annotate sinest.h @ 13:de3961f74f30 tip

Add Linux/gcc Makefile; build fix
author Chris Cannam
date Mon, 05 Sep 2011 15:22:35 +0100
parents 977f541d6683
children
rev   line source
xue@11 1 /*
xue@11 2 Harmonic sinusoidal modelling and tools
xue@11 3
xue@11 4 C++ code package for harmonic sinusoidal modelling and relevant signal processing.
xue@11 5 Centre for Digital Music, Queen Mary, University of London.
xue@11 6 This file copyright 2011 Wen Xue.
xue@11 7
xue@11 8 This program is free software; you can redistribute it and/or
xue@11 9 modify it under the terms of the GNU General Public License as
xue@11 10 published by the Free Software Foundation; either version 2 of the
xue@11 11 License, or (at your option) any later version.
xue@11 12 */
xue@1 13 #ifndef SinEstH
xue@1 14 #define SinEstH
xue@1 15
Chris@5 16 /**
Chris@5 17 \file sinest.h - sinusoid estimation algorithms
xue@1 18 */
xue@1 19
xue@1 20
Chris@2 21 #include <string.h>
xue@1 22 #include "xcomplex.h"
xue@1 23 #include "arrayalloc.h"
xue@1 24 #include "matrix.h"
xue@1 25 #ifdef I
xue@1 26 #undef I
xue@1 27 #endif
xue@1 28
xue@1 29 //--since function derivative------------------------------------------------
xue@1 30 double ddsincd_unn(double x, int N);
xue@1 31 double dsincd_unn(double x, int N);
xue@1 32
xue@1 33 //--window spectrum and derivatives------------------------------------------
xue@1 34 cdouble* Window(cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 35 void dWindow(cdouble* dx, cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 36 void ddWindow(cdouble* ddx, cdouble* dx, cdouble* x, double f, int N, int M, double* c, int K1, int K2);
xue@1 37
xue@1 38 //--spectral projection routines---------------------------------------------
xue@1 39 cdouble IPWindowC(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2);
xue@1 40
xue@1 41 double IPWindow(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2, bool returnamplitude);
xue@1 42 double IPWindow(double f, void* params);
xue@1 43 double ddIPWindow(double f, void* params);
xue@1 44 double ddIPWindow(double f, cdouble* x, int N, int M, double* c, double iH2, int K1, int K2, double& dipwindow, double& ipwindow);
xue@1 45
xue@1 46 double sIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, cdouble* ej2ph=0);
xue@1 47 double sIPWindow(double f, void* params);
xue@1 48 double dsIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& sip);
xue@1 49 double dsIPWindow(double f, void* params);
xue@1 50 double ddsIPWindow(double f, int L, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& dsip, double& sip);
xue@1 51 double ddsIPWindow(double f, void* params);
xue@1 52 double ddsIPWindow_unn(double f, cdouble* x, int N, int M, double* c, int K1, int K2, double& dsipwindow, double& sipwindow, cdouble* w_unn=0);
xue@1 53
xue@1 54 double sIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, cdouble* ej2ph=0);
xue@1 55 double sIPWindowC(double f, void* params);
xue@1 56 double dsIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& sip);
xue@1 57 double dsIPWindowC(double f, void* params);
xue@1 58 double ddsIPWindowC(double f, int L, double offst_rel, cdouble** x, int N, int M, double* c, double iH2, int K1, int K2, double& dsip, double& sip);
xue@1 59 double ddsIPWindowC(double f, void* params);
xue@1 60
xue@1 61 //--least-square sinusoid estimation routines--------------------------------
xue@1 62 double LSESinusoid(cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf=1e-6);
xue@1 63 void LSESinusoid(double& f, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf=1e-6);
xue@1 64 double LSESinusoid(int f1, int f2, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf);
xue@1 65 int LSESinusoid(double& f, double f1, double f2, cdouble* x, int N, double B, int M, double* c, double iH2, double& a, double& pp, double epf);
xue@1 66 double LSESinusoidMP(double& f, double f1, double f2, cdouble** x, int Fr, int N, double B, int M, double* c, double iH2, double* a, double* ph, double epf);
xue@1 67
xue@1 68 //--multi-sinusoid spectral projection routines------------------------------
xue@1 69 void IPMulti(int I, double* f, cdouble* lmd, cdouble* x, int Wid, int K1, int K2, int M, double* c, double eps=0);
xue@1 70 void IPMulti(int I, double* f, cdouble* lmd, cfloat* x, int Wid, int K1, int K2, int M, double* c, double eps=0, double* sens=0, double* r1=0);
xue@1 71 void IPMultiSens(int I, double* f, int Wid, int K1, int K2, int M, double* c, double* sens, double eps=0);
xue@1 72 double IPMulti(int I, double* f, cdouble* lmd, cdouble* x, int Wid, int M, double* c, double iH2, int B);
xue@1 73 double IPMulti_Direct(int I, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, double iH2, int B);
xue@1 74 double IPMulti_GS(int I, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, double iH2, int B, double** L=0, double** Q=0);
xue@1 75 cdouble* IPMulti(int I, int J, double* f, double* ph, double* a, cdouble* x, int Wid, int M, double* c, cdouble** wt=0, cdouble** Q=0, double** L=0, MList* RetList=0);
xue@1 76
xue@1 77 //--dual-sinusoid spectral projection routines-------------------------------
xue@1 78 double WindowDuo(double df, int N, double* d, int M, cdouble* w);
xue@1 79 double ddWindowDuo(double df, int N, double* d, int M, double& dwindow, double& window, cdouble* w);
xue@1 80 double sIPWindowDuo(double f1, double f2, cdouble* x, int N, double* c, double* d, int M, double iH2, int K1, int K2, cdouble& lmd1, cdouble& lmd2);
xue@1 81 double sIPWindowDuo(double f2, void* params);
xue@1 82 void ddsIPWindowDuo(double* ddsip2, double f1, double f2, cdouble* x, int N, double* c, double* d, int M, double iH2, int K1, int K2, cdouble& lmd1, cdouble& lmd2);
xue@1 83 double ddsIPWindowDuo(double f2, void* params);
xue@1 84 int LSEDuo(double& f2, double fmin, double fmax, double f1, cdouble* x, int N, double B, double* c, double* d, int M, double iH2, cdouble& r1, cdouble &r2, double epf);
xue@1 85
xue@1 86 //--time-frequency reassignment----------------------------------------------
xue@1 87 void TFReas(double& f, double& t, double& fslope, int Wid, cdouble* data, double* win, double* dwin, double* ddwin, double* plogaslope=0);
xue@1 88 void TFReas(double& f, double t, double& a, double& ph, double& fslope, int Wid, cdouble* data, double* w, double* dw, double* ddw, double* win=0);
xue@1 89
xue@1 90 //--additive and multiplicative reestimation routines------------------------
xue@1 91 typedef double (*TBasicAnalyzer)(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, int reserved, bool LogA);
xue@1 92 void AdditiveUpdate(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 93 void AdditiveAnalyzer(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 94 void MultiplicativeUpdate(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 95 void MultiplicativeAnalyzer(double* fs, double* as, double* phs, double* das, cdouble* x, int Count, int Wid, int Offst, __int16* ref, TBasicAnalyzer BasicAnalyzer, int reserved, bool LogA=false);
xue@1 96 void MultiplicativeUpdateF(double* fs, double* as, double* phs, __int16* x, int Fr, int frst, int fren, int Wid, int Offst);
xue@1 97
xue@1 98 void ReEstFreq(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* ps, double* fa, double* fb, double* fc, double* fd, double* ns, int* Wids=0);
xue@1 99 void ReEstFreq_2(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* f3, double* f2, double* f1, double* f0, double* ns);
xue@1 100 void ReEstFreqAmp(int FrCount, int Wid, int Offst, double* x, double* fbuf, double* abuf, double* pbuf, double* win, int M, double* c, double iH2, cdouble* w, cdouble* xc, cdouble* xs, double* ps, double* as, double* fa, double* fb, double* fc, double* fd, double* aa, double* ab, double* ac, double* ad, double* ns, int* Wids=0);
xue@1 101 int Reestimate2(int FrCount, int Wid, int Offst, double* win, int M, double* c, double iH2, double* x, double* ae, double* fe, double* pe, double* aret, double* fret, double *pret, int maxiter, int* Wids=0);
xue@1 102
xue@1 103 //--local derivative algorithms - DAFx09-------------------------------------
xue@1 104 void Derivative(int M, double (**h)(double t, void*), double (**dh)(double t, void*), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg);
xue@1 105 void DerivativeLS(int K, int M, double (**h)(double t, void* harg), double (**dh)(double t, void* harg), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg, bool r0=false);
xue@1 106 void DerivativeLS(int Fr, int K, int M, double (**h)(double t, void* harg), double (**dh)(double t, void* harg), cdouble* r, int p0s, int* p0, int q0s, int* q0, int Wid, double* s, double** win, double omg, void* harg, bool r0=false);
xue@1 107
xue@1 108 //--the Abe-Smith estimator--------------------------------------------------
xue@1 109 void TFAS05(double& f, double& t, double& a, double& ph, double& aesp, double& fslope, int Wid, double* data, double* w, double res=1);
xue@1 110 void TFAS05_enh(double& f, double& t, double& a, double& ph, double& aesp, double& fslope, int Wid, double* data, double* w, double res=1);
xue@1 111 void TFAS05_enh(double& f, double& t, double& a, double& ph, int Wid, double* data, double* w, double res=1);
xue@1 112
xue@1 113 //--piecewise derivative algorithms and tools--------------------------------
xue@1 114 void DerivativePiecewise(int N, cdouble* aita, int L, double* f, int T, cdouble* s, double*** A, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0);
xue@1 115 void DerivativePiecewise2(int Np, double* p, int Nq, double* q, int L, double* f, int T, cdouble* s, double*** A, double*** B, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0);
xue@1 116 void DerivativePiecewise3(int Np, double* p, int Nq, double* q, int L, double* f, int T, cdouble* s, double*** DA, double*** B, int M, double** h, int I, cdouble** u, cdouble** du, int endmode=0, cdouble* ds=0, double** dh=0);
xue@1 117 void seth(int M, int T, double**& h, MList* mlist);
xue@1 118 void setdh(int M, int T, double**& dh, MList* mlist);
xue@1 119 void setdih(int M, int T, double**& dih, MList* mlist);
xue@1 120 void setu(int I, int Wid, cdouble**& u, cdouble**& du, int WinOrder=2, MList* mlist=0);
xue@1 121 void ssALinearSpline(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 122 void ssACubicHermite(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 123 void ssACubicSpline(int L, int T, int M, int& N, double*** &A, MList* mlist, int mode=0);
xue@1 124 void ssLinearSpline(int L, int T, int M, int &N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 125 void ssCubicHermite(int L, int T, int M, int& N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 126 void ssCubicSpline(int L, int T, int M, int& N, double** &h, double*** &A, MList* mlist, int mode=0);
xue@1 127 void DerivativePiecewiseI(cdouble* aita, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssmode=0, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 128 void DerivativePiecewiseII(double* p, double* q, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssAmode, void (*SpecifyB)(int L, int T, int M, int &N, double*** &B, MList* mlist, int mode), int ssBmode, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 129 void DerivativePiecewiseIII(double* p, double* q, int L, double* f, int T, cdouble* s, int M, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int ssAmode, void (*SpecifyB)(int L, int T, int M, int &N, double*** &B, MList* mlist, int mode), int ssBmode, int WinOrder=2, int I=2, int endmode=0, cdouble* ds=0);
xue@1 130 double AmpPhCorrectionExpA(cdouble* s2, int N, cdouble* aita, int L, int T, cdouble* sre, int M, double** h, double** dih, double*** A, void (*SpecifyA)(int L, int T, int M, int &N, double*** &A, MList* mlist, int mode), int WinOrder);
xue@1 131
xue@1 132 //--local derivative algorithms - general------------------------------------
Chris@5 133 /**
xue@1 134 template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "v" version,
xue@1 135 i.e. using tuned test functions.
xue@1 136
xue@1 137 In: s[Wid]: waveform data
xue@1 138 v[I][Wid], dv[I][Wid]: test functions and their derivatives
xue@1 139 h[M+1][Wid]: basis functions
xue@1 140 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 141 Out: lmd[1:M]: coefficients of h[1:M].
xue@1 142
xue@1 143 Returns inner product of s and v[0].
xue@1 144 */
xue@1 145 template<class Ts>cdouble DerivativeLSv(int Wid, Ts* s, int I, cdouble** v, cdouble** dv, int M, double **h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 146 {
xue@1 147 int Kr=M*2-p0s-q0s; //number of real unknowns apart from p0 and q0
xue@1 148 if (I<ceil(Kr/2.0)) throw("insufficient test functions"); //Kr/2 complex equations are needed to solve the unknowns
xue@1 149
xue@1 150 //ind maps the real unknowns to their positions in physical buffer
xue@1 151 //uind maps them back
xue@1 152 int *uind=new int[Kr], *ind=new int[2*M];
xue@1 153 memset(ind, 0, sizeof(int)*2*M);
xue@1 154 for (int p=0; p<p0s; p++) ind[2*(p0[p]-1)]=-1;
xue@1 155 for (int q=0; q<q0s; q++) ind[2*(q0[q]-1)+1]=-1;
xue@1 156
xue@1 157 {
xue@1 158 int p=0, up=0; while (p<2*M){if (ind[p]>=0){uind[up]=p; ind[p]=up; up++;} p++;}
xue@1 159 if (up!=Kr) throw("");
xue@1 160 }
xue@1 161
xue@1 162 cdouble* sv1=new cdouble[I];
xue@1 163 for (int i=0; i<I; i++) sv1[i]=-Inner(Wid, s, dv[i]);
xue@1 164
xue@1 165 double** Allocate2(double, 2*I, Kr, A);
xue@1 166 for (int m=1; m<=M; m++)
xue@1 167 for (int i=0; i<I; i++)
xue@1 168 {
xue@1 169 int lind;
xue@1 170 cdouble shv=Inner(Wid, s, h[m], v[i]);
xue@1 171 if ((lind=ind[2*(m-1)])>=0)
xue@1 172 {
xue@1 173 A[2*i][lind]=shv.x;
xue@1 174 A[2*i+1][lind]=shv.y;
xue@1 175 }
xue@1 176 if ((lind=ind[2*m-1])>=0)
xue@1 177 {
xue@1 178 A[2*i][lind]=-shv.y;
xue@1 179 A[2*i+1][lind]=shv.x;
xue@1 180 }
xue@1 181 }
xue@1 182
xue@1 183 double* pq=new double[Kr];
xue@1 184 if (2*I==Kr) GECP(Kr, pq, A, (double*)sv1);
xue@1 185 else LSLinear(2*I, Kr, pq, A, (double*)sv1);
xue@1 186
xue@1 187 memset(lmd, 0, sizeof(double)*(M+1)*2);
xue@1 188 for (int k=0; k<Kr; k++) ((double*)(&lmd[1]))[uind[k]]=pq[k];
xue@1 189
xue@1 190 cdouble result=Inner(Wid, s, v[0]);
xue@1 191 delete[] pq;
xue@1 192 delete[] sv1;
xue@1 193 delete[] uind;
xue@1 194 delete[] ind;
xue@1 195 DeAlloc2(A);
xue@1 196 return result;
xue@1 197 }//DerivativeLSv
xue@1 198
Chris@5 199 /**
xue@1 200 template DerivativeLS: local derivative algorithm for estimating time-varying sinusoids, "u" version,
xue@1 201 i.e. using base-band test functions.
xue@1 202
xue@1 203 In: s[Wid]: waveform data
xue@1 204 u[I][Wid], du[I][Wid]: base-band test functions and their derivatives
xue@1 205 omg: angular frequency onto which u[I] and du[I] are modulated to give the test functions
xue@1 206 h[M+1][Wid]: basis functions
xue@1 207 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 208 Out: lmd[1:M]: coefficients of h[1:M].
xue@1 209
xue@1 210 Returns inner product of s and v[0].
xue@1 211 */
xue@1 212 template<class Ts, class Tu>cdouble DerivativeLS(int Wid, Ts* s, int I, double omg, Tu** u, Tu** du, int M, double **h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 213 {
xue@1 214 cdouble** Allocate2(cdouble, I, Wid, v);
xue@1 215 cdouble** Allocate2(cdouble, I, Wid, dv);
xue@1 216 cdouble jomg=cdouble(0, omg); int hWid=Wid/2;
xue@1 217 for (int c=0; c<Wid; c++)
xue@1 218 {
xue@1 219 double t=c-hWid;
xue@1 220 cdouble rot=cdouble(1).rotate(omg*t);
xue@1 221 for (int i=0; i<I; i++) v[i][c]=u[i][c]*rot;
xue@1 222 for (int i=0; i<I; i++) dv[i][c]=du[i][c]*rot+jomg*v[i][c];
xue@1 223 }
xue@1 224 cdouble result=DerivativeLSv(Wid, s, I, v, dv, M, h, lmd, p0s, p0, q0s, q0);
xue@1 225 DeAlloc2(v); DeAlloc2(dv);
xue@1 226 return result;
xue@1 227 }//DerivativeLS
xue@1 228
Chris@5 229 /**
xue@1 230 template DerivativeLS_AmpPh: amplitude and phase estimation in the local derivative algorithm, "u"
xue@1 231 version
xue@1 232
xue@1 233 In: sv0: inner product of signal s[Wid] and test function v0
xue@1 234 u0[Wid], omg: base-band test function and carrier frequency used for computing v0[]
xue@1 235 integr_h[M+1][Wid]: integrals of basis functions
xue@1 236
xue@1 237 Returns coefficient to integr_h[0]=1.
xue@1 238 */
xue@1 239 template<class Tu>cdouble DerivativeLS_AmpPh(int Wid, int M, double** integr_h, cdouble* lmd, double omg, Tu* u0, cdouble sv0)
xue@1 240 {
xue@1 241 cdouble e0=0; double hWid=Wid/2.0;
xue@1 242 for (int n=0; n<Wid; n++)
xue@1 243 {
xue@1 244 cdouble expo=0;
xue@1 245 for (int m=1; m<=M; m++) expo+=lmd[m]*integr_h[m][n];
xue@1 246 if (expo.x>300) expo.x=300;
xue@1 247 else if (expo.x<-300) expo.x=-300;
xue@1 248 e0+=exp(expo)**(cdouble(u0[n]).rotate(omg*(n-hWid)));
xue@1 249 }
xue@1 250 return log(sv0/e0);
xue@1 251 }//DerivativeLS_AmpPh
xue@1 252
Chris@5 253 /**
xue@1 254 template DerivativeLS_AmpPh: amplitude and phase estimation in the local derivative algorithm, "u"
xue@1 255 version.
xue@1 256
xue@1 257 In: s[Wid]: waveform data
xue@1 258 u0[Wid], omg: base-band test function and carrier frequency used for computing v0[]
xue@1 259 integr_h[M+1][Wid]: integrals of basis functions
xue@1 260
xue@1 261 Returns coefficient to integr_h[0]=1.
xue@1 262 */
xue@1 263 template<class Tu, class Ts>cdouble DerivativeLS_AmpPh(int Wid, int M, double** integr_h, cdouble* lmd, double omg, Tu* u0, Ts* s)
xue@1 264 {
xue@1 265 cdouble ss0=0, e0=0; double hWid=Wid/2.0;
xue@1 266 for (int n=0; n<Wid; n++)
xue@1 267 {
xue@1 268 cdouble expo=0;
xue@1 269 for (int m=1; m<=M; m++) expo+=lmd[m]*integr_h[m][n];
xue@1 270 if (expo.x>300) expo.x=300;
xue@1 271 else if (expo.x<-300) expo.x=-300;
xue@1 272 e0+=~exp(expo)*abs(u0[n]);
xue@1 273 ss0+=s[n]**exp(expo)*abs(u0[n]);
xue@1 274 }
xue@1 275 return log(ss0/e0);
xue@1 276 }//DerivativeLS_AmpPh
xue@1 277
xue@1 278 cdouble DerivativeLSv_AmpPh(int, int, double**, cdouble*, cdouble*, cdouble); //the "v" version is implemented as a normal function in SinEst.cpp.
xue@1 279
Chris@5 280 /**
xue@1 281 template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "v" version.
xue@1 282
xue@1 283 In: s[Wid]: waveform data
xue@1 284 v[I][Wid], dv[I][Wid]: test functions and their derivatives
xue@1 285 h[M+1][Wid], integr_h[M+1][Wid]: basis functions and their integrals
xue@1 286 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 287 Out: lmd[M+1]: coefficients of h[M+1], including lmd[0].
xue@1 288
xue@1 289 No return value.
xue@1 290 */
xue@1 291 template<class Ts> void DerivativeLSv(int Wid, Ts* s, int I, cdouble** v, cdouble** dv, int M, double **h, double **integr_h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 292 {
xue@1 293 cdouble sv0=DerivativeLSv(Wid, s, I, v, dv, M, h, lmd, p0s, p0, q0s, q0);
xue@1 294 lmd[0]=DerivativeLSv_AmpPh(Wid, M, integr_h, lmd, v[0], sv0);
xue@1 295 }//DerivativeLSv_AmpPh
xue@1 296
Chris@5 297 /**
Chris@5 298 template DerivativeLSv: local derivative algorithm for estimating time-varying sinusoids, "u" version.
xue@1 299
xue@1 300 In: s[Wid]: waveform data
xue@1 301 u[I][Wid], du[I][Wid]: base-band test functions and their derivatives
xue@1 302 omg: angular frequency onto which u[I] and du[I] are modulated to give the test functions
xue@1 303 h[M+1][Wid], integr_h[M+1][Wid]: basis functions and their integrals
xue@1 304 p0[p0s], q0[q0s]: zero-constraints, i.e. Re(lmd[p0[*]]) and Im(lmd[q0[*]]) are constrained zero.
xue@1 305 Out: lmd[M+1]: coefficients of h[M+1], including lmd[0].
xue@1 306
xue@1 307 No return value.
xue@1 308 */
xue@1 309 template<class Ts, class Tu>void DerivativeLS(int Wid, Ts* s, int I, double omg, Tu** u, Tu** du, int M, double **h, double **integr_h, cdouble* lmd, int p0s, int* p0, int q0s, int* q0)
xue@1 310 {
xue@1 311 cdouble sv0=DerivativeLS(Wid, s, I, omg, u, du, M, h, lmd, p0s, p0, q0s, q0);
xue@1 312 lmd[0]=DerivativeLS_AmpPh(Wid, M, integr_h, lmd, omg, u[0], s); //sv0);
xue@1 313 }//DerivativeLSv
xue@1 314
Chris@5 315 /**
xue@1 316 template CosineWindows: generates the Hann^(K/2) window and its L-1 derivatives as Result[L][Wid+1]
xue@1 317
xue@1 318 In: K, L, Wid
xue@1 319 Out: w[L][Wid+1]: Hann^(K/2) window function and its derivatives up to order L-1
xue@1 320
xue@1 321 Returns pointer to w. w is created anew if w=0 is specified on start.
xue@1 322 */
xue@1 323 template<class T>T** CosineWindows(int K, int Wid, T **w, int L=0)
xue@1 324 {
xue@1 325 if (L<=0) L=K;
xue@1 326 if (!w) {Allocate2(T, L, Wid+1, w);}
xue@1 327 memset(w[0], 0, sizeof(T)*L*(Wid+1));
xue@1 328 int hWid=Wid/2, dWid=Wid*2;
xue@1 329 double *s=new double[dWid+hWid], *c=&s[hWid]; //s[n]=sin(pi*n/N), n=0, ..., 2N-1
xue@1 330 double *C=new double[K+2], *lK=&C[K/2+1], piC=M_PI/Wid;
xue@1 331 //C[i]=C(K, i)(-1)^i*2^(-K+1), the combination number, i=0, ..., K/2
xue@1 332 //ik[i]=(K-2i)^k*(M_PI/Wid)^k, i=0, ..., K/2
xue@1 333 //calculate C(K,i)(-1)^i*2^(-K+1)
xue@1 334 C[0]=1.0/(1<<(K-1)); double lC=C[0]; for (int i=1; i+i<=K; i++){lC=lC*(K-i+1)/i; C[i]=(i%2)?(-lC):lC;}
xue@1 335 //calculate sin/cos functions
xue@1 336 for (int n=0; n<dWid; n++) s[n]=sin(n*piC); memcpy(&s[dWid], s, sizeof(double)*hWid);
xue@1 337 for (int k=0; k<L; k++)
xue@1 338 {
xue@1 339 if (k==0) for (int i=0; i+i<K; i++) lK[i]=C[i];
xue@1 340 else for (int i=0; i+i<K; i++) lK[i]*=(K-2*i)*piC;
xue@1 341
xue@1 342 if ((K-k)%2) //K-k is odd
xue@1 343 {
xue@1 344 for (int i=0; i+i<K; i++) for (int n=0; n<=Wid; n++) w[k][n]+=lK[i]*s[(K-2*i)*n%dWid];
xue@1 345 if ((K-k-1)/2%2) for (int n=0; n<=Wid; n++) w[k][n]=-w[k][n];
xue@1 346 }
xue@1 347 else
xue@1 348 {
xue@1 349 for (int i=0; i+i<K; i++) for (int n=0; n<=Wid; n++) w[k][n]+=lK[i]*c[(K-2*i)*n%dWid];
xue@1 350 if ((K-k)/2%2) for (int n=0; n<=Wid; n++) w[k][n]=-w[k][n];
xue@1 351 }
xue@1 352 }
xue@1 353 if (K%2==0){double tmp=C[K/2]*0.5; if (K/2%2) tmp=-tmp; for (int n=0; n<=Wid; n++) w[0][n]+=tmp;}
xue@1 354 delete[] s; delete[] C;
xue@1 355 return w;
xue@1 356 }//CosineWindows
xue@1 357
xue@1 358
xue@1 359 #endif