, double& t, double& fslope, int Wid, cdouble* data, double* win, double* dwin, double* ddwin, double* plogaslope=0);
xue@1 76 void TFReas(double& f, double t, double& a, double& ph, double& fslope, int Wid, cdouble* data, double* w, double* dw, double* ddw, double* win=0);
xue@1 77
xue@1 78 //--additive and multiplicative reestimation routines------------------------
xue@1 79 typedef double (*TBasicAnalyzer)(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, int reserved, bool LogA);
xue@1 80 void AdditiveUpdate(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 81 void AdditiveAnalyzer(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 82 void MultiplicativeUpdate(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 83 void MultiplicativeAnalyzer(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 84 void MultiplicativeUpdateF(double* fs, double* as, double* phs, __int16* x, int Fr, int frst, int fren, int Wid, int Offst);
xue@1 85
xue@1 86 void ReEstFreq(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* ps, double* fa, double* fb, double* fc, double* fd, double* ns, int* Wids=0);
xue@1 87 void ReEstFreq_2(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* f3, double* f2, double* f1, double* f0, double* ns);
xue@1 88 void ReEstFreqAmp(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* ps, double* as, double* fa, double* fb, double* fc, double* fd, double* aa, double* ab, double* ac, double* ad, double* ns, int* Wids=0);
xue@1 89 int Reestimate2(int FrCount, int Wid, int Offst, double* win, int M, double* c, double iH2, double* x, double* ae, double* fe, double* pe, double* aret, double* fret, double *pret, int maxiter, int* Wids=0);
xue@1 90
xue@1 91 //--local derivative algorithms - DAFx09-------------------------------------
xue@1 92 void Derivative(int M, double (**h)(double t, void*), double (**dh)(double t, void*), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg);
xue@1 93 void DerivativeLS(int K, int M, double (**h)(double t, void* harg), double (**dh)(double t, void* harg), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg, bool r0=false);
xue@1 94 void DerivativeLS(int Fr, int K, int M, double (**h)(double t, void* harg), double (**dh)(double t, void* harg), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg, bool r0=false);
xue@1 95
xue@1 96 //--the Abe-Smith estimator--------------------------------------------------
xue@1 97 void TFAS05(double& f, double& t, double& a, double& ph, double& aesp, double& fslope, int Wid, double* data, double* w, double res=1);
xue@1 98 void TFAS05_enh(double& f, double& t, double& a, double& ph, double& aesp, double& fslope, int Wid, double* data, double* w, double res=1);
xue@1 99 void TFAS05_enh(double& f, double& t, double& a, double& ph, int Wid, double* data, double* w, double res=1);
xue@1 100
xue@1 101 //--piecewise derivative algorithms and tools--------------------------------
xue@1 102 void DerivativePiecewise(int N, cdouble* aita, int L, double* f, int T, cdouble* s, double*** A, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0);
xue@1 103 void DerivativePiecewise2(int Np, double* p, int Nq, double* q, int L, double* f, int T, cdouble* s, double*** A, double*** B, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0);
xue@1 104 void DerivativePiecewise3(int Np, double* p, int Nq, double* q, int L, double* f, int T, cdouble* s, double*** DA, double*** B, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0, double** dh=0);
xue@1 105 void seth(int M, int T, double**& h, MList* mlist);
xue@1 106 void setdh(int M, int T, double**& dh, MList* mlist);
xue@1 107 void setdih(int M, int T, double**& dih, MList* mlist);
xue@1 108 void setu(int I, int Wid, cdouble**& u, cdouble**& du, int WinOrder=2, MList* mlist=0);
xue@1 109 void ssALinearSpline(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 110 void ssACubicHermite(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 111 void ssACubicSpline(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 112 void ssLinearSpline(int L, int T, int M, int &N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 113 void ssCubicHermite(int L, int T, int M, int& N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 114 void ssCubicSpline(int L, int T, int M, int& N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 115 void DerivativePiecewiseI(cdouble* aita, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssmode=0, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 116 void DerivativePiecewiseII(double* p, double* q, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssAmode, void (*SpecifyB)(int L, int T, int M, int &N, double*** &B, MList* mlist, int mode), int ssBmode, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 117 void DerivativePiecewiseIII(double* p, double* q, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssAmode, void (*SpecifyB)(int L, int T, int M, int &N, double*** &B, MList* mlist, int mode), int ssBmode, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 118 double AmpPhCorrectionExpA(cdouble* s2, int N, cdouble* aita, int L, int T, cdouble* sre, int M, double** h, double** dih, double*** A, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int WinOrder);
xue@1 119
xue@1 120 //--local derivative algorithms - general------------------------------------
xue@1 121 /*
xue@1 122 template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "v" version,
xue@1 123 i.e. using tuned test functions.
xue@1 124
xue@1 125 In: s[Wid]: waveform data
xue@1 126 v[I][Wid], dv[I][Wid]: test functions and their derivatives
xue@1 127 h[M+1][Wid]: basis functions
xue@1 128 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 129 Out: lmd[1:M]: coefficients of h[1:M].
xue@1 130
xue@1 131 Returns inner product of s and v[0].
xue@1 132 */
xue@1 133 template<class Ts>cdouble DerivativeLSv(int Wid, Ts* s, int I, cdouble** v, cdouble** dv, int M, double **h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 134 {
xue@1 135 int Kr=M*2-p0s-q0s; //number of real unknowns apart from p0 and q0
xue@1 136 if (I<ceil(Kr/2.0)) throw("insufficient test functions"); //Kr/2 complex equations are needed to solve the unknowns
xue@1 137
xue@1 138 //ind maps the real unknowns to their positions in physical buffer
xue@1 139 //uind maps them back
xue@1 140 int *uind=new int[Kr], *ind=new int[2*M];
xue@1 141 memset(ind, 0, sizeof(int)*2*M);
xue@1 142 for (int p=0; p<p0s; p++) ind[2*(p0[p]-1)]=-1;
xue@1 143 for (int q=0; q<q0s; q++) ind[2*(q0[q]-1)+1]=-1;
xue@1 144
xue@1 145 {
xue@1 146 int p=0, up=0; while (p<2*M){if (ind[p]>=0){uind[up]=p; ind[p]=up; up++;} p++;}
xue@1 147 if (up!=Kr) throw("");
xue@1 148 }
xue@1 149
xue@1 150 cdouble* sv1=new cdouble[I];
xue@1 151 for (int i=0; i<I; i++) sv1[i]=-Inner(Wid, s, dv[i]);
xue@1 152
xue@1 153 double** Allocate2(double, 2*I, Kr, A);
xue@1 154 for (int m=1; m<=M; m++)
xue@1 155 for (int i=0; i<I; i++)
xue@1 156 {
xue@1 157 int lind;
xue@1 158 cdouble shv=Inner(Wid, s, h[m], v[i]);
xue@1 159 if ((lind=ind[2*(m-1)])>=0)
xue@1 160 {
xue@1 161 A[2*i][lind]=shv.x;
xue@1 162 A[2*i+1][lind]=shv.y;
xue@1 163 }
xue@1 164 if ((lind=ind[2*m-1])>=0)
xue@1 165 {
xue@1 166 A[2*i][lind]=-shv.y;
xue@1 167 A[2*i+1][lind]=shv.x;
xue@1 168 }
xue@1 169 }
xue@1 170
xue@1 171 double* pq=new double[Kr];
xue@1 172 if (2*I==Kr) GECP(Kr, pq, A, (double*)sv1);
xue@1 173 else LSLinear(2*I, Kr, pq, A, (double*)sv1);
xue@1 174
xue@1 175 memset(lmd, 0, sizeof(double)*(M+1)*2);
xue@1 176 for (int k=0; k<Kr; k++) ((double*)(&lmd[1]))[uind[k]]=pq[k];
xue@1 177
xue@1 178 cdouble result=Inner(Wid, s, v[0]);
xue@1 179 delete[] pq;
xue@1 180 delete[] sv1;
xue@1 181 delete[] uind;
xue@1 182 delete[] ind;
xue@1 183 DeAlloc2(A);
xue@1 184 return result;
xue@1 185 }//DerivativeLSv
xue@1 186
xue@1 187 /*
xue@1 188 template DerivativeLS: local derivative algorithm for estimating time-varying sinusoids, "u" version,
xue@1 189 i.e. using base-band test functions.
xue@1 190
xue@1 191 In: s[Wid]: waveform data
xue@1 192 u[I][Wid], du[I][Wid]: base-band test functions and their derivatives
xue@1 193 omg: angular frequency onto which u[I] and du[I] are modulated to give the test functions
xue@1 194 h[M+1][Wid]: basis functions
xue@1 195 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 196 Out: lmd[1:M]: coefficients of h[1:M].
xue@1 197
xue@1 198 Returns inner product of s and v[0].
xue@1 199 */
xue@1 200 template<class Ts, class Tu>cdouble DerivativeLS(int Wid, Ts* s, int I, double omg, Tu** u, Tu** du, int M, double **h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 201 {
xue@1 202 cdouble** Allocate2(cdouble, I, Wid, v);
xue@1 203 cdouble** Allocate2(cdouble, I, Wid, dv);
xue@1 204 cdouble jomg=cdouble(0, omg); int hWid=Wid/2;
xue@1 205 for (int c=0; c<Wid; c++)
xue@1 206 {
xue@1 207 double t=c-hWid;
xue@1 208 cdouble rot=cdouble(1).rotate(omg*t);
xue@1 209 for (int i=0; i<I; i++) v[i][c]=u[i][c]*rot;
xue@1 210 for (int i=0; i<I; i++) dv[i][c]=du[i][c]*rot+jomg*v[i][c];
xue@1 211 }
xue@1 212 cdouble result=DerivativeLSv(Wid, s, I, v, dv, M, h, lmd, p0s, p0, q0s, q0);
xue@1 213 DeAlloc2(v); DeAlloc2(dv);
xue@1 214 return result;
xue@1 215 }//DerivativeLS
xue@1 216
xue@1 217 /*
xue@1 218 template DerivativeLS_AmpPh: amplitude and phase estimation in the local derivative algorithm, "u"
xue@1 219 version
xue@1 220
xue@1 221 In: sv0: inner product of signal s[Wid] and test function v0
xue@1 222 u0[Wid], omg: base-band test function and carrier frequency used for computing v0[]
xue@1 223 integr_h[M+1][Wid]: integrals of basis functions
xue@1 224
xue@1 225 Returns coefficient to integr_h[0]=1.
xue@1 226 */
xue@1 227 template<class Tu>cdouble DerivativeLS_AmpPh(int Wid, int M, double** integr_h, cdouble* lmd, double omg, Tu* u0, cdouble sv0)
xue@1 228 {
xue@1 229 cdouble e0=0; double hWid=Wid/2.0;
xue@1 230 for (int n=0; n<Wid; n++)
xue@1 231 {
xue@1 232 cdouble expo=0;
xue@1 233 for (int m=1; m<=M; m++) expo+=lmd[m]*integr_h[m][n];
xue@1 234 if (expo.x>300) expo.x=300;
xue@1 235 else if (expo.x<-300) expo.x=-300;
xue@1 236 e0+=exp(expo)**(cdouble(u0[n]).rotate(omg*(n-hWid)));
xue@1 237 }
xue@1 238 return log(sv0/e0);
xue@1 239 }//DerivativeLS_AmpPh
xue@1 240
xue@1 241 /*
xue@1 242 template DerivativeLS_AmpPh: amplitude and phase estimation in the local derivative algorithm, "u"
xue@1 243 version.
xue@1 244
xue@1 245 In: s[Wid]: waveform data
xue@1 246 u0[Wid], omg: base-band test function and carrier frequency used for computing v0[]
xue@1 247 integr_h[M+1][Wid]: integrals of basis functions
xue@1 248
xue@1 249 Returns coefficient to integr_h[0]=1.
xue@1 250 */
xue@1 251 template<class Tu, class Ts>cdouble DerivativeLS_AmpPh(int Wid, int M, double** integr_h, cdouble* lmd, double omg, Tu* u0, Ts* s)
xue@1 252 {
xue@1 253 cdouble ss0=0, e0=0; double hWid=Wid/2.0;
xue@1 254 for (int n=0; n<Wid; n++)
xue@1 255 {
xue@1 256 cdouble expo=0;
xue@1 257 for (int m=1; m<=M; m++) expo+=lmd[m]*integr_h[m][n];
xue@1 258 if (expo.x>300) expo.x=300;
xue@1 259 else if (expo.x<-300) expo.x=-300;
xue@1 260 e0+=~exp(expo)*abs(u0[n]);
xue@1 261 ss0+=s[n]**exp(expo)*abs(u0[n]);
xue@1 262 }
xue@1 263 return log(ss0/e0);
xue@1 264 }//DerivativeLS_AmpPh
xue@1 265
xue@1 266 cdouble DerivativeLSv_AmpPh(int, int, double**, cdouble*, cdouble*, cdouble); //the "v" version is implemented as a normal function in SinEst.cpp.
xue@1 267
xue@1 268 /*
xue@1 269 template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "v" version.
xue@1 270
xue@1 271 In: s[Wid]: waveform data
xue@1 272 v[I][Wid], dv[I][Wid]: test functions and their derivatives
xue@1 273 h[M+1][Wid], integr_h[M+1][Wid]: basis functions and their integrals
xue@1 274 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 275 Out: lmd[M+1]: coefficients of h[M+1], including lmd[0].
xue@1 276
xue@1 277 No return value.
xue@1 278 */
xue@1 279 template<class Ts> void DerivativeLSv(int Wid, Ts* s, int I, cdouble** v, cdouble** dv, int M, double **h, double **integr_h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 280 {
xue@1 281 cdouble sv0=DerivativeLSv(Wid, s, I, v, dv, M, h, lmd, p0s, p0, q0s, q0);
xue@1 282 lmd[0]=DerivativeLSv_AmpPh(Wid, M, integr_h, lmd, v[0], sv0);
xue@1 283 }//DerivativeLSv_AmpPh
xue@1 284
xue@1 285 /*template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "u" version.
xue@1 286
xue@1 287 In: s[Wid]: waveform data
xue@1 288 u[I][Wid], du[I][Wid]: base-band test functions and their derivatives
xue@1 289 omg: angular frequency onto which u[I] and du[I] are modulated to give the test functions
xue@1 290 h[M+1][Wid], integr_h[M+1][Wid]: basis functions and their integrals
xue@1 291 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 292 Out: lmd[M+1]: coefficients of h[M+1], including lmd[0].
xue@1 293
xue@1 294 No return value.
xue@1 295 */
xue@1 296 template<class Ts, class Tu>void DerivativeLS(int Wid, Ts* s, int I, double omg, Tu** u, Tu** du, int M, double **h, double **integr_h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 297 {
xue@1 298 cdouble sv0=DerivativeLS(Wid, s, I, omg, u, du, M, h, lmd, p0s, p0, q0s, q0);
xue@1 299 lmd[0]=DerivativeLS_AmpPh(Wid, M, integr_h, lmd, omg, u[0], s); //sv0);
xue@1 300 }//DerivativeLSv
xue@1 301
xue@1 302 /*
xue@1 303 template CosineWindows: generates the Hann^(K/2) window and its L-1 derivatives as Result[L][Wid+1]
xue@1 304
xue@1 305 In: K, L, Wid
xue@1 306 Out: w[L][Wid+1]: Hann^(K/2) window function and its derivatives up to order L-1
xue@1 307
xue@1 308 Returns pointer to w. w is created anew if w=0 is specified on start.
xue@1 309 */
xue@1 310 template<class T>T** CosineWindows(int K, int Wid, T **w, int L=0)
xue@1 311 {
xue@1 312 if (L<=0) L=K;
xue@1 313 if (!w) {Allocate2(T, L, Wid+1, w);}
xue@1 314 memset(w[0], 0, sizeof(T)*L*(Wid+1));
xue@1 315 int hWid=Wid/2, dWid=Wid*2;
xue@1 316 double *s=new double[dWid+hWid], *c=&s[hWid]; //s[n]=sin(pi*n/N), n=0, ..., 2N-1
xue@1 317 double *C=new double[K+2], *lK=&C[K/2+1], piC=M_PI/Wid;
xue@1 318 //C[i]=C(K, i)(-1)^i*2^(-K+1), the combination number, i=0, ..., K/2
xue@1 319 //ik[i]=(K-2i)^k*(M_PI/Wid)^k, i=0, ..., K/2
xue@1 320 //calculate C(K,i)(-1)^i*2^(-K+1)
xue@1 321 C[0]=1.0/(1<<(K-1)); double lC=C[0]; for (int i=1; i+i<=K; i++){lC=lC*(K-i+1)/i; C[i]=(i%2)?(-lC):lC;}
xue@1 322 //calculate sin/cos functions
xue@1 323 for (int n=0; n<dWid; n++) s[n]=sin(n*piC); memcpy(&s[dWid], s, sizeof(double)*hWid);
xue@1 324 for (int k=0; k<L; k++)
xue@1 325 {
xue@1 326 if (k==0) for (int i=0; i+i<K; i++) lK[i]=C[i];
xue@1 327 else for (int i=0; i+i<K; i++) lK[i]*=(K-2*i)*piC;
xue@1 328
xue@1 329 if ((K-k)%2) //K-k is odd
xue@1 330 {
xue@1 331 for (int i=0; i+i<K; i++) for (int n=0; n<=Wid; n++) w[k][n]+=lK[i]*s[(K-2*i)*n%dWid];
xue@1 332 if ((K-k-1)/2%2) for (int n=0; n<=Wid; n++) w[k][n]=-w[k][n];
xue@1 333 }
xue@1 334 else
xue@1 335 {
xue@1 336 for (int i=0; i+i<K; i++) for (int n=0; n<=Wid; n++) w[k][n]+=lK[i]*c[(K-2*i)*n%dWid];
xue@1 337 if ((K-k)/2%2) for (int n=0; n<=Wid; n++) w[k][n]=-w[k][n];
xue@1 338 }
xue@1 339 }
xue@1 340 if (K%2==0){double tmp=C[K/2]*0.5; if (K/2%2) tmp=-tmp; for (int n=0; n<=Wid; n++) w[0][n]+=tmp;}
xue@1 341 delete[] s; delete[] C;
xue@1 342 return w;
xue@1 343 }//CosineWindows
xue@1 344
xue@1 345
xue@1 346 #endif