annotate quickspec.cpp @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents fc19d45615d1
children 9b1c0825cc77
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include <math.h>
xue@1 4 #include <memory.h>
Chris@2 5 #include "quickspec.h"
xue@1 6
Chris@5 7 /** \file quickspec.h */
xue@1 8
xue@1 9 //---------------------------------------------------------------------------
Chris@5 10 /**
xue@1 11 method TQuickSpectrogram::TQuickSpectrogram:
xue@1 12
xue@1 13 In: AParent: pointer argument for calling G, if G is specified
xue@1 14 AnId: integer argument for calling G, if G is specified
xue@1 15 G: pointer to a function that supplies buffers used for FFT, 0 by default
xue@1 16 Ausex: set if complete complex spectrogram is to be buffered and accessible
xue@1 17 Auseph: set if phase spectrogram is to be buffered and accessible
xue@1 18 */
xue@1 19 __fastcall TQuickSpectrogram::TQuickSpectrogram(void* AParent, int AnId, bool Ausex, bool Auseph, GetBuf G)
xue@1 20 {
xue@1 21 memset(this, 0, sizeof(TQuickSpectrogram));
xue@1 22 Parent=AParent;
xue@1 23 Id=AnId;
xue@1 24 usex=Ausex;
xue@1 25 useph=Auseph;
xue@1 26 GetFFTBuffers=G;
xue@1 27 BufferSize=QSpec_BufferSize;
xue@1 28 fwt=wtRectangle;
xue@1 29 Wid=1024;
xue@1 30 Offst=512;
xue@1 31 }//TQuickSpectrogram
xue@1 32
xue@1 33 //TQuickSpectrogram::~TQuickSpectrogram
xue@1 34 __fastcall TQuickSpectrogram::~TQuickSpectrogram()
xue@1 35 {
xue@1 36 FreeBuffers();
xue@1 37 free8(fw);
xue@1 38 free8(fwin);
xue@1 39 free(fhbi);
xue@1 40 }//~TQuickSpectrogram
xue@1 41
xue@1 42 //---------------------------------------------------------------------------
Chris@5 43 /**
xue@1 44 method TQuickSpectrogram::A: accesses amplitude spectrogram by frame
xue@1 45
xue@1 46 In: fr: frame index, 0-based
xue@1 47
xue@1 48 Returns pointer to amplitude spectrum of the fr'th frame, NULL if N/A
xue@1 49 */
xue@1 50 QSPEC_FORMAT* __fastcall TQuickSpectrogram::A(int fr)
xue@1 51 {
xue@1 52 if (Capacity==0) SetFrCapacity((DataLength-Wid)/Offst+2);
xue@1 53 if (fr<0 || fr>=Capacity) return NULL;
xue@1 54 if (Frame[fr]<0 || !Valid[fr]) CalculateSpectrum(fr);
xue@1 55 return fA[Frame[fr]];
xue@1 56 }//A
xue@1 57
xue@1 58 //---------------------------------------------------------------------------
Chris@5 59 /**
xue@1 60 method TQuickSpectrogram::AddBuffer: increases internal buffer by BufferSize frames. Allocated buffers
xue@1 61 beyond Capacity frames will not be indexed or used by TQuickSpectrogram.
xue@1 62 */
xue@1 63 void TQuickSpectrogram::AddBuffer()
xue@1 64 {
xue@1 65 int base=1, Dim=Wid/2+1;
xue@1 66 if (usex) base+=2;
xue@1 67 if (useph) base+=1;
xue@1 68 QSPEC_FORMAT* newbuffer=(QSPEC_FORMAT*)malloc(sizeof(QSPEC_FORMAT)*Dim*BufferSize*base);
xue@1 69 int fr0=BufferCount*BufferSize;
xue@1 70 for (int i=0; i<BufferSize; i++)
xue@1 71 {
xue@1 72 int fr=fr0+i;
xue@1 73 if (fr<Capacity)
xue@1 74 {
xue@1 75 fA[fr]=&newbuffer[i*Dim];
xue@1 76 int base=1;
xue@1 77 if (usex) fSpec[fr]=(cmplx<QSPEC_FORMAT>*)&newbuffer[(BufferSize+i*2)*Dim], base+=2;
xue@1 78 if (useph) fPh[fr]=&newbuffer[(BufferSize*base+i)*Dim];
xue@1 79 }
xue@1 80 else break;
xue@1 81 }
xue@1 82 BufferCount++;
xue@1 83 }//AddBuffer
xue@1 84
Chris@5 85 /**
xue@1 86 method TQuickSpectrogram::AddBuffer: increase internal buffer by a multiple of BufferSize so that
xue@1 87 it will be enough to host another AddFrCount frames.
xue@1 88 */
xue@1 89 void TQuickSpectrogram::AddBuffer(int AddFrCount)
xue@1 90 {
xue@1 91 while (FrCount+AddFrCount>BufferSize*BufferCount) AddBuffer();
xue@1 92 }//AddBuffer
xue@1 93
xue@1 94 //---------------------------------------------------------------------------
Chris@5 95 /**
xue@1 96 function IntToDouble: copy content of integer array to double array
xue@1 97
xue@1 98 In: in: pointer to integer array
xue@1 99 BytesPerSample: number of bytes each integer takes
xue@1 100 Count: size of integer array, in integers
xue@1 101 Out: vector out[Count].
xue@1 102
xue@1 103 No return value.
xue@1 104 */
xue@1 105 void IntToDouble(double* out, void* in, int BytesPerSample, int Count)
xue@1 106 {
xue@1 107 if (BytesPerSample==1){unsigned char* in8=(unsigned char*)in; for (int k=0; k<Count; k++) *(out++)=*(in8++)-128.0;}
xue@1 108 else if (BytesPerSample==2) {__int16* in16=(__int16*)in; for (int k=0; k<Count; k++) *(out++)=*(in16++);}
xue@1 109 else {__pint24 in24=(__pint24)in; for (int k=0; k<Count; k++) *(out++)=*(in24++);}
xue@1 110 }//IntToDouble
xue@1 111
Chris@5 112 /**
xue@1 113 function CalculateSpectrum: calculate spectrum of a signal in integer format
xue@1 114
xue@1 115 In: Data[Wid]: integer array hosting waveform data
xue@1 116 BytesPerSample: number of bytes each integer in Data[] takes
xue@1 117 win[Wid]: window function used for computing spectrum
xue@1 118 w[Wid/2], x[Wid], hbi[Wid/2]: FFT buffers
xue@1 119 Out: x[Wid]: complex spectrum
xue@1 120 Amp[Wid/2+1]: amplitude spectrum
xue@1 121 Arg[Wid/2+1]: phase spectrum, optional
xue@1 122
xue@1 123 No return value.
xue@1 124 */
xue@1 125 void CalculateSpectrum(void* Data, int BytesPerSample, double* win, QSPEC_FORMAT* Amp, QSPEC_FORMAT* Arg, int Wid, cdouble* w, cdouble* x, int* hbi)
xue@1 126 {
xue@1 127 if (BytesPerSample==2) RFFTCW((__int16*)Data, win, 0, 0, log2(Wid), w, x, hbi);
xue@1 128 else {IntToDouble((double*)x, Data, BytesPerSample, Wid); RFFTCW((double*)x, win, 0, 0, log2(Wid), w, x, hbi);}
xue@1 129 for (int j=0; j<=Wid/2; j++)
xue@1 130 {
xue@1 131 Amp[j]=sqrt(x[j].x*x[j].x+x[j].y*x[j].y);
xue@1 132 if (Arg) Arg[j]=(x[j].y==0 && x[j].x==0)?0:atan2(x[j].y, x[j].x);
xue@1 133 }
xue@1 134 }//CalculateSpectrum
xue@1 135
Chris@5 136 /**
xue@1 137 function CalculateSpectrum: calculate spectrum of a signal in integer format, allowing the signal
xue@1 138 length $eff be shorter than the DFT size Wid.
xue@1 139
xue@1 140 In: Data[eff]: integer array hosting waveform data
xue@1 141 BytesPerSample: number of bytes each integer in Data[] takes
xue@1 142 win[Wid]: window function used for computing spectrum
xue@1 143 w[Wid/2], x[Wid], hbi[Wid/2]: FFT buffers
xue@1 144 Out: x[Wid]: complex spectrum
xue@1 145 Amp[Wid/2+1]: amplitude spectrum
xue@1 146 Arg[Wid/2+1]: phase spectrum, optional
xue@1 147
xue@1 148 No return value.
xue@1 149 */
xue@1 150 void CalculateSpectrum(void* Data, int BytesPerSample, double* win, QSPEC_FORMAT* Amp, QSPEC_FORMAT* Arg, int Wid, int eff, cdouble* w, cdouble* x, int* hbi)
xue@1 151 {
xue@1 152 if (eff<=0)
xue@1 153 {
xue@1 154 memset(Amp, 0, sizeof(double)*(Wid/2+1));
xue@1 155 if (Arg) memset(Arg, 0, sizeof(double)*(Wid/2+1));
xue@1 156 }
xue@1 157 else if (eff<Wid)
xue@1 158 {
xue@1 159 double* doublex=(double*)x;
xue@1 160 IntToDouble(doublex, Data, BytesPerSample, eff); memset(&doublex[eff], 0, sizeof(double)*(Wid-eff));
xue@1 161 RFFTCW(doublex, win, 0, 0, log2(Wid), w, x, hbi);
xue@1 162 for (int j=0; j<=Wid/2; j++)
xue@1 163 {
xue@1 164 Amp[j]=sqrt(x[j].x*x[j].x+x[j].y*x[j].y);
xue@1 165 if (Arg) Arg[j]=(x[j].y==0 && x[j].x==0)?0:atan2(x[j].y, x[j].x);
xue@1 166 }
xue@1 167 }
xue@1 168 else
xue@1 169 CalculateSpectrum(Data, BytesPerSample, win, Amp, Arg, Wid, w, x, hbi);
xue@1 170 }//CalculateSpectrum
xue@1 171
Chris@5 172 /**
xue@1 173 method TQuickSpectrogram::CalculateSpectrum: computes spectrogram at fr'th frame.
xue@1 174
xue@1 175 In: fr: index to the frame whose spectrum is to be computed. fr must be between 0 and Capacity-1.
xue@1 176 */
xue@1 177 void __fastcall TQuickSpectrogram::CalculateSpectrum(int fr)
xue@1 178 {
xue@1 179 cdouble *w, *x;
xue@1 180 double* win;
xue@1 181 int* hbi;
xue@1 182
xue@1 183 //obtain FFT buffers win (window function), w (twiddle factors), x (data buffer),
xue@1 184 //hbi (half-size bit-inversed integer table)
xue@1 185 if (GetFFTBuffers) //then use external buffers provided through GetFFTBuffers
xue@1 186 GetFFTBuffers(Id, w, x, win, hbi, Parent);
xue@1 187 else //then use internal buffers
xue@1 188 {
xue@1 189 if (Wid!=fWid)
xue@1 190 { //then update internal buffers to the new window size
xue@1 191 free8(fw); free(fhbi);
xue@1 192 fw=(cdouble*)malloc8(sizeof(cdouble)*Wid*1.5); SetTwiddleFactors(Wid, fw);
xue@1 193 fx=&fw[Wid/2];
xue@1 194 fhbi=CreateBitInvTable(log2(Wid)-1);
xue@1 195 }
xue@1 196 if (Wid!=fWid || WinType!=fwt || WinParam!=fwdp)
xue@1 197 { //then update internal window function to the new window type
xue@1 198 fwin=NewWindow8(WinType, Wid, 0, &WinParam);
xue@1 199 fwt=WinType; fwdp=WinParam;
xue@1 200 }
xue@1 201 fWid=Wid;
xue@1 202
xue@1 203 //pick up the internal buffers
xue@1 204 w=fw, x=fx, win=fwin, hbi=fhbi;
xue@1 205 }
xue@1 206
xue@1 207 //obtain the index of this frame in internal storage
xue@1 208 if (Frame[fr]<0) {AddBuffer(1); Frame[fr]=FrCount; FrCount++;}
xue@1 209 int realfr=Frame[fr];
xue@1 210
xue@1 211 //obtain the pointer to this frame's phase spectrum
xue@1 212 QSPEC_FORMAT *lph=useph?fPh[realfr]:NULL;
xue@1 213 //ontain the pointer to this frame's complex spectrum
xue@1 214 cmplx<QSPEC_FORMAT>* lX=usex?fSpec[realfr]:NULL;
xue@1 215 //choose the buffer actually used for FFT - use lX if it is specified as complex double array
xue@1 216 //because it saves unnecessary data copying operations
xue@1 217 cdouble *lx=(usex && sizeof(QSPEC_FORMAT)==sizeof(double))?(cdouble*)lX:x;
xue@1 218
xue@1 219 //Actual FFT
xue@1 220 if (fr*Offst+Wid<=DataLength)
xue@1 221 ::CalculateSpectrum(&((char*)Data)[fr*Offst*BytesPerSample], BytesPerSample, win, fA[realfr], lph, Wid, w, lx, hbi);
xue@1 222 else
xue@1 223 ::CalculateSpectrum(&((char*)Data)[fr*Offst*BytesPerSample], BytesPerSample, win, fA[realfr], lph, Wid, DataLength-fr*Offst, w, x, hbi);
xue@1 224
xue@1 225 //optional data copy from x to lX
xue@1 226 if (usex && lx==x) for (int i=0; i<Wid/2+1; i++) lX[i]=x[i];
xue@1 227
xue@1 228 //tag this frame as computed and valid
xue@1 229 Valid[fr]=1;
xue@1 230 }//CalculateSpectrum
xue@1 231
xue@1 232 //---------------------------------------------------------------------------
Chris@5 233 /**
xue@1 234 method TQuickSpectrogram::FreeBuffers: discards all computed spectra and free all internal buffers.
xue@1 235 This returns the TQuickSpectrogram to its initial state before any frame is accessed. After calling
xue@1 236 FreeBuffers() all frames will be recomputed when they are accessed.
xue@1 237 */
xue@1 238 void TQuickSpectrogram::FreeBuffers()
xue@1 239 {
xue@1 240 if (fA)
xue@1 241 {
xue@1 242 for (int i=0; i<BufferCount; i++) free(fA[i*BufferSize]);
xue@1 243 FrCount=BufferCount=Capacity=0;
xue@1 244 free(Frame); free(Valid);
xue@1 245 free(fA);
xue@1 246 Frame=Valid=0, fA=0;
xue@1 247 if (useph) {free(fPh); fPh=0;}
xue@1 248 if (usex) {free(fSpec); fSpec=0;}
xue@1 249 }
xue@1 250 }//FreeBuffers
xue@1 251
xue@1 252 //---------------------------------------------------------------------------
Chris@5 253 /**
xue@1 254 method TQuickSpectrogram::Invalidate: renders all frames that have overlap with interval [From, To],
xue@1 255 measured in samples, as invalid. Invalid frames are recomputed when they are accessed again.
xue@1 256
xue@1 257 In: [From, To]: an interval spectrogram over which needs to be updated.
xue@1 258
xue@1 259 Returns the number of allocated frames affected, no matter if they were valid.
xue@1 260 */
xue@1 261 int TQuickSpectrogram::Invalidate(int From, int To)
xue@1 262 {
xue@1 263 int result=0;
xue@1 264 if (Frame)
xue@1 265 {
xue@1 266 int fr1=ceil((From-Wid+1.0)/Offst), fr2=floor(1.0*To/Offst);
xue@1 267 if (fr1<0) fr1=0;
xue@1 268 if (fr2>=Capacity) fr2=Capacity-1;
xue@1 269 for (int fr=fr1; fr<=fr2; fr++) if (Frame[fr]>=0) Valid[fr]=false, result++;
xue@1 270 }
xue@1 271 return result;
xue@1 272 }//Invalidate
xue@1 273
xue@1 274 //---------------------------------------------------------------------------
Chris@5 275 /**
xue@1 276 method TQuickSpectrogram::Ph: accesses phase spectrogram by frame
xue@1 277
xue@1 278 In: fr: frame index, 0-based
xue@1 279
xue@1 280 Returns pointer to phase spectrum of the fr'th frame, NULL if N/A
xue@1 281 */
xue@1 282 QSPEC_FORMAT* __fastcall TQuickSpectrogram::Ph(int fr)
xue@1 283 {
xue@1 284 if (Capacity==0) SetFrCapacity((DataLength-Wid)/Offst+2);
xue@1 285 if (fr<0 || fr>=Capacity) return NULL;
xue@1 286 if (Frame[fr]<0 || !Valid[fr]) CalculateSpectrum(fr);
xue@1 287 return fPh[Frame[fr]];
xue@1 288 }//Ph
xue@1 289
xue@1 290 //---------------------------------------------------------------------------
Chris@5 291 /**
xue@1 292 method TQuickSpectrogram::SetFrCapacity: sets the capacity, i.e. the maximal number of frames handled
xue@1 293 by this TQuickSpectrogram.
xue@1 294
xue@1 295 In: AnFrCapacity: the new Capacity, in frames
xue@1 296
xue@1 297 This method should not be called to set Capacity to a smaller value.
xue@1 298 */
xue@1 299 void TQuickSpectrogram::SetFrCapacity(int AnFrCapacity)
xue@1 300 {
xue@1 301 //adjusting the size of index and validity arrays
xue@1 302 Frame=(int*)realloc(Frame, sizeof(int)*AnFrCapacity);
xue@1 303 Valid=(int*)realloc(Valid, sizeof(int)*AnFrCapacity);
xue@1 304
xue@1 305 //
xue@1 306 fA=(QSPEC_FORMAT**)realloc(fA, sizeof(QSPEC_FORMAT*)*AnFrCapacity);
xue@1 307 if (usex) fSpec=(cmplx<QSPEC_FORMAT>**)realloc(fSpec, sizeof(cmplx<QSPEC_FORMAT>*)*AnFrCapacity);
xue@1 308 if (useph) fPh=(QSPEC_FORMAT**)realloc(fPh, sizeof(QSPEC_FORMAT*)*AnFrCapacity);
xue@1 309 if (AnFrCapacity>Capacity)
xue@1 310 {
xue@1 311 memset(&Frame[Capacity], 0xFF, sizeof(int)*(AnFrCapacity-Capacity));
xue@1 312 memset(&Valid[Capacity], 0x00, sizeof(int)*(AnFrCapacity-Capacity));
xue@1 313
xue@1 314 if (Capacity<BufferCount*BufferSize)
xue@1 315 {
xue@1 316 for (int fr=Capacity; fr<AnFrCapacity; fr++)
xue@1 317 {
xue@1 318 int bufferno=fr/BufferSize;
xue@1 319 if (bufferno<BufferCount)
xue@1 320 {
xue@1 321 QSPEC_FORMAT* thisbuffer=fA[BufferSize*bufferno];
xue@1 322 int lfr=fr%BufferSize, base=1, Dim=Wid/2+1;
xue@1 323 fA[fr]=&thisbuffer[lfr*Dim];
xue@1 324 if (usex) fSpec[fr]=(cmplx<QSPEC_FORMAT>*)(&thisbuffer[(BufferSize+lfr*2)*Dim]), base+=2;
xue@1 325 if (useph) fPh[fr]=&thisbuffer[(BufferSize*base+lfr)*Dim];
xue@1 326 }
xue@1 327 else break;
xue@1 328 }
xue@1 329 }
xue@1 330 }
xue@1 331 Capacity=AnFrCapacity;
xue@1 332 }//SetFrCapacity
xue@1 333
xue@1 334 //---------------------------------------------------------------------------
Chris@5 335 /**
xue@1 336 method TQuickSpectrogram::Ph: accesses complex spectrogram by frame
xue@1 337
xue@1 338 In: fr: frame index, 0-based
xue@1 339
xue@1 340 Returns pointer to complex spectrum of the fr'th frame, NULL if N/A
xue@1 341 */
xue@1 342 cmplx<QSPEC_FORMAT>* __fastcall TQuickSpectrogram::Spec(int fr)
xue@1 343 {
xue@1 344 if (Capacity==0) SetFrCapacity((DataLength-Wid)/Offst+2);
xue@1 345 if (fr<0 || fr>=Capacity) return NULL;
xue@1 346 if (Frame[fr]<0 || !Valid[fr]) CalculateSpectrum(fr);
xue@1 347 return fSpec[Frame[fr]];
xue@1 348 }//Spec
xue@1 349
xue@1 350