xue@1
|
1 //---------------------------------------------------------------------------
|
xue@1
|
2 #include <math.h>
|
xue@1
|
3 #include <memory.h>
|
Chris@2
|
4 #include "matrix.h"
|
Chris@5
|
5
|
Chris@5
|
6 /** \file matrix.h */
|
Chris@5
|
7
|
xue@1
|
8 //---------------------------------------------------------------------------
|
Chris@5
|
9
|
Chris@5
|
10 /**
|
xue@1
|
11 function BalanceSim: applies a similarity transformation to matrix a so that a is "balanced". This is
|
xue@1
|
12 used by various eigenvalue evaluation routines.
|
xue@1
|
13
|
xue@1
|
14 In: matrix A[n][n]
|
xue@1
|
15 Out: balanced matrix a
|
xue@1
|
16
|
xue@1
|
17 No return value.
|
xue@1
|
18 */
|
xue@1
|
19 void BalanceSim(int n, double** A)
|
xue@1
|
20 {
|
xue@1
|
21 if (n<2) return;
|
xue@1
|
22 const int radix=2;
|
xue@1
|
23 double sqrdx;
|
xue@1
|
24 sqrdx=radix*radix;
|
xue@1
|
25 bool finish=false;
|
xue@1
|
26 while (!finish)
|
xue@1
|
27 {
|
xue@1
|
28 finish=true;
|
xue@1
|
29 for (int i=0; i<n; i++)
|
xue@1
|
30 {
|
xue@1
|
31 double s, sr=0, sc=0, ar, ac;
|
xue@1
|
32 for (int j=0; j<n; j++)
|
xue@1
|
33 if (j!=i)
|
xue@1
|
34 {
|
xue@1
|
35 sc+=fabs(A[j][i]);
|
xue@1
|
36 sr+=fabs(A[i][j]);
|
xue@1
|
37 }
|
xue@1
|
38 if (sc!=0 && sr!=0)
|
xue@1
|
39 {
|
xue@1
|
40 ar=sr/radix;
|
xue@1
|
41 ac=1.0;
|
xue@1
|
42 s=sr+sc;
|
xue@1
|
43 while (sc<ar)
|
xue@1
|
44 {
|
xue@1
|
45 ac*=radix;
|
xue@1
|
46 sc*=sqrdx;
|
xue@1
|
47 }
|
xue@1
|
48 ar=sr*radix;
|
xue@1
|
49 while (sc>ar)
|
xue@1
|
50 {
|
xue@1
|
51 ac/=radix;
|
xue@1
|
52 sc/=sqrdx;
|
xue@1
|
53 }
|
xue@1
|
54 }
|
xue@1
|
55 if ((sc+sr)/ac<0.95*s)
|
xue@1
|
56 {
|
xue@1
|
57 finish=false;
|
xue@1
|
58 ar=1.0/ac;
|
xue@1
|
59 for (int j=0; j<n; j++) A[i][j]*=ar;
|
xue@1
|
60 for (int j=0; j<n; j++) A[j][i]*=ac;
|
xue@1
|
61 }
|
xue@1
|
62 }
|
xue@1
|
63 }
|
xue@1
|
64 }//BalanceSim
|
xue@1
|
65
|
xue@1
|
66 //---------------------------------------------------------------------------
|
Chris@5
|
67 /**
|
xue@1
|
68 function Choleski: Choleski factorization A=LL', where L is lower triangular. The symmetric matrix
|
xue@1
|
69 A[N][N] is positive definite iff A can be factored as LL', where L is lower triangular with nonzero
|
xue@1
|
70 diagonl entries.
|
xue@1
|
71
|
xue@1
|
72 In: matrix A[N][N]
|
xue@1
|
73 Out: mstrix L[N][N].
|
xue@1
|
74
|
xue@1
|
75 Returns 0 if successful. On return content of matrix a is not changed.
|
xue@1
|
76 */
|
xue@1
|
77 int Choleski(int N, double** L, double** A)
|
xue@1
|
78 {
|
xue@1
|
79 if (A[0][0]==0) return 1;
|
xue@1
|
80 L[0][0]=sqrt(A[0][0]);
|
xue@1
|
81 memset(&L[0][1], 0, sizeof(double)*(N-1));
|
xue@1
|
82 for (int j=1; j<N; j++) L[j][0]=A[j][0]/L[0][0];
|
xue@1
|
83 for (int i=1; i<N-1; i++)
|
xue@1
|
84 {
|
xue@1
|
85 L[i][i]=A[i][i]; for (int k=0; k<i; k++) L[i][i]-=L[i][k]*L[i][k]; L[i][i]=sqrt(L[i][i]);
|
xue@1
|
86 if (L[i][i]==0) return 1;
|
xue@1
|
87 for (int j=i+1; j<N; j++)
|
xue@1
|
88 {
|
xue@1
|
89 L[j][i]=A[j][i]; for (int k=0; k<i; k++) L[j][i]-=L[j][k]*L[i][k]; L[j][i]/=L[i][i];
|
xue@1
|
90 }
|
xue@1
|
91 memset(&L[i][i+1], 0, sizeof(double)*(N-1-i));
|
xue@1
|
92 }
|
xue@1
|
93 L[N-1][N-1]=A[N-1][N-1]; for (int k=0; k<N-1; k++) L[N-1][N-1]-=L[N-1][k]*L[N-1][k]; L[N-1][N-1]=sqrt(L[N-1][N-1]);
|
xue@1
|
94 return 0;
|
xue@1
|
95 }//Choleski
|
xue@1
|
96
|
xue@1
|
97 //---------------------------------------------------------------------------
|
xue@1
|
98 //matrix duplication routines
|
xue@1
|
99
|
Chris@5
|
100 /**
|
xue@1
|
101 function Copy: duplicate the matrix A as matrix Z.
|
xue@1
|
102
|
xue@1
|
103 In: matrix A[M][N]
|
xue@1
|
104 Out: matrix Z[M][N]
|
xue@1
|
105
|
xue@1
|
106 Returns pointer to Z. Z is created anew if Z=0 is supplied on start.
|
xue@1
|
107 */
|
xue@1
|
108 double** Copy(int M, int N, double** Z, double** A, MList* List)
|
xue@1
|
109 {
|
xue@1
|
110 if (!Z) {Allocate2(double, M, N, Z); if (List) List->Add(Z, 2);}
|
xue@1
|
111 int sizeN=sizeof(double)*N;
|
xue@1
|
112 for (int m=0; m<M; m++) memcpy(Z[m], A[m], sizeN);
|
xue@1
|
113 return Z;
|
xue@1
|
114 }//Copy
|
xue@1
|
115 //complex version
|
xue@1
|
116 cdouble** Copy(int M, int N, cdouble** Z, cdouble** A, MList* List)
|
xue@1
|
117 {
|
xue@1
|
118 if (!Z) {Allocate2(cdouble, M, N, Z); if (List) List->Add(Z, 2);}
|
xue@1
|
119 int sizeN=sizeof(cdouble)*N;
|
xue@1
|
120 for (int m=0; m<M; m++) memcpy(Z[m], A[m], sizeN);
|
xue@1
|
121 return Z;
|
xue@1
|
122 }//Copy
|
xue@1
|
123 //version without specifying pre-allocated z
|
xue@1
|
124 double** Copy(int M, int N, double** A, MList* List){return Copy(M, N, 0, A, List);}
|
xue@1
|
125 cdouble** Copy(int M, int N, cdouble** A, MList* List){return Copy(M, N, 0, A, List);}
|
xue@1
|
126 //for square matrices
|
xue@1
|
127 double** Copy(int N, double** Z, double ** A, MList* List){return Copy(N, N, Z, A, List);}
|
xue@1
|
128 double** Copy(int N, double** A, MList* List){return Copy(N, N, 0, A, List);}
|
xue@1
|
129 cdouble** Copy(int N, cdouble** Z, cdouble** A, MList* List){return Copy(N, N, Z, A, List);}
|
xue@1
|
130 cdouble** Copy(int N, cdouble** A, MList* List){return Copy(N, N, 0, A, List);}
|
xue@1
|
131
|
xue@1
|
132 //---------------------------------------------------------------------------
|
xue@1
|
133 //vector duplication routines
|
xue@1
|
134
|
Chris@5
|
135 /**
|
xue@1
|
136 function Copy: duplicating vector a as vector z
|
xue@1
|
137
|
xue@1
|
138 In: vector a[N]
|
xue@1
|
139 Out: vector z[N]
|
xue@1
|
140
|
xue@1
|
141 Returns pointer to z. z is created anew is z=0 is specified on start.
|
xue@1
|
142 */
|
xue@1
|
143 double* Copy(int N, double* z, double* a, MList* List)
|
xue@1
|
144 {
|
xue@1
|
145 if (!z){z=new double[N]; if (List) List->Add(z, 1);}
|
xue@1
|
146 memcpy(z, a, sizeof(double)*N);
|
xue@1
|
147 return z;
|
xue@1
|
148 }//Copy
|
xue@1
|
149 cdouble* Copy(int N, cdouble* z, cdouble* a, MList* List)
|
xue@1
|
150 {
|
xue@1
|
151 if (!z){z=new cdouble[N]; if (List) List->Add(z, 1);}
|
xue@1
|
152 memcpy(z, a, sizeof(cdouble)*N);
|
xue@1
|
153 return z;
|
xue@1
|
154 }//Copy
|
xue@1
|
155 //version without specifying pre-allocated z
|
xue@1
|
156 double* Copy(int N, double* a, MList* List){return Copy(N, 0, a, List);}
|
xue@1
|
157 cdouble* Copy(int N, cdouble* a, MList* List){return Copy(N, 0, a, List);}
|
xue@1
|
158
|
xue@1
|
159 //---------------------------------------------------------------------------
|
Chris@5
|
160 /**
|
xue@1
|
161 function det: computes determinant by Gaussian elimination method with column pivoting
|
xue@1
|
162
|
xue@1
|
163 In: matrix A[N][N]
|
xue@1
|
164
|
xue@1
|
165 Returns det(A). On return content of matrix A is unchanged if mode=0.
|
xue@1
|
166 */
|
xue@1
|
167 double det(int N, double** A, int mode)
|
xue@1
|
168 {
|
xue@1
|
169 int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
170 double m, **b, result=1;
|
xue@1
|
171
|
xue@1
|
172 if (mode==0)
|
xue@1
|
173 {
|
xue@1
|
174 int sizeN=sizeof(double)*N;
|
xue@1
|
175 b=new double*[N]; b[0]=new double[N*N]; for (int i=0; i<N; i++) {b[i]=&b[0][i*N]; memcpy(b[i], A[i], sizeN);}
|
xue@1
|
176 A=b;
|
xue@1
|
177 }
|
xue@1
|
178
|
xue@1
|
179 //Gaussian eliminating
|
xue@1
|
180 for (int i=0; i<N-1; i++)
|
xue@1
|
181 {
|
xue@1
|
182 p=i, ip=i+1;
|
xue@1
|
183 while (ip<N){if (fabs(A[rp[ip]][i])>fabs(A[rp[p]][i])) p=ip; ip++;}
|
xue@1
|
184 if (A[rp[p]][i]==0) {result=0; goto ret;}
|
xue@1
|
185 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c; result=-result;}
|
xue@1
|
186 for (int j=i+1; j<N; j++)
|
xue@1
|
187 {
|
xue@1
|
188 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
189 A[rp[j]][i]=0;
|
xue@1
|
190 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
191 }
|
xue@1
|
192 }
|
xue@1
|
193 if (A[rp[N-1]][N-1]==0) {result=0; goto ret;}
|
xue@1
|
194
|
xue@1
|
195 for (int i=0; i<N; i++)
|
xue@1
|
196 result*=A[rp[i]][i];
|
xue@1
|
197
|
xue@1
|
198 ret:
|
xue@1
|
199 if (mode==0) {delete[] b[0]; delete[] b;}
|
xue@1
|
200 delete[] rp;
|
xue@1
|
201 return result;
|
xue@1
|
202 }//det
|
xue@1
|
203 //complex version
|
xue@1
|
204 cdouble det(int N, cdouble** A, int mode)
|
xue@1
|
205 {
|
xue@1
|
206 int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
207 double mm, mp;
|
xue@1
|
208 cdouble m, **b, result=1;
|
xue@1
|
209
|
xue@1
|
210 if (mode==0)
|
xue@1
|
211 {
|
xue@1
|
212 int sizeN=sizeof(cdouble)*N;
|
xue@1
|
213 b=new cdouble*[N]; b[0]=new cdouble[N*N];
|
xue@1
|
214 for (int i=0; i<N; i++) {b[i]=&b[0][i*N]; memcpy(b[i], A[i], sizeN);}
|
xue@1
|
215 A=b;
|
xue@1
|
216 }
|
xue@1
|
217
|
xue@1
|
218 //Gaussian elimination
|
xue@1
|
219 for (int i=0; i<N-1; i++)
|
xue@1
|
220 {
|
xue@1
|
221 p=i, ip=i+1; m=A[rp[p]][i]; mp=~m;
|
xue@1
|
222 while (ip<N){m=A[rp[ip]][i]; mm=~m; if (mm>mp) mp=mm, p=ip; ip++;}
|
xue@1
|
223 if (mp==0) {result=0; goto ret;}
|
xue@1
|
224 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c;}
|
xue@1
|
225 for (int j=i+1; j<N; j++)
|
xue@1
|
226 {
|
xue@1
|
227 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
228 A[rp[j]][i]=0;
|
xue@1
|
229 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
230 }
|
xue@1
|
231 }
|
xue@1
|
232 if (operator==(A[rp[N-1]][N-1],0)) {result=0; goto ret;}
|
xue@1
|
233
|
xue@1
|
234 for (int i=0; i<N; i++) result=result*A[rp[i]][i];
|
xue@1
|
235 ret:
|
xue@1
|
236 if (mode==0) {delete[] b[0]; delete[] b;}
|
xue@1
|
237 delete[] rp;
|
xue@1
|
238 return result;
|
xue@1
|
239 }//det
|
xue@1
|
240
|
xue@1
|
241 //---------------------------------------------------------------------------
|
Chris@5
|
242 /**
|
xue@1
|
243 function EigPower: power method for solving dominant eigenvalue and eigenvector
|
xue@1
|
244
|
xue@1
|
245 In: matrix A[N][N], initial arbitrary vector x[N].
|
xue@1
|
246 Out: eigenvalue l, eigenvector x[N].
|
xue@1
|
247
|
xue@1
|
248 Returns 0 is successful. Content of matrix A is unchangd on return. Initial x[N] must not be zero.
|
xue@1
|
249 */
|
xue@1
|
250 int EigPower(int N, double& l, double* x, double** A, double ep, int maxiter)
|
xue@1
|
251 {
|
xue@1
|
252 int k=0;
|
xue@1
|
253 int p=0; for (int i=1; i<N; i++) if (fabs(x[p])<fabs(x[i])) p=i;
|
xue@1
|
254 Multiply(N, x, x, 1/x[p]);
|
xue@1
|
255 double e, ty,te, *y=new double[N];
|
xue@1
|
256
|
xue@1
|
257 while (k<maxiter)
|
xue@1
|
258 {
|
xue@1
|
259 MultiplyXy(N, N, y, A, x);
|
xue@1
|
260 l=y[p];
|
xue@1
|
261 int p=0; for (int i=1; i<N; i++) if (fabs(y[p])<fabs(y[i])) p=i;
|
xue@1
|
262 if (y[p]==0) {l=0; delete[] y; return 0;}
|
xue@1
|
263 ty=y[0]/y[p]; e=fabs(x[0]-ty); x[0]=ty;
|
xue@1
|
264 for (int i=1; i<N; i++)
|
xue@1
|
265 {
|
xue@1
|
266 ty=y[i]/y[p]; te=fabs(x[i]-ty); if (e<te) e=te; x[i]=ty;
|
xue@1
|
267 }
|
xue@1
|
268 if (e<ep) {delete[] y; return 0;}
|
xue@1
|
269 k++;
|
xue@1
|
270 }
|
xue@1
|
271 delete[] y; return 1;
|
xue@1
|
272 }//EigPower
|
xue@1
|
273
|
xue@1
|
274 //---------------------------------------------------------------------------
|
Chris@5
|
275 /**
|
xue@1
|
276 function EigPowerA: EigPower with Aitken acceleration
|
xue@1
|
277
|
xue@1
|
278 In: matrix A[N][N], initial arbitrary vector x[N].
|
xue@1
|
279 Out: eigenvalue l, eigenvector x[N].
|
xue@1
|
280
|
xue@1
|
281 Returns 0 is successful. Content of matrix A is unchangd on return. Initial x[N] must not be zero.
|
xue@1
|
282 */
|
xue@1
|
283 int EigPowerA(int N, double& l, double* x, double** A, double ep, int maxiter)
|
xue@1
|
284 {
|
xue@1
|
285 int k=0;
|
xue@1
|
286 int p=0; for (int i=1; i<N; i++) if (fabs(x[p])<fabs(x[i])) p=i;
|
xue@1
|
287 Multiply(N, x, x, 1/x[p]);
|
xue@1
|
288 double m, m0=0, m1=0, e, ty,te, *y=new double[N];
|
xue@1
|
289
|
xue@1
|
290 while (k<maxiter)
|
xue@1
|
291 {
|
xue@1
|
292 MultiplyXy(N, N, y, A, x);
|
xue@1
|
293 m=y[p];
|
xue@1
|
294 int p=0; for (int i=1; i<N; i++) if (fabs(y[p])<fabs(y[i])) p=i;
|
xue@1
|
295 if (y[p]==0) {l=0; delete[] y; return 0;}
|
xue@1
|
296 ty=y[0]/y[p]; e=fabs(x[0]-ty); x[0]=ty;
|
xue@1
|
297 for (int i=1; i<N; i++)
|
xue@1
|
298 {
|
xue@1
|
299 ty=y[i]/y[p]; te=fabs(x[i]-ty); if (e<te) e=te; x[i]=ty;
|
xue@1
|
300 }
|
xue@1
|
301 if (e<ep && k>2) {l=m0-(m1-m0)*(m1-m0)/(m-2*m1+m0); delete[] y; return 0;}
|
xue@1
|
302 k++; m0=m1; m1=m;
|
xue@1
|
303 }
|
xue@1
|
304 delete[] y; return 1;
|
xue@1
|
305 }//EigPowerA
|
xue@1
|
306
|
xue@1
|
307 //---------------------------------------------------------------------------
|
Chris@5
|
308 /**
|
xue@1
|
309 function EigPowerI: Inverse power method for solving the eigenvalue given an approximate non-zero
|
xue@1
|
310 eigenvector.
|
xue@1
|
311
|
xue@1
|
312 In: matrix A[N][N], approximate eigenvector x[N].
|
xue@1
|
313 Out: eigenvalue l, eigenvector x[N].
|
xue@1
|
314
|
xue@1
|
315 Returns 0 is successful. Content of matrix A is unchangd on return. Initial x[N] must not be zero.
|
xue@1
|
316 */
|
xue@1
|
317 int EigPowerI(int N, double& l, double* x, double** A, double ep, int maxiter)
|
xue@1
|
318 {
|
xue@1
|
319 int sizeN=sizeof(double)*N;
|
xue@1
|
320 double* y=new double[N]; MultiplyXy(N, N, y, A, x);
|
xue@1
|
321 double q=Inner(N, x, y)/Inner(N, x, x), dt;
|
xue@1
|
322 double** aa=new double*[N]; aa[0]=new double[N*N];
|
xue@1
|
323 for (int i=0; i<N; i++) {aa[i]=&aa[0][i*N]; memcpy(aa[i], A[i], sizeN); aa[i][i]-=q;}
|
xue@1
|
324 dt=GISCP(N, aa);
|
xue@1
|
325 if (dt==0) {l=q; delete[] aa[0]; delete[] aa; delete[] y; return 0;}
|
xue@1
|
326
|
xue@1
|
327 int k=0;
|
xue@1
|
328 int p=0; for (int i=1; i<N; i++) if (fabs(x[p])<fabs(x[i])) p=i;
|
xue@1
|
329 Multiply(N, x, x, 1/x[p]);
|
xue@1
|
330
|
xue@1
|
331 double m, e, ty, te;
|
xue@1
|
332 while (k<N)
|
xue@1
|
333 {
|
xue@1
|
334 MultiplyXy(N, N, y, aa, x);
|
xue@1
|
335 m=y[p];
|
xue@1
|
336 p=0; for (int i=1; i<N; i++) if (fabs(y[p])<fabs(y[i])) p=i;
|
xue@1
|
337 ty=y[0]/y[p]; te=x[0]-ty; e=fabs(te); x[0]=ty;
|
xue@1
|
338 for (int i=1; i<N; i++)
|
xue@1
|
339 {
|
xue@1
|
340 ty=y[i]/y[p]; te=fabs(x[i]-ty); if (e<te) e=te; x[i]=ty;
|
xue@1
|
341 }
|
xue@1
|
342 if (e<ep) {l=1/m+q; delete[] aa[0]; delete[] aa; delete[] y; return 0;}
|
xue@1
|
343 }
|
xue@1
|
344 delete[] aa[0]; delete[] aa;
|
xue@1
|
345 delete[] y; return 1;
|
xue@1
|
346 }//EigPowerI
|
xue@1
|
347
|
xue@1
|
348 //---------------------------------------------------------------------------
|
Chris@5
|
349 /**
|
xue@1
|
350 function EigPowerS: symmetric power method for solving the dominant eigenvalue with its eigenvector
|
xue@1
|
351
|
xue@1
|
352 In: matrix A[N][N], initial arbitrary vector x[N].
|
xue@1
|
353 Out: eigenvalue l, eigenvector x[N].
|
xue@1
|
354
|
xue@1
|
355 Returns 0 is successful. Content of matrix A is unchangd on return. Initial x[N] must not be zero.
|
xue@1
|
356 */
|
xue@1
|
357 int EigPowerS(int N, double& l, double* x, double** A, double ep, int maxiter)
|
xue@1
|
358 {
|
xue@1
|
359 int k=0;
|
xue@1
|
360 Multiply(N, x, x, 1/sqrt(Inner(N, x, x)));
|
xue@1
|
361 double y2, e, ty, te, *y=new double[N];
|
xue@1
|
362 while (k<maxiter)
|
xue@1
|
363 {
|
xue@1
|
364 MultiplyXy(N, N, y, A, x);
|
xue@1
|
365 l=Inner(N, x, y);
|
xue@1
|
366 y2=sqrt(Inner(N, y, y));
|
xue@1
|
367 if (y2==0) {l=0; delete[] y; return 0;}
|
xue@1
|
368 ty=y[0]/y2; te=x[0]-ty; e=te*te; x[0]=ty;
|
xue@1
|
369 for (int i=1; i<N; i++)
|
xue@1
|
370 {
|
xue@1
|
371 ty=y[i]/y2; te=x[i]-ty; e+=te*te; x[i]=ty;
|
xue@1
|
372 }
|
xue@1
|
373 e=sqrt(e);
|
xue@1
|
374 if (e<ep) {delete[] y; return 0;}
|
xue@1
|
375 k++;
|
xue@1
|
376 }
|
xue@1
|
377 delete[] y;
|
xue@1
|
378 return 1;
|
xue@1
|
379 }//EigPowerS
|
xue@1
|
380
|
xue@1
|
381 //---------------------------------------------------------------------------
|
Chris@5
|
382 /**
|
xue@1
|
383 function EigPowerWielandt: Wielandt's deflation algorithm for solving a second dominant eigenvalue and
|
xue@1
|
384 eigenvector (m,u) given the dominant eigenvalue and eigenvector (l,v).
|
xue@1
|
385
|
xue@1
|
386 In: matrix A[N][N], first eigenvalue l with eigenvector v[N]
|
xue@1
|
387 Out: second eigenvalue m with eigenvector u
|
xue@1
|
388
|
xue@1
|
389 Returns 0 if successful. Content of matrix A is unchangd on return. Initial u[N] must not be zero.
|
xue@1
|
390 */
|
xue@1
|
391 int EigPowerWielandt(int N, double& m, double* u, double l, double* v, double** A, double ep, int maxiter)
|
xue@1
|
392 {
|
xue@1
|
393 int result;
|
xue@1
|
394 double** b=new double*[N-1]; b[0]=new double[(N-1)*(N-1)]; for (int i=1; i<N-1; i++) b[i]=&b[0][i*(N-1)];
|
xue@1
|
395 double* w=new double[N];
|
xue@1
|
396 int i=0; for (int j=1; j<N; j++) if (fabs(v[i])<fabs(v[j])) i=j;
|
xue@1
|
397 if (i!=0)
|
xue@1
|
398 for (int k=0; k<i; k++)
|
xue@1
|
399 for (int j=0; j<i; j++)
|
xue@1
|
400 b[k][j]=A[k][j]-v[k]*A[i][j]/v[i];
|
xue@1
|
401 if (i!=0 && i!=N-1)
|
xue@1
|
402 for (int k=i; k<N-1; k++)
|
xue@1
|
403 for (int j=0; j<i; j++)
|
xue@1
|
404 b[k][j]=A[k+1][j]-v[k+1]*A[i][j]/v[i], b[j][k]=A[j][k+1]-v[j]*A[i][k+1]/v[i];
|
xue@1
|
405 if (i!=N-1)
|
xue@1
|
406 for (int k=i; k<N-1; k++)
|
xue@1
|
407 for (int j=i; j<N-1; j++) b[k][j]=A[k+1][j+1]-v[k+1]*A[i][j+1]/v[i];
|
xue@1
|
408 memcpy(w, u, sizeof(double)*(N-1));
|
xue@1
|
409 if ((result=EigPower(N-1, m, w, b, ep, maxiter))==0)
|
xue@1
|
410 { //*
|
xue@1
|
411 if (i!=N-1) memmove(&w[i+1], &w[i], sizeof(double)*(N-i-1));
|
xue@1
|
412 w[i]=0;
|
xue@1
|
413 for (int k=0; k<N; k++) u[k]=(m-l)*w[k]+Inner(N, A[i], w)*v[k]/v[i]; //*/
|
xue@1
|
414 }
|
xue@1
|
415 delete[] w; delete[] b[0]; delete[] b;
|
xue@1
|
416 return result;
|
xue@1
|
417 }//EigPowerWielandt
|
xue@1
|
418
|
xue@1
|
419 //---------------------------------------------------------------------------
|
xue@1
|
420 //NR versions of eigensystem
|
xue@1
|
421
|
Chris@5
|
422 /**
|
xue@1
|
423 function EigenValues: solves for eigenvalues of general system
|
xue@1
|
424
|
xue@1
|
425 In: matrix A[N][N]
|
xue@1
|
426 Out: eigenvalues ev[N]
|
xue@1
|
427
|
xue@1
|
428 Returns 0 if successful. Content of matrix A is destroyed on return.
|
xue@1
|
429 */
|
xue@1
|
430 int EigenValues(int N, double** A, cdouble* ev)
|
xue@1
|
431 {
|
xue@1
|
432 BalanceSim(N, A);
|
xue@1
|
433 Hessenb(N, A);
|
xue@1
|
434 return QR(N, A, ev);
|
xue@1
|
435 }//EigenValues
|
xue@1
|
436
|
Chris@5
|
437 /**
|
xue@1
|
438 function EigSym: Solves real symmetric eigensystem A
|
xue@1
|
439
|
xue@1
|
440 In: matrix A[N][N]
|
xue@1
|
441 Out: eigenvalues d[N], transform matrix Q[N][N], so that diag(d)=Q'AQ, A=Q diag(d) Q', AQ=Q diag(d)
|
xue@1
|
442
|
xue@1
|
443 Returns 0 if successful. Content of matrix A is unchanged on return.
|
xue@1
|
444 */
|
xue@1
|
445 int EigSym(int N, double** A, double* d, double** Q)
|
xue@1
|
446 {
|
xue@1
|
447 Copy(N, Q, A);
|
xue@1
|
448 double* t=new double[N];
|
xue@1
|
449 HouseHolder(5, Q, d, t);
|
xue@1
|
450 double result=QL(5, d, t, Q);
|
xue@1
|
451 delete[] t;
|
xue@1
|
452 return result;
|
xue@1
|
453 }//EigSym
|
xue@1
|
454
|
xue@1
|
455 //---------------------------------------------------------------------------
|
Chris@5
|
456 /**
|
xue@1
|
457 function GEB: Gaussian elimination with backward substitution for solving linear system Ax=b.
|
xue@1
|
458
|
xue@1
|
459 In: coefficient matrix A[N][N], vector b[N]
|
xue@1
|
460 Out: vector x[N]
|
xue@1
|
461
|
xue@1
|
462 Returns 0 if successful. Contents of matrix A and vector b are destroyed on return.
|
xue@1
|
463 */
|
xue@1
|
464 int GEB(int N, double* x, double** A, double* b)
|
xue@1
|
465 {
|
xue@1
|
466 //Gaussian eliminating
|
xue@1
|
467 int c, p, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
468 double m;
|
xue@1
|
469 for (int i=0; i<N-1; i++)
|
xue@1
|
470 {
|
xue@1
|
471 p=i;
|
xue@1
|
472 while (p<N && A[rp[p]][i]==0) p++;
|
xue@1
|
473 if (p>=N) {delete[] rp; return 1;}
|
xue@1
|
474 if (p!=i){c=rp[i]; rp[i]=rp[p]; rp[p]=c;}
|
xue@1
|
475 for (int j=i+1; j<N; j++)
|
xue@1
|
476 {
|
xue@1
|
477 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
478 A[rp[j]][i]=0;
|
xue@1
|
479 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
480 b[rp[j]]-=m*b[rp[i]];
|
xue@1
|
481 }
|
xue@1
|
482 }
|
xue@1
|
483 if (A[rp[N-1]][N-1]==0) {delete[] rp; return 1;}
|
xue@1
|
484 else
|
xue@1
|
485 {
|
xue@1
|
486 //backward substitution
|
xue@1
|
487 x[N-1]=b[rp[N-1]]/A[rp[N-1]][N-1];
|
xue@1
|
488 for (int i=N-2; i>=0; i--)
|
xue@1
|
489 {
|
xue@1
|
490 x[i]=b[rp[i]]; for (int j=i+1; j<N; j++) x[i]-=A[rp[i]][j]*x[j]; x[i]/=A[rp[i]][i];
|
xue@1
|
491 }
|
xue@1
|
492 }
|
xue@1
|
493 delete[] rp;
|
xue@1
|
494 return 0;
|
xue@1
|
495 }//GEB
|
xue@1
|
496
|
xue@1
|
497 //---------------------------------------------------------------------------
|
Chris@5
|
498 /**
|
xue@1
|
499 function GESCP: Gaussian elimination with scaled column pivoting for solving linear system Ax=b
|
xue@1
|
500
|
xue@1
|
501 In: matrix A[N][N], vector b[N]
|
xue@1
|
502 Out: vector x[N]
|
xue@1
|
503
|
xue@1
|
504 Returns 0 is successful. Contents of matrix A and vector b are destroyed on return.
|
xue@1
|
505 */
|
xue@1
|
506 int GESCP(int N, double* x, double** A, double *b)
|
xue@1
|
507 {
|
xue@1
|
508 int c, p, ip, *rp=new int[N];
|
xue@1
|
509 double m, *s=new double[N];
|
xue@1
|
510 for (int i=0; i<N; i++)
|
xue@1
|
511 {
|
xue@1
|
512 s[i]=fabs(A[i][0]);
|
xue@1
|
513 for (int j=1; j<N; j++) if (s[i]<fabs(A[i][j])) s[i]=fabs(A[i][j]);
|
xue@1
|
514 if (s[i]==0) {delete[] s; delete[] rp; return 1;}
|
xue@1
|
515 rp[i]=i;
|
xue@1
|
516 }
|
xue@1
|
517 //Gaussian eliminating
|
xue@1
|
518 for (int i=0; i<N-1; i++)
|
xue@1
|
519 {
|
xue@1
|
520 p=i, ip=i+1;
|
xue@1
|
521 while (ip<N){if (fabs(A[rp[ip]][i])/s[rp[ip]]>fabs(A[rp[p]][i])/s[rp[p]]) p=ip; ip++;}
|
xue@1
|
522 if (A[rp[p]][i]==0) {delete[] s; delete[] rp; return 1;}
|
xue@1
|
523 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c;}
|
xue@1
|
524 for (int j=i+1; j<N; j++)
|
xue@1
|
525 {
|
xue@1
|
526 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
527 A[rp[j]][i]=0;
|
xue@1
|
528 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
529 b[rp[j]]-=m*b[rp[i]];
|
xue@1
|
530 }
|
xue@1
|
531 }
|
xue@1
|
532 if (A[rp[N-1]][N-1]==0) {delete[] s; delete[] rp; return 1;}
|
xue@1
|
533 //backward substitution
|
xue@1
|
534 x[N-1]=b[rp[N-1]]/A[rp[N-1]][N-1];
|
xue@1
|
535 for (int i=N-2; i>=0; i--)
|
xue@1
|
536 {
|
xue@1
|
537 x[i]=b[rp[i]]; for (int j=i+1; j<N; j++) x[i]-=A[rp[i]][j]*x[j]; x[i]/=A[rp[i]][i];
|
xue@1
|
538 }
|
xue@1
|
539 delete[] s; delete[] rp;
|
xue@1
|
540 return 0;
|
xue@1
|
541 }//GESCP
|
xue@1
|
542
|
xue@1
|
543 //---------------------------------------------------------------------------
|
Chris@5
|
544 /**
|
xue@1
|
545 function GExL: solves linear system xL=a, L being lower-triangular. This is used in LU factorization
|
xue@1
|
546 for solving linear systems.
|
xue@1
|
547
|
xue@1
|
548 In: lower-triangular matrix L[N][N], vector a[N]
|
xue@1
|
549 Out: vector x[N]
|
xue@1
|
550
|
xue@1
|
551 No return value. Contents of matrix L and vector a are unchanged at return.
|
xue@1
|
552 */
|
xue@1
|
553 void GExL(int N, double* x, double** L, double* a)
|
xue@1
|
554 {
|
xue@1
|
555 for (int n=N-1; n>=0; n--)
|
xue@1
|
556 {
|
xue@1
|
557 double xn=a[n];
|
xue@1
|
558 for (int m=n+1; m<N; m++) xn-=x[m]*L[m][n];
|
xue@1
|
559 x[n]=xn/L[n][n];
|
xue@1
|
560 }
|
xue@1
|
561 }//GExL
|
xue@1
|
562
|
Chris@5
|
563 /**
|
xue@1
|
564 function GExLAdd: solves linear system *L=a, L being lower-triangular, and add the solution * to x[].
|
xue@1
|
565
|
xue@1
|
566 In: lower-triangular matrix L[N][N], vector a[N]
|
xue@1
|
567 Out: updated vector x[N]
|
xue@1
|
568
|
xue@1
|
569 No return value. Contents of matrix L and vector a are unchanged at return.
|
xue@1
|
570 */
|
xue@1
|
571 void GExLAdd(int N, double* x, double** L, double* a)
|
xue@1
|
572 {
|
xue@1
|
573 double* lx=new double[N];
|
xue@1
|
574 GExL(N, lx, L, a);
|
xue@1
|
575 for (int i=0; i<N; i++) x[i]+=lx[i];
|
xue@1
|
576 delete[] lx;
|
xue@1
|
577 }//GExLAdd
|
xue@1
|
578
|
Chris@5
|
579 /**
|
xue@1
|
580 function GExL1: solves linear system xL=(0, 0, ..., 0, a)', L being lower-triangular.
|
xue@1
|
581
|
xue@1
|
582 In: lower-triangular matrix L[N][N], a
|
xue@1
|
583 Out: vector x[N]
|
xue@1
|
584
|
xue@1
|
585 No return value. Contents of matrix L and vector a are unchanged at return.
|
xue@1
|
586 */
|
xue@1
|
587 void GExL1(int N, double* x, double** L, double a)
|
xue@1
|
588 {
|
xue@1
|
589 double xn=a;
|
xue@1
|
590 for (int n=N-1; n>=0; n--)
|
xue@1
|
591 {
|
xue@1
|
592 for (int m=n+1; m<N; m++) xn-=x[m]*L[m][n];
|
xue@1
|
593 x[n]=xn/L[n][n];
|
xue@1
|
594 xn=0;
|
xue@1
|
595 }
|
xue@1
|
596 }//GExL1
|
xue@1
|
597
|
Chris@5
|
598 /**
|
xue@1
|
599 function GExL1Add: solves linear system *L=(0, 0, ..., 0, a)', L being lower-triangular, and add the
|
xue@1
|
600 solution * to x[].
|
xue@1
|
601
|
xue@1
|
602 In: lower-triangular matrix L[N][N], vector a
|
xue@1
|
603 Out: updated vector x[N]
|
xue@1
|
604
|
xue@1
|
605 No return value. Contents of matrix L and vector a are unchanged at return.
|
xue@1
|
606 */
|
xue@1
|
607 void GExL1Add(int N, double* x, double** L, double a)
|
xue@1
|
608 {
|
xue@1
|
609 double* lx=new double[N];
|
xue@1
|
610 GExL1(N, lx, L, a);
|
xue@1
|
611 for (int i=0; i<N; i++) x[i]+=lx[i];
|
xue@1
|
612 delete[] lx;
|
xue@1
|
613 }//GExL1Add
|
xue@1
|
614
|
xue@1
|
615 //---------------------------------------------------------------------------
|
Chris@5
|
616 /**
|
xue@1
|
617 function GICP: matrix inverse using Gaussian elimination with column pivoting: inv(A)->A.
|
xue@1
|
618
|
xue@1
|
619 In: matrix A[N][N]
|
xue@1
|
620 Out: matrix A[N][N]
|
xue@1
|
621
|
xue@1
|
622 Returns the determinant of the inverse matrix, 0 on failure.
|
xue@1
|
623 */
|
xue@1
|
624 double GICP(int N, double** A)
|
xue@1
|
625 {
|
xue@1
|
626 int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
627 double m, result=1;
|
xue@1
|
628
|
xue@1
|
629 //Gaussian eliminating
|
xue@1
|
630 for (int i=0; i<N-1; i++)
|
xue@1
|
631 {
|
xue@1
|
632 p=i, ip=i+1;
|
xue@1
|
633 while (ip<N){if (fabs(A[rp[ip]][i])>fabs(A[rp[p]][i])) p=ip; ip++;}
|
xue@1
|
634 if (A[rp[p]][i]==0) {delete[] rp; return 0;}
|
xue@1
|
635 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c; result=-result;}
|
xue@1
|
636 result/=A[rp[i]][i];
|
xue@1
|
637 for (int j=i+1; j<N; j++)
|
xue@1
|
638 {
|
xue@1
|
639 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
640 A[rp[j]][i]=-m;
|
xue@1
|
641 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
642 for (int k=0; k<i; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
643 }
|
xue@1
|
644 }
|
xue@1
|
645 if (A[rp[N-1]][N-1]==0) {delete[] rp; return 0;}
|
xue@1
|
646 result/=A[rp[N-1]][N-1];
|
xue@1
|
647 //backward substitution
|
xue@1
|
648 for (int i=0; i<N-1; i++)
|
xue@1
|
649 {
|
xue@1
|
650 m=A[rp[i]][i]; for (int k=0; k<N; k++) A[rp[i]][k]/=m; A[rp[i]][i]=1/m;
|
xue@1
|
651 for (int j=i+1; j<N; j++)
|
xue@1
|
652 {
|
xue@1
|
653 m=A[rp[i]][j]/A[rp[j]][j]; for (int k=0; k<N; k++) A[rp[i]][k]-=A[rp[j]][k]*m; A[rp[i]][j]=-m;
|
xue@1
|
654 }
|
xue@1
|
655 }
|
xue@1
|
656 m=A[rp[N-1]][N-1]; for (int k=0; k<N-1; k++) A[rp[N-1]][k]/=m; A[rp[N-1]][N-1]=1/m;
|
xue@1
|
657 //recover column and row exchange
|
xue@1
|
658 double* tm=new double[N]; int sizeN=sizeof(double)*N;
|
xue@1
|
659 for (int i=0; i<N; i++) { for (int j=0; j<N; j++) tm[rp[j]]=A[i][j]; memcpy(A[i], tm, sizeN); }
|
xue@1
|
660 for (int j=0; j<N; j++) { for (int i=0; i<N; i++) tm[i]=A[rp[i]][j]; for (int i=0; i<N; i++) A[i][j]=tm[i];}
|
xue@1
|
661
|
xue@1
|
662 delete[] tm; delete[] rp;
|
xue@1
|
663 return result;
|
xue@1
|
664 }//GICP
|
xue@1
|
665 //complex version
|
xue@1
|
666 cdouble GICP(int N, cdouble** A)
|
xue@1
|
667 {
|
xue@1
|
668 int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
669 cdouble m, result=1;
|
xue@1
|
670
|
xue@1
|
671 //Gaussian eliminating
|
xue@1
|
672 for (int i=0; i<N-1; i++)
|
xue@1
|
673 {
|
xue@1
|
674 p=i, ip=i+1;
|
xue@1
|
675 while (ip<N){if (~A[rp[ip]][i]>~A[rp[p]][i]) p=ip; ip++;}
|
xue@1
|
676 if (A[rp[p]][i]==0) {delete[] rp; return 0;}
|
xue@1
|
677 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c; result=-result;}
|
xue@1
|
678 result=result/(A[rp[i]][i]);
|
xue@1
|
679 for (int j=i+1; j<N; j++)
|
xue@1
|
680 {
|
xue@1
|
681 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
682 A[rp[j]][i]=-m;
|
xue@1
|
683 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
684 for (int k=0; k<i; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
685 }
|
xue@1
|
686 }
|
xue@1
|
687 if (A[rp[N-1]][N-1]==0) {delete[] rp; return 0;}
|
xue@1
|
688 result=result/A[rp[N-1]][N-1];
|
xue@1
|
689 //backward substitution
|
xue@1
|
690 for (int i=0; i<N-1; i++)
|
xue@1
|
691 {
|
xue@1
|
692 m=A[rp[i]][i]; for (int k=0; k<N; k++) A[rp[i]][k]=A[rp[i]][k]/m; A[rp[i]][i]=cdouble(1)/m;
|
xue@1
|
693 for (int j=i+1; j<N; j++)
|
xue@1
|
694 {
|
xue@1
|
695 m=A[rp[i]][j]/A[rp[j]][j]; for (int k=0; k<N; k++) A[rp[i]][k]-=A[rp[j]][k]*m; A[rp[i]][j]=-m;
|
xue@1
|
696 }
|
xue@1
|
697 }
|
xue@1
|
698 m=A[rp[N-1]][N-1]; for (int k=0; k<N-1; k++) A[rp[N-1]][k]=A[rp[N-1]][k]/m; A[rp[N-1]][N-1]=cdouble(1)/m;
|
xue@1
|
699 //recover column and row exchange
|
xue@1
|
700 cdouble* tm=new cdouble[N]; int sizeN=sizeof(cdouble)*N;
|
xue@1
|
701 for (int i=0; i<N; i++) { for (int j=0; j<N; j++) tm[rp[j]]=A[i][j]; memcpy(A[i], tm, sizeN); }
|
xue@1
|
702 for (int j=0; j<N; j++) { for (int i=0; i<N; i++) tm[i]=A[rp[i]][j]; for (int i=0; i<N; i++) A[i][j]=tm[i];}
|
xue@1
|
703
|
xue@1
|
704 delete[] tm; delete[] rp;
|
xue@1
|
705 return result;
|
xue@1
|
706 }//GICP
|
xue@1
|
707
|
Chris@5
|
708 /**
|
xue@1
|
709 function GICP: wrapper function that does not overwrite the input matrix: inv(A)->X.
|
xue@1
|
710
|
xue@1
|
711 In: matrix A[N][N]
|
xue@1
|
712 Out: matrix X[N][N]
|
xue@1
|
713
|
xue@1
|
714 Returns the determinant of the inverse matrix, 0 on failure.
|
xue@1
|
715 */
|
xue@1
|
716 double GICP(int N, double** X, double** A)
|
xue@1
|
717 {
|
xue@1
|
718 Copy(N, X, A);
|
xue@1
|
719 return GICP(N, X);
|
xue@1
|
720 }//GICP
|
xue@1
|
721
|
xue@1
|
722 //---------------------------------------------------------------------------
|
Chris@5
|
723 /**
|
xue@1
|
724 function GILT: inv(lower trangular of A)->lower trangular of A
|
xue@1
|
725
|
xue@1
|
726 In: matrix A[N][N]
|
xue@1
|
727 Out: matrix A[N][N]
|
xue@1
|
728
|
xue@1
|
729 Returns the determinant of the lower trangular of A
|
xue@1
|
730 */
|
xue@1
|
731 double GILT(int N, double** A)
|
xue@1
|
732 {
|
xue@1
|
733 double result=1;
|
xue@1
|
734 A[0][0]=1/A[0][0];
|
xue@1
|
735 for (int i=1; i<N; i++)
|
xue@1
|
736 {
|
xue@1
|
737 result*=A[i][i];
|
xue@1
|
738 double tmp=1/A[i][i];
|
xue@1
|
739 for (int k=0; k<i; k++) A[i][k]*=tmp; A[i][i]=tmp;
|
xue@1
|
740 for (int j=0; j<i; j++)
|
xue@1
|
741 {
|
xue@1
|
742 double tmp2=A[i][j];
|
xue@1
|
743 for (int k=0; k<j; k++) A[i][k]-=A[j][k]*tmp2; A[i][j]=-A[j][j]*tmp2;
|
xue@1
|
744 }
|
xue@1
|
745 }
|
xue@1
|
746 return result;
|
xue@1
|
747 }//GILT
|
xue@1
|
748
|
Chris@5
|
749 /**
|
xue@1
|
750 function GIUT: inv(upper trangular of A)->upper trangular of A
|
xue@1
|
751
|
xue@1
|
752 In: matrix A[N][N]
|
xue@1
|
753 Out: matrix A[N][N]
|
xue@1
|
754
|
xue@1
|
755 Returns the determinant of the upper trangular of A
|
xue@1
|
756 */
|
xue@1
|
757 double GIUT(int N, double** A)
|
xue@1
|
758 {
|
xue@1
|
759 double result=1;
|
xue@1
|
760 A[0][0]=1/A[0][0];
|
xue@1
|
761 for (int i=1; i<N; i++)
|
xue@1
|
762 {
|
xue@1
|
763 result*=A[i][i];
|
xue@1
|
764 double tmp=1/A[i][i];
|
xue@1
|
765 for (int k=0; k<i; k++) A[k][i]*=tmp; A[i][i]=tmp;
|
xue@1
|
766 for (int j=0; j<i; j++)
|
xue@1
|
767 {
|
xue@1
|
768 double tmp2=A[j][i];
|
xue@1
|
769 for (int k=0; k<j; k++) A[k][i]-=A[k][j]*tmp2; A[j][i]=-A[j][j]*tmp2;
|
xue@1
|
770 }
|
xue@1
|
771 }
|
xue@1
|
772 return result;
|
xue@1
|
773 }//GIUT
|
xue@1
|
774
|
xue@1
|
775 //---------------------------------------------------------------------------
|
Chris@5
|
776 /**
|
xue@1
|
777 function GISCP: matrix inverse using Gaussian elimination w. scaled column pivoting: inv(A)->A.
|
xue@1
|
778
|
xue@1
|
779 In: matrix A[N][N]
|
xue@1
|
780 Out: matrix A[N][N]
|
xue@1
|
781
|
xue@1
|
782 Returns the determinant of the inverse matrix, 0 on failure.
|
xue@1
|
783 */
|
xue@1
|
784 double GISCP(int N, double** A)
|
xue@1
|
785 {
|
xue@1
|
786 int c, p, ip, *rp=new int[N]; for (int i=0; i<N; i++) rp[i]=i;
|
xue@1
|
787 double m, result=1, *s=new double[N];
|
xue@1
|
788
|
xue@1
|
789 for (int i=0; i<N; i++)
|
xue@1
|
790 {
|
xue@1
|
791 s[i]=A[i][0];
|
xue@1
|
792 for (int j=1; j<N; j++) if (fabs(s[i])<fabs(A[i][j])) s[i]=A[i][j];
|
xue@1
|
793 if (s[i]==0) {delete[] s; delete[] rp; return 0;}
|
xue@1
|
794 rp[i]=i;
|
xue@1
|
795 }
|
xue@1
|
796
|
xue@1
|
797 //Gaussian eliminating
|
xue@1
|
798 for (int i=0; i<N-1; i++)
|
xue@1
|
799 {
|
xue@1
|
800 p=i, ip=i+1;
|
xue@1
|
801 while (ip<N){if (fabs(A[rp[ip]][i]/s[rp[ip]])>fabs(A[rp[p]][i]/s[rp[p]])) p=ip; ip++;}
|
xue@1
|
802 if (A[rp[p]][i]==0) {delete[] s; delete[] rp; return 0;}
|
xue@1
|
803 if (p!=i) {c=rp[i]; rp[i]=rp[p]; rp[p]=c; result=-result;}
|
xue@1
|
804 result/=A[rp[i]][i];
|
xue@1
|
805 for (int j=i+1; j<N; j++)
|
xue@1
|
806 {
|
xue@1
|
807 m=A[rp[j]][i]/A[rp[i]][i];
|
xue@1
|
808 A[rp[j]][i]=-m;
|
xue@1
|
809 for (int k=i+1; k<N; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
810 for (int k=0; k<i; k++) A[rp[j]][k]-=m*A[rp[i]][k];
|
xue@1
|
811 }
|
xue@1
|
812 }
|
xue@1
|
813 if (A[rp[N-1]][N-1]==0) {delete[] s; delete[] rp; return 0;}
|
xue@1
|
814 result/=A[rp[N-1]][N-1];
|
xue@1
|
815 //backward substitution
|
xue@1
|
816 for (int i=0; i<N-1; i++)
|
xue@1
|
817 {
|
xue@1
|
818 m=A[rp[i]][i]; for (int k=0; k<N; k++) A[rp[i]][k]/=m; A[rp[i]][i]=1/m;
|
xue@1
|
819 for (int j=i+1; j<N; j++)
|
xue@1
|
820 {
|
xue@1
|
821 m=A[rp[i]][j]/A[rp[j]][j]; for (int k=0; k<N; k++) A[rp[i]][k]-=A[rp[j]][k]*m; A[rp[i]][j]=-m;
|
xue@1
|
822 }
|
xue@1
|
823 }
|
xue@1
|
824 m=A[rp[N-1]][N-1]; for (int k=0; k<N-1; k++) A[rp[N-1]][k]/=m; A[rp[N-1]][N-1]=1/m;
|
xue@1
|
825 //recover column and row exchange
|
xue@1
|
826 double* tm=new double[N]; int sizeN=sizeof(double)*N;
|
xue@1
|
827 for (int i=0; i<N; i++) { for (int j=0; j<N; j++) tm[rp[j]]=A[i][j]; memcpy(A[i], tm, sizeN); }
|
xue@1
|
828 for (int j=0; j<N; j++) { for (int i=0; i<N; i++) tm[i]=A[rp[i]][j]; for (int i=0; i<N; i++) A[i][j]=tm[i];}
|
xue@1
|
829
|
xue@1
|
830 delete[] tm; delete[] s; delete[] rp;
|
xue@1
|
831 return result;
|
xue@1
|
832 }//GISCP
|
xue@1
|
833
|
Chris@5
|
834 /**
|
xue@1
|
835 function GISCP: wrapper function that does not overwrite input matrix A: inv(A)->X.
|
xue@1
|
836
|
xue@1
|
837 In: matrix A[N][N]
|
xue@1
|
838 Out: matrix X[N][N]
|
xue@1
|
839
|
xue@1
|
840 Returns the determinant of the inverse matrix, 0 on failure.
|
xue@1
|
841 */
|
xue@1
|
842 double GISCP(int N, double** X, double** A)
|
xue@1
|
843 {
|
xue@1
|
844 Copy(N, X, A);
|
xue@1
|
845 return GISCP(N, X);
|
xue@1
|
846 }//GISCP
|
xue@1
|
847
|
xue@1
|
848 //---------------------------------------------------------------------------
|
Chris@5
|
849 /**
|
xue@1
|
850 function GSI: Gaussian-Seidel iterative algorithm for solving linear system Ax=b. Breaks down if any
|
xue@1
|
851 Aii=0, like the Jocobi method JI(...).
|
xue@1
|
852
|
xue@1
|
853 Gaussian-Seidel iteration is x(k)=(D-L)^(-1)(Ux(k-1)+b), where D is diagonal, L is lower triangular,
|
xue@1
|
854 U is upper triangular and A=L+D+U.
|
xue@1
|
855
|
xue@1
|
856 In: matrix A[N][N], vector b[N], initial vector x0[N]
|
xue@1
|
857 Out: vector x0[N]
|
xue@1
|
858
|
xue@1
|
859 Returns 0 is successful. Contents of matrix A and vector b remain unchanged on return.
|
xue@1
|
860 */
|
xue@1
|
861 int GSI(int N, double* x0, double** A, double* b, double ep, int maxiter)
|
xue@1
|
862 {
|
xue@1
|
863 double e, *x=new double[N];
|
xue@1
|
864 int k=0, sizeN=sizeof(double)*N;
|
xue@1
|
865 while (k<maxiter)
|
xue@1
|
866 {
|
xue@1
|
867 for (int i=0; i<N; i++)
|
xue@1
|
868 {
|
xue@1
|
869 x[i]=b[i];
|
xue@1
|
870 for (int j=0; j<i; j++) x[i]-=A[i][j]*x[j];
|
xue@1
|
871 for (int j=i+1; j<N; j++) x[i]-=A[i][j]*x0[j];
|
xue@1
|
872 x[i]/=A[i][i];
|
xue@1
|
873 }
|
xue@1
|
874 e=0; for (int j=0; j<N; j++) e+=fabs(x[j]-x0[j]);
|
xue@1
|
875 memcpy(x0, x, sizeN);
|
xue@1
|
876 if (e<ep) break;
|
xue@1
|
877 k++;
|
xue@1
|
878 }
|
xue@1
|
879 delete[] x;
|
xue@1
|
880 if (k>=maxiter) return 1;
|
xue@1
|
881 return 0;
|
xue@1
|
882 }//GSI
|
xue@1
|
883
|
xue@1
|
884 //---------------------------------------------------------------------------
|
Chris@5
|
885 /**
|
xue@1
|
886 function Hessenb: reducing a square matrix A to upper Hessenberg form
|
xue@1
|
887
|
xue@1
|
888 In: matrix A[N][N]
|
xue@1
|
889 Out: matrix A[N][N], in upper Hessenberg form
|
xue@1
|
890
|
xue@1
|
891 No return value.
|
xue@1
|
892 */
|
xue@1
|
893 void Hessenb(int N, double** A)
|
xue@1
|
894 {
|
xue@1
|
895 double x, y;
|
xue@1
|
896 for (int m=1; m<N-1; m++)
|
xue@1
|
897 {
|
xue@1
|
898 x=0;
|
xue@1
|
899 int i=m;
|
xue@1
|
900 for (int j=m; j<N; j++)
|
xue@1
|
901 {
|
xue@1
|
902 if (fabs(A[j][m-1]) > fabs(x))
|
xue@1
|
903 {
|
xue@1
|
904 x=A[j][m-1];
|
xue@1
|
905 i=j;
|
xue@1
|
906 }
|
xue@1
|
907 }
|
xue@1
|
908 if (i!=m)
|
xue@1
|
909 {
|
xue@1
|
910 for (int j=m-1; j<N; j++)
|
xue@1
|
911 {
|
xue@1
|
912 double tmp=A[i][j];
|
xue@1
|
913 A[i][j]=A[m][j];
|
xue@1
|
914 A[m][j]=tmp;
|
xue@1
|
915 }
|
xue@1
|
916 for (int j=0; j<N; j++)
|
xue@1
|
917 {
|
xue@1
|
918 double tmp=A[j][i];
|
xue@1
|
919 A[j][i]=A[j][m];
|
xue@1
|
920 A[j][m]=tmp;
|
xue@1
|
921 }
|
xue@1
|
922 }
|
xue@1
|
923 if (x!=0)
|
xue@1
|
924 {
|
xue@1
|
925 for (i=m+1; i<N; i++)
|
xue@1
|
926 {
|
xue@1
|
927 if ((y=A[i][m-1])!=0)
|
xue@1
|
928 {
|
xue@1
|
929 y/=x;
|
xue@1
|
930 A[i][m-1]=0;
|
xue@1
|
931 for (int j=m; j<N; j++) A[i][j]-=y*A[m][j];
|
xue@1
|
932 for (int j=0; j<N; j++) A[j][m]+=y*A[j][i];
|
xue@1
|
933 }
|
xue@1
|
934 }
|
xue@1
|
935 }
|
xue@1
|
936 }
|
xue@1
|
937 }//Hessenb
|
xue@1
|
938
|
xue@1
|
939 //---------------------------------------------------------------------------
|
Chris@5
|
940 /**
|
xue@1
|
941 function HouseHolder: house holder method converting a symmetric matrix into a tridiagonal symmetric
|
xue@1
|
942 matrix, or a non-symmetric matrix into an upper-Hessenberg matrix, using similarity transformation.
|
xue@1
|
943
|
xue@1
|
944 In: matrix A[N][N]
|
xue@1
|
945 Out: matrix A[N][N] after transformation
|
xue@1
|
946
|
xue@1
|
947 No return value.
|
xue@1
|
948 */
|
xue@1
|
949 void HouseHolder(int N, double** A)
|
xue@1
|
950 {
|
xue@1
|
951 double q, alf, prod, r2, *v=new double[N], *u=new double[N], *z=new double[N];
|
xue@1
|
952 for (int k=0; k<N-2; k++)
|
xue@1
|
953 {
|
xue@1
|
954 q=Inner(N-1-k, &A[k][k+1], &A[k][k+1]);
|
xue@1
|
955
|
xue@1
|
956 if (A[k][k+1]==0) alf=sqrt(q);
|
xue@1
|
957 else alf=-sqrt(q)*A[k+1][k]/fabs(A[k+1][k]);
|
xue@1
|
958
|
xue@1
|
959 r2=alf*(alf-A[k+1][k]);
|
xue@1
|
960
|
xue@1
|
961 v[k]=0; v[k+1]=A[k][k+1]-alf;
|
xue@1
|
962 memcpy(&v[k+2], &A[k][k+2], sizeof(double)*(N-k-2));
|
xue@1
|
963
|
xue@1
|
964 for (int j=k; j<N; j++) u[j]=Inner(N-1-k, &A[j][k+1], &v[k+1])/r2;
|
xue@1
|
965
|
xue@1
|
966 prod=Inner(N-1-k, &v[k+1], &u[k+1]);
|
xue@1
|
967
|
xue@1
|
968 MultiAdd(N-k, &z[k], &u[k], &v[k], -prod/2/r2);
|
xue@1
|
969
|
xue@1
|
970 for (int l=k+1; l<N-1; l++)
|
xue@1
|
971 {
|
xue@1
|
972 for (int j=l+1; j<N; j++) A[l][j]=A[j][l]=A[j][l]-v[l]*z[j]-v[j]*z[l];
|
xue@1
|
973 A[l][l]=A[l][l]-2*v[l]*z[l];
|
xue@1
|
974 }
|
xue@1
|
975
|
xue@1
|
976 A[N-1][N-1]=A[N-1][N-1]-2*v[N-1]*z[N-1];
|
xue@1
|
977
|
xue@1
|
978 for (int j=k+2; j<N; j++) A[k][j]=A[j][k]=0;
|
xue@1
|
979
|
xue@1
|
980 A[k][k+1]=A[k+1][k]=A[k+1][k]-v[k+1]*z[k];
|
xue@1
|
981 }
|
xue@1
|
982 delete[] u; delete[] v; delete[] z;
|
xue@1
|
983 }//HouseHolder
|
xue@1
|
984
|
Chris@5
|
985 /**
|
xue@1
|
986 function HouseHolder: house holder transformation T=Q'AQ or A=QTQ', where T is tridiagonal and Q is
|
xue@1
|
987 unitary i.e. QQ'=I.
|
xue@1
|
988
|
xue@1
|
989 In: matrix A[N][N]
|
xue@1
|
990 Out: matrix tridiagonal matrix T[N][N] and unitary matrix Q[N][N]
|
xue@1
|
991
|
xue@1
|
992 No return value. Identical A and T allowed. Content of matrix A is unchanged if A!=T.
|
xue@1
|
993 */
|
xue@1
|
994 void HouseHolder(int N, double** T, double** Q, double** A)
|
xue@1
|
995 {
|
xue@1
|
996 double g, alf, prod, r2, *v=new double[N], *u=new double[N], *z=new double[N];
|
xue@1
|
997 int sizeN=sizeof(double)*N;
|
xue@1
|
998 if (T!=A) for (int i=0; i<N; i++) memcpy(T[i], A[i], sizeN);
|
xue@1
|
999 for (int i=0; i<N; i++) {memset(Q[i], 0, sizeN); Q[i][i]=1;}
|
xue@1
|
1000 for (int k=0; k<N-2; k++)
|
xue@1
|
1001 {
|
xue@1
|
1002 g=Inner(N-1-k, &T[k][k+1], &T[k][k+1]);
|
xue@1
|
1003
|
xue@1
|
1004 if (T[k][k+1]==0) alf=sqrt(g);
|
xue@1
|
1005 else alf=-sqrt(g)*T[k+1][k]/fabs(T[k+1][k]);
|
xue@1
|
1006
|
xue@1
|
1007 r2=alf*(alf-T[k+1][k]);
|
xue@1
|
1008
|
xue@1
|
1009 v[k]=0; v[k+1]=T[k][k+1]-alf;
|
xue@1
|
1010 memcpy(&v[k+2], &T[k][k+2], sizeof(double)*(N-k-2));
|
xue@1
|
1011
|
xue@1
|
1012 for (int j=k; j<N; j++) u[j]=Inner(N-1-k, &T[j][k+1], &v[k+1])/r2;
|
xue@1
|
1013
|
xue@1
|
1014 prod=Inner(N-1-k, &v[k+1], &u[k+1]);
|
xue@1
|
1015
|
xue@1
|
1016 MultiAdd(N-k, &z[k], &u[k], &v[k], -prod/2/r2);
|
xue@1
|
1017
|
xue@1
|
1018 for (int l=k+1; l<N-1; l++)
|
xue@1
|
1019 {
|
xue@1
|
1020 for (int j=l+1; j<N; j++) T[l][j]=T[j][l]=T[j][l]-v[l]*z[j]-v[j]*z[l];
|
xue@1
|
1021 T[l][l]=T[l][l]-2*v[l]*z[l];
|
xue@1
|
1022 }
|
xue@1
|
1023
|
xue@1
|
1024 T[N-1][N-1]=T[N-1][N-1]-2*v[N-1]*z[N-1];
|
xue@1
|
1025
|
xue@1
|
1026 for (int j=k+2; j<N; j++) T[k][j]=T[j][k]=0;
|
xue@1
|
1027
|
xue@1
|
1028 T[k][k+1]=T[k+1][k]=T[k+1][k]-v[k+1]*z[k];
|
xue@1
|
1029
|
xue@1
|
1030 for (int i=0; i<N; i++)
|
xue@1
|
1031 MultiAdd(N-k, &Q[i][k], &Q[i][k], &v[k], -Inner(N-k, &Q[i][k], &v[k])/r2);
|
xue@1
|
1032 }
|
xue@1
|
1033 delete[] u; delete[] v; delete[] z;
|
xue@1
|
1034 }//HouseHolder
|
xue@1
|
1035
|
Chris@5
|
1036 /**
|
xue@1
|
1037 function HouseHolder: nr version of householder method for transforming symmetric matrix A to QTQ',
|
xue@1
|
1038 where T is tridiagonal and Q is orthonormal.
|
xue@1
|
1039
|
xue@1
|
1040 In: matrix A[N][N]
|
xue@1
|
1041 Out: A[N][N]: now containing Q
|
xue@1
|
1042 d[N]: containing diagonal elements of T
|
xue@1
|
1043 sd[N]: containing subdiagonal elements of T as sd[1:N-1].
|
xue@1
|
1044
|
xue@1
|
1045 No return value.
|
xue@1
|
1046 */
|
xue@1
|
1047 void HouseHolder(int N, double **A, double* d, double* sd)
|
xue@1
|
1048 {
|
xue@1
|
1049 for (int i=N-1; i>=1; i--)
|
xue@1
|
1050 {
|
xue@1
|
1051 int l=i-1;
|
xue@1
|
1052 double h=0, scale=0;
|
xue@1
|
1053 if (l>0)
|
xue@1
|
1054 {
|
xue@1
|
1055 for (int k=0; k<=l; k++) scale+=fabs(A[i][k]);
|
xue@1
|
1056 if (scale==0.0) sd[i]=A[i][l];
|
xue@1
|
1057 else
|
xue@1
|
1058 {
|
xue@1
|
1059 for (int k=0; k<=l; k++)
|
xue@1
|
1060 {
|
xue@1
|
1061 A[i][k]/=scale;
|
xue@1
|
1062 h+=A[i][k]*A[i][k];
|
xue@1
|
1063 }
|
xue@1
|
1064 double f=A[i][l];
|
xue@1
|
1065 double g=(f>=0?-sqrt(h): sqrt(h));
|
xue@1
|
1066 sd[i]=scale*g;
|
xue@1
|
1067 h-=f*g;
|
xue@1
|
1068 A[i][l]=f-g;
|
xue@1
|
1069 f=0;
|
xue@1
|
1070 for (int j=0; j<=l; j++)
|
xue@1
|
1071 {
|
xue@1
|
1072 A[j][i]=A[i][j]/h;
|
xue@1
|
1073 g=0;
|
xue@1
|
1074 for (int k=0; k<=j; k++) g+=A[j][k]*A[i][k];
|
xue@1
|
1075 for (int k=j+1; k<=l; k++) g+=A[k][j]*A[i][k];
|
xue@1
|
1076 sd[j]=g/h;
|
xue@1
|
1077 f+=sd[j]*A[i][j];
|
xue@1
|
1078 }
|
xue@1
|
1079 double hh=f/(h+h);
|
xue@1
|
1080 for (int j=0; j<=l; j++)
|
xue@1
|
1081 {
|
xue@1
|
1082 f=A[i][j];
|
xue@1
|
1083 sd[j]=g=sd[j]-hh*f;
|
xue@1
|
1084 for (int k=0; k<=j; k++) A[j][k]-=(f*sd[k]+g*A[i][k]);
|
xue@1
|
1085 }
|
xue@1
|
1086 }
|
xue@1
|
1087 }
|
xue@1
|
1088 else
|
xue@1
|
1089 sd[i]=A[i][l];
|
xue@1
|
1090 d[i]=h;
|
xue@1
|
1091 }
|
xue@1
|
1092
|
xue@1
|
1093 d[0]=sd[0]=0;
|
xue@1
|
1094
|
xue@1
|
1095 for (int i=0; i<N; i++)
|
xue@1
|
1096 {
|
xue@1
|
1097 int l=i-1;
|
xue@1
|
1098 if (d[i])
|
xue@1
|
1099 {
|
xue@1
|
1100 for (int j=0; j<=l; j++)
|
xue@1
|
1101 {
|
xue@1
|
1102 double g=0.0;
|
xue@1
|
1103 for (int k=0; k<=l; k++) g+=A[i][k]*A[k][j];
|
xue@1
|
1104 for (int k=0; k<=l; k++) A[k][j]-=g*A[k][i];
|
xue@1
|
1105 }
|
xue@1
|
1106 }
|
xue@1
|
1107 d[i]=A[i][i];
|
xue@1
|
1108 A[i][i]=1.0;
|
xue@1
|
1109 for (int j=0; j<=l; j++) A[j][i]=A[i][j]=0.0;
|
xue@1
|
1110 }
|
xue@1
|
1111 }//HouseHolder
|
xue@1
|
1112
|
xue@1
|
1113 //---------------------------------------------------------------------------
|
Chris@5
|
1114 /**
|
xue@1
|
1115 function Inner: inner product z=y'x
|
xue@1
|
1116
|
xue@1
|
1117 In: vectors x[N], y[N]
|
xue@1
|
1118
|
xue@1
|
1119 Returns inner product of x and y.
|
xue@1
|
1120 */
|
xue@1
|
1121 double Inner(int N, double* x, double* y)
|
xue@1
|
1122 {
|
xue@1
|
1123 double result=0;
|
xue@1
|
1124 for (int i=0; i<N; i++) result+=x[i]*y[i];
|
xue@1
|
1125 return result;
|
xue@1
|
1126 }//Inner
|
xue@1
|
1127 //complex versions
|
xue@1
|
1128 cdouble Inner(int N, double* x, cdouble* y)
|
xue@1
|
1129 {
|
xue@1
|
1130 cdouble result=0;
|
xue@1
|
1131 for (int i=0; i<N; i++) result+=x[i]**y[i];
|
xue@1
|
1132 return result;
|
xue@1
|
1133 }//Inner
|
xue@1
|
1134 cdouble Inner(int N, cdouble* x, cdouble* y)
|
xue@1
|
1135 {
|
xue@1
|
1136 cdouble result=0;
|
xue@1
|
1137 for (int i=0; i<N; i++) result+=x[i]^y[i];
|
xue@1
|
1138 return result;
|
xue@1
|
1139 }//Inner
|
xue@1
|
1140 cdouble Inner(int N, cfloat* x, cdouble* y)
|
xue@1
|
1141 {
|
xue@1
|
1142 cdouble result=0;
|
xue@1
|
1143 for (int i=0; i<N; i++) result+=x[i]^y[i];
|
xue@1
|
1144 return result;
|
xue@1
|
1145 }//Inner
|
xue@1
|
1146 cfloat Inner(int N, cfloat* x, cfloat* y)
|
xue@1
|
1147 {
|
xue@1
|
1148 cfloat result=0;
|
xue@1
|
1149 for (int i=0; i<N; i++) result+=x[i]^y[i];
|
xue@1
|
1150 return result;
|
xue@1
|
1151 }//Inner
|
xue@1
|
1152
|
Chris@5
|
1153 /**
|
xue@1
|
1154 function Inner: inner product z=tr(Y'X)
|
xue@1
|
1155
|
xue@1
|
1156 In: matrices X[M][N], Y[M][N]
|
xue@1
|
1157
|
xue@1
|
1158 Returns inner product of X and Y.
|
xue@1
|
1159 */
|
xue@1
|
1160 double Inner(int M, int N, double** X, double** Y)
|
xue@1
|
1161 {
|
xue@1
|
1162 double result=0;
|
xue@1
|
1163 for (int m=0; m<M; m++) for (int n=0; n<N; n++) result+=X[m][n]*Y[m][n];
|
xue@1
|
1164 return result;
|
xue@1
|
1165 }//Inner
|
xue@1
|
1166
|
xue@1
|
1167 //---------------------------------------------------------------------------
|
Chris@5
|
1168 /**
|
xue@1
|
1169 function JI: Jacobi interative algorithm for solving linear system Ax=b Breaks down if A[i][i]=0 for
|
xue@1
|
1170 any i. Reorder A so that this does not happen.
|
xue@1
|
1171
|
xue@1
|
1172 Jacobi iteration is x(k)=D^(-1)((L+U)x(k-1)+b), D is diagonal, L is lower triangular, U is upper
|
xue@1
|
1173 triangular and A=L+D+U.
|
xue@1
|
1174
|
xue@1
|
1175 In: matrix A[N][N], vector b[N], initial vector x0[N]
|
xue@1
|
1176 Out: vector x0[N]
|
xue@1
|
1177
|
xue@1
|
1178 Returns 0 if successful. Contents of matrix A and vector b are unchanged on return.
|
xue@1
|
1179 */
|
xue@1
|
1180 int JI(int N, double* x0, double** A, double* b, double ep, int maxiter)
|
xue@1
|
1181 {
|
xue@1
|
1182 double e, *x=new double[N];
|
xue@1
|
1183 int k=0, sizeN=sizeof(double)*N;
|
xue@1
|
1184 while (k<maxiter)
|
xue@1
|
1185 {
|
xue@1
|
1186 for (int i=0; i<N; i++)
|
xue@1
|
1187 {
|
xue@1
|
1188 x[i]=b[i]; for (int j=0; j<N; j++) if (j!=i) x[i]-=A[i][j]*x0[j]; x[i]=x[i]/A[i][i];
|
xue@1
|
1189 }
|
xue@1
|
1190 e=0; for (int j=0; j<N; j++) e+=fabs(x[j]-x0[j]); //inf-norm used here
|
xue@1
|
1191 memcpy(x0, x, sizeN);
|
xue@1
|
1192 if (e<ep) break;
|
xue@1
|
1193 k++;
|
xue@1
|
1194 }
|
xue@1
|
1195 delete[] x;
|
xue@1
|
1196 if (k>=maxiter) return 1;
|
xue@1
|
1197 else return 0;
|
xue@1
|
1198 }//JI
|
xue@1
|
1199
|
xue@1
|
1200 //---------------------------------------------------------------------------
|
Chris@5
|
1201 /**
|
xue@1
|
1202 function LDL: LDL' decomposition A=LDL', where L is lower triangular and D is diagonal identical l and
|
xue@1
|
1203 a allowed.
|
xue@1
|
1204
|
xue@1
|
1205 The symmetric matrix A is positive definite iff A can be factorized as LDL', where L is lower
|
xue@1
|
1206 triangular with ones on its diagonal and D is diagonal with positive diagonal entries.
|
xue@1
|
1207
|
xue@1
|
1208 If a symmetric matrix A can be reduced by Gaussian elimination without row interchanges, then it can
|
xue@1
|
1209 be factored into LDL', where L is lower triangular with ones on its diagonal and D is diagonal with
|
xue@1
|
1210 non-zero diagonal entries.
|
xue@1
|
1211
|
xue@1
|
1212 In: matrix A[N][N]
|
xue@1
|
1213 Out: lower triangular matrix L[N][N], vector d[N] containing diagonal elements of D
|
xue@1
|
1214
|
xue@1
|
1215 Returns 0 if successful. Content of matrix A is unchanged on return.
|
xue@1
|
1216 */
|
xue@1
|
1217 int LDL(int N, double** L, double* d, double** A)
|
xue@1
|
1218 {
|
xue@1
|
1219 double* v=new double[N];
|
xue@1
|
1220
|
xue@1
|
1221 if (A[0][0]==0) {delete[] v; return 1;}
|
xue@1
|
1222 d[0]=A[0][0]; for (int j=1; j<N; j++) L[j][0]=A[j][0]/d[0];
|
xue@1
|
1223 for (int i=1; i<N; i++)
|
xue@1
|
1224 {
|
xue@1
|
1225 for (int j=0; j<i; j++) v[j]=L[i][j]*d[j];
|
xue@1
|
1226 d[i]=A[i][i]; for (int j=0; j<i; j++) d[i]-=L[i][j]*v[j];
|
xue@1
|
1227 if (d[i]==0) {delete[] v; return 1;}
|
xue@1
|
1228 for (int j=i+1; j<N; j++)
|
xue@1
|
1229 {
|
xue@1
|
1230 L[j][i]=A[j][i]; for (int k=0; k<i; k++) L[j][i]-=L[j][k]*v[k]; L[j][i]/=d[i];
|
xue@1
|
1231 }
|
xue@1
|
1232 }
|
xue@1
|
1233 delete[] v;
|
xue@1
|
1234
|
xue@1
|
1235 for (int i=0; i<N; i++) {L[i][i]=1; memset(&L[i][i+1], 0, sizeof(double)*(N-1-i));}
|
xue@1
|
1236 return 0;
|
xue@1
|
1237 }//LDL
|
xue@1
|
1238
|
xue@1
|
1239 //---------------------------------------------------------------------------
|
Chris@5
|
1240 /**
|
xue@1
|
1241 function LQ_GS: LQ decomposition using Gram-Schmidt method
|
xue@1
|
1242
|
xue@1
|
1243 In: matrix A[M][N], M<=N
|
xue@1
|
1244 Out: matrices L[M][M], Q[M][N]
|
xue@1
|
1245
|
xue@1
|
1246 No return value.
|
xue@1
|
1247 */
|
xue@1
|
1248 void LQ_GS(int M, int N, double** A, double** L, double** Q)
|
xue@1
|
1249 {
|
xue@1
|
1250 double *u=new double[N];
|
xue@1
|
1251 for (int m=0; m<M; m++)
|
xue@1
|
1252 {
|
xue@1
|
1253 memset(L[m], 0, sizeof(double)*M);
|
xue@1
|
1254 memcpy(u, A[m], sizeof(double)*N);
|
xue@1
|
1255 for (int k=0; k<m; k++)
|
xue@1
|
1256 {
|
xue@1
|
1257 double ip=0; for (int n=0; n<N; n++) ip+=Q[k][n]*u[n];
|
xue@1
|
1258 for (int n=0; n<N; n++) u[n]-=ip*Q[k][n];
|
xue@1
|
1259 L[m][k]=ip;
|
xue@1
|
1260 }
|
xue@1
|
1261 double iu=0; for (int n=0; n<N; n++) iu+=u[n]*u[n]; iu=sqrt(iu);
|
xue@1
|
1262 L[m][m]=iu; iu=1.0/iu;
|
xue@1
|
1263 for (int n=0; n<N; n++) Q[m][n]=u[n]*iu;
|
xue@1
|
1264 }
|
xue@1
|
1265 delete[] u;
|
xue@1
|
1266 }//LQ_GS
|
xue@1
|
1267
|
xue@1
|
1268 //---------------------------------------------------------------------------
|
Chris@5
|
1269 /**
|
xue@1
|
1270 function LSLinear2: 2-dtage LS solution of A[M][N]x[N][1]=y[M][1], M>=N. Use of this function requires
|
xue@1
|
1271 the submatrix A[N][N] be invertible.
|
xue@1
|
1272
|
xue@1
|
1273 In: matrix A[M][N], vector y[M], M>=N.
|
xue@1
|
1274 Out: vector x[N].
|
xue@1
|
1275
|
xue@1
|
1276 No return value. Contents of matrix A and vector y are unchanged on return.
|
xue@1
|
1277 */
|
xue@1
|
1278 void LSLinear2(int M, int N, double* x, double** A, double* y)
|
xue@1
|
1279 {
|
xue@1
|
1280 double** A1=Copy(N, N, 0, A);
|
xue@1
|
1281 LU(N, x, A1, y);
|
xue@1
|
1282 if (M>N)
|
xue@1
|
1283 {
|
xue@1
|
1284 double** B=&A[N];
|
xue@1
|
1285 double* Del=MultiplyXy(M-N, N, B, x);
|
xue@1
|
1286 MultiAdd(M-N, Del, Del, &y[N], -1);
|
xue@1
|
1287 double** A2=MultiplyXtX(N, N, A);
|
xue@1
|
1288 MultiplyXtX(N, M-N, A1, B);
|
xue@1
|
1289 MultiAdd(N, N, A2, A2, A1, 1);
|
xue@1
|
1290 double* b2=MultiplyXty(N, M-N, B, Del);
|
xue@1
|
1291 double* dx=new double[N];
|
xue@1
|
1292 GESCP(N, dx, A2, b2);
|
xue@1
|
1293 MultiAdd(N, x, x, dx, -1);
|
xue@1
|
1294 delete[] dx;
|
xue@1
|
1295 delete[] Del;
|
xue@1
|
1296 delete[] b2;
|
xue@1
|
1297 DeAlloc2(A2);
|
xue@1
|
1298 }
|
xue@1
|
1299 DeAlloc2(A1);
|
xue@1
|
1300 }//LSLinear2
|
xue@1
|
1301
|
xue@1
|
1302 //---------------------------------------------------------------------------
|
Chris@5
|
1303 /**
|
xue@1
|
1304 function LU: LU decomposition A=LU, where L is lower triangular with diagonal entries 1 and U is upper
|
xue@1
|
1305 triangular.
|
xue@1
|
1306
|
xue@1
|
1307 LU is possible if A can be reduced by Gaussian elimination without row interchanges.
|
xue@1
|
1308
|
xue@1
|
1309 In: matrix A[N][N]
|
xue@1
|
1310 Out: matrices L[N][N] and U[N][N], subject to input values of L and U:
|
xue@1
|
1311 if L euqals NULL, L is not returned
|
xue@1
|
1312 if U equals NULL or A, U is returned in A, s.t. A is modified
|
xue@1
|
1313 if L equals A, L is returned in A, s.t. A is modified
|
xue@1
|
1314 if L equals U, L and U are returned in the same matrix
|
xue@1
|
1315 when L and U are returned in the same matrix, diagonal of L (all 1) is not returned
|
xue@1
|
1316
|
xue@1
|
1317 Returns 0 if successful.
|
xue@1
|
1318 */
|
xue@1
|
1319 int LU(int N, double** L, double** U, double** A)
|
xue@1
|
1320 {
|
xue@1
|
1321 double* diagl=new double[N];
|
xue@1
|
1322 for (int i=0; i<N; i++) diagl[i]=1;
|
xue@1
|
1323
|
xue@1
|
1324 int sizeN=sizeof(double)*N;
|
xue@1
|
1325 if (U==0) U=A;
|
xue@1
|
1326 if (U!=A) for (int i=0; i<N; i++) memcpy(U[i], A[i], sizeN);
|
xue@1
|
1327 int result=LU_Direct(0, N, diagl, U);
|
xue@1
|
1328 if (result==0)
|
xue@1
|
1329 {
|
xue@1
|
1330 if (L!=U)
|
xue@1
|
1331 {
|
xue@1
|
1332 if (L!=0) for (int i=0; i<N; i++) {memcpy(L[i], U[i], sizeof(double)*i); L[i][i]=1; memset(&L[i][i+1], 0, sizeof(double)*(N-i-1));}
|
xue@1
|
1333 for (int i=1; i<N; i++) memset(U[i], 0, sizeof(double)*i);
|
xue@1
|
1334 }
|
xue@1
|
1335 }
|
xue@1
|
1336 delete[] diagl;
|
xue@1
|
1337 return result;
|
xue@1
|
1338 }//LU
|
xue@1
|
1339
|
Chris@5
|
1340 /**
|
xue@1
|
1341 function LU: Solving linear system Ax=y by LU factorization
|
xue@1
|
1342
|
xue@1
|
1343 In: matrix A[N][N], vector y[N]
|
xue@1
|
1344 Out: x[N]
|
xue@1
|
1345
|
xue@1
|
1346 No return value. On return A contains its LU factorization (with pivoting, diag mode 1), y remains
|
xue@1
|
1347 unchanged.
|
xue@1
|
1348 */
|
xue@1
|
1349 void LU(int N, double* x, double** A, double* y, int* ind)
|
xue@1
|
1350 {
|
xue@1
|
1351 int parity;
|
xue@1
|
1352 bool allocind=!ind;
|
xue@1
|
1353 if (allocind) ind=new int[N];
|
xue@1
|
1354 LUCP(A, N, ind, parity, 1);
|
xue@1
|
1355 for (int i=0; i<N; i++) x[i]=y[ind[i]];
|
xue@1
|
1356 for (int i=0; i<N; i++)
|
xue@1
|
1357 {
|
xue@1
|
1358 for (int j=i+1; j<N; j++) x[j]=x[j]-x[i]*A[j][i];
|
xue@1
|
1359 }
|
xue@1
|
1360 for (int i=N-1; i>=0; i--)
|
xue@1
|
1361 {
|
xue@1
|
1362 x[i]/=A[i][i];
|
xue@1
|
1363 for (int j=0; j<i; j++) x[j]=x[j]-x[i]*A[j][i];
|
xue@1
|
1364 }
|
xue@1
|
1365 if (allocind) delete[] ind;
|
xue@1
|
1366 }//LU
|
xue@1
|
1367
|
xue@1
|
1368 //---------------------------------------------------------------------------
|
xue@1
|
1369 /*
|
xue@1
|
1370 LU_DiagL shows the original procedure for calculating A=LU in separate buffers substitute l and u by a
|
xue@1
|
1371 gives the stand-still method LU_Direct().
|
xue@1
|
1372 *//*
|
xue@1
|
1373 void LU_DiagL(int N, double** l, double* diagl, double** u, double** a)
|
xue@1
|
1374 {
|
xue@1
|
1375 l[0][0]=diagl[0]; u[0][0]=a[0][0]/l[0][0]; //here to signal failure if l[00]u[00]=0
|
xue@1
|
1376 for (int j=1; j<N; j++) u[0][j]=a[0][j]/l[0][0], l[j][0]=a[j][0]/u[0][0];
|
xue@1
|
1377 memset(&l[0][1], 0, sizeof(double)*(N-1));
|
xue@1
|
1378 for (int i=1; i<N-1; i++)
|
xue@1
|
1379 {
|
xue@1
|
1380 l[i][i]=diagl[i];
|
xue@1
|
1381 u[i][i]=a[i][i]; for (int k=0; k<i; k++) u[i][i]-=l[i][k]*u[k][i]; u[i][i]/=l[i][i]; //here to signal failure if l[ii]u[ii]=0
|
xue@1
|
1382 for (int j=i+1; j<N; j++)
|
xue@1
|
1383 {
|
xue@1
|
1384 u[i][j]=a[i][j]; for (int k=0; k<i; k++) u[i][j]-=l[i][k]*u[k][j]; u[i][j]/=l[i][i];
|
xue@1
|
1385 l[j][i]=a[j][i]; for (int k=0; k<i; k++) l[j][i]-=l[j][k]*u[k][i]; l[j][i]/=u[i][i];
|
xue@1
|
1386 }
|
xue@1
|
1387 memset(&l[i][i+1], 0, sizeof(double)*(N-1-i)), memset(u[i], 0, sizeof(double)*i);
|
xue@1
|
1388 }
|
xue@1
|
1389 l[N-1][N-1]=diagl[N-1];
|
xue@1
|
1390 u[N-1][N-1]=a[N-1][N-1]; for (int k=0; k<N-1; k++) u[N-1][N-1]-=l[N-1][k]*u[k][N-1]; u[N-1][N-1]/=l[N-1][N-1];
|
xue@1
|
1391 memset(u[N-1], 0, sizeof(double)*(N-1));
|
xue@1
|
1392 } //LU_DiagL*/
|
xue@1
|
1393
|
xue@1
|
1394 //---------------------------------------------------------------------------
|
Chris@5
|
1395 /**
|
xue@1
|
1396 function LU_Direct: LU factorization A=LU.
|
xue@1
|
1397
|
xue@1
|
1398 In: matrix A[N][N], vector diag[N] specifying main diagonal of L or U, according to mode (0=LDiag,
|
xue@1
|
1399 1=UDiag).
|
xue@1
|
1400 Out: matrix A[N][N] now containing L and U.
|
xue@1
|
1401
|
xue@1
|
1402 Returns 0 if successful.
|
xue@1
|
1403 */
|
xue@1
|
1404 int LU_Direct(int mode, int N, double* diag, double** A)
|
xue@1
|
1405 {
|
xue@1
|
1406 if (mode==0)
|
xue@1
|
1407 {
|
xue@1
|
1408 if (A[0][0]==0) return 1;
|
xue@1
|
1409 A[0][0]=A[0][0]/diag[0];
|
xue@1
|
1410 for (int j=1; j<N; j++) A[0][j]=A[0][j]/diag[0], A[j][0]=A[j][0]/A[0][0];
|
xue@1
|
1411 for (int i=1; i<N-1; i++)
|
xue@1
|
1412 {
|
xue@1
|
1413 for (int k=0; k<i; k++) A[i][i]-=A[i][k]*A[k][i]; A[i][i]/=diag[i];
|
xue@1
|
1414 if (A[i][i]==0) return 2;
|
xue@1
|
1415 for (int j=i+1; j<N; j++)
|
xue@1
|
1416 {
|
xue@1
|
1417 for (int k=0; k<i; k++) A[i][j]-=A[i][k]*A[k][j]; A[i][j]/=diag[i];
|
xue@1
|
1418 for (int k=0; k<i; k++) A[j][i]-=A[j][k]*A[k][i]; A[j][i]/=A[i][i];
|
xue@1
|
1419 }
|
xue@1
|
1420 }
|
xue@1
|
1421 for (int k=0; k<N-1; k++) A[N-1][N-1]-=A[N-1][k]*A[k][N-1]; A[N-1][N-1]/=diag[N-1];
|
xue@1
|
1422 }
|
xue@1
|
1423 else if (mode==1)
|
xue@1
|
1424 {
|
xue@1
|
1425 A[0][0]=A[0][0]/diag[0];
|
xue@1
|
1426 if (A[0][0]==0) return 1;
|
xue@1
|
1427 for (int j=1; j<N; j++) A[0][j]=A[0][j]/A[0][0], A[j][0]=A[j][0]/diag[0];
|
xue@1
|
1428 for (int i=1; i<N-1; i++)
|
xue@1
|
1429 {
|
xue@1
|
1430 for (int k=0; k<i; k++) A[i][i]-=A[i][k]*A[k][i]; A[i][i]/=diag[i];
|
xue@1
|
1431 if (A[i][i]==0) return 2;
|
xue@1
|
1432 for (int j=i+1; j<N; j++)
|
xue@1
|
1433 {
|
xue@1
|
1434 for (int k=0; k<i; k++) A[i][j]-=A[i][k]*A[k][j]; A[i][j]/=A[i][i];
|
xue@1
|
1435 for (int k=0; k<i; k++) A[j][i]-=A[j][k]*A[k][i]; A[j][i]/=diag[i];
|
xue@1
|
1436 }
|
xue@1
|
1437 }
|
xue@1
|
1438 for (int k=0; k<N-1; k++) A[N-1][N-1]-=A[N-1][k]*A[k][N-1]; A[N-1][N-1]/=diag[N-1];
|
xue@1
|
1439 }
|
xue@1
|
1440 return 0;
|
xue@1
|
1441 }//LU_Direct
|
xue@1
|
1442
|
xue@1
|
1443 //---------------------------------------------------------------------------
|
Chris@5
|
1444 /**
|
xue@1
|
1445 function LU_PD: LU factorization for pentadiagonal A=LU
|
xue@1
|
1446
|
xue@1
|
1447 In: pentadiagonal matrix A[N][N] stored in a compact format, i.e. A[i][j]->b[i-j, j]
|
xue@1
|
1448 the main diagonal is b[0][0]~b[0][N-1]
|
xue@1
|
1449 the 1st upper subdiagonal is b[-1][1]~b[-1][N-1]
|
xue@1
|
1450 the 2nd upper subdiagonal is b[-2][2]~b[-2][N-1]
|
xue@1
|
1451 the 1st lower subdiagonal is b[1][0]~b[1][N-2]
|
xue@1
|
1452 the 2nd lower subdiagonal is b[2][0]~b[2][N-3]
|
xue@1
|
1453
|
xue@1
|
1454 Out: L[N][N] and U[N][N], main diagonal of L being all 1 (probably), stored in a compact format in
|
xue@1
|
1455 b[-2:2][N].
|
xue@1
|
1456
|
xue@1
|
1457 Returns 0 if successful.
|
xue@1
|
1458 */
|
xue@1
|
1459 int LU_PD(int N, double** b)
|
xue@1
|
1460 {
|
xue@1
|
1461 if (b[0][0]==0) return 1;
|
xue@1
|
1462 b[1][0]/=b[0][0], b[2][0]/=b[0][0];
|
xue@1
|
1463
|
xue@1
|
1464 //i=1, not to double b[*][i-2], b[-2][i]
|
xue@1
|
1465 b[0][1]-=b[1][0]*b[-1][1];
|
xue@1
|
1466 if (b[0][1]==0) return 2;
|
xue@1
|
1467 b[-1][2]-=b[1][0]*b[-2][2];
|
xue@1
|
1468 b[1][1]-=b[2][0]*b[-1][1];
|
xue@1
|
1469 b[1][1]/=b[0][1];
|
xue@1
|
1470 b[2][1]/=b[0][1];
|
xue@1
|
1471
|
xue@1
|
1472 for (int i=2; i<N-2; i++)
|
xue@1
|
1473 {
|
xue@1
|
1474 b[0][i]-=b[2][i-2]*b[-2][i];
|
xue@1
|
1475 b[0][i]-=b[1][i-1]*b[-1][i];
|
xue@1
|
1476 if (b[0][i]==0) return 2;
|
xue@1
|
1477 b[-1][i+1]-=b[1][i-1]*b[-2][i+1];
|
xue@1
|
1478 b[1][i]-=b[2][i-1]*b[-1][i];
|
xue@1
|
1479 b[1][i]/=b[0][i];
|
xue@1
|
1480 b[2][i]/=b[0][i];
|
xue@1
|
1481 }
|
xue@1
|
1482 //i=N-2, not to tough b[2][i]
|
xue@1
|
1483 b[0][N-2]-=b[2][N-4]*b[-2][N-2];
|
xue@1
|
1484 b[0][N-2]-=b[1][N-3]*b[-1][N-2];
|
xue@1
|
1485 if (b[0][N-2]==0) return 2;
|
xue@1
|
1486 b[-1][N-1]-=b[1][N-3]*b[-2][N-1];
|
xue@1
|
1487 b[1][N-2]-=b[2][N-3]*b[-1][N-2];
|
xue@1
|
1488 b[1][N-2]/=b[0][N-2];
|
xue@1
|
1489
|
xue@1
|
1490 b[0][N-1]-=b[2][N-3]*b[-2][N-1];
|
xue@1
|
1491 b[0][N-1]-=b[1][N-2]*b[-1][N-1];
|
xue@1
|
1492 return 0;
|
xue@1
|
1493 }//LU_PD
|
xue@1
|
1494
|
xue@1
|
1495 /*
|
xue@1
|
1496 This old version is kept here as a reference.
|
xue@1
|
1497 *//*
|
xue@1
|
1498 int LU_PD(int N, double** b)
|
xue@1
|
1499 {
|
xue@1
|
1500 if (b[0][0]==0) return 1;
|
xue@1
|
1501 for (int j=1; j<3; j++) b[j][0]=b[j][0]/b[0][0];
|
xue@1
|
1502 for (int i=1; i<N-1; i++)
|
xue@1
|
1503 {
|
xue@1
|
1504 for (int k=i-2; k<i; k++) b[0][i]-=b[i-k][k]*b[k-i][i];
|
xue@1
|
1505 if (b[0][i]==0) return 2;
|
xue@1
|
1506 for (int j=i+1; j<i+3; j++)
|
xue@1
|
1507 {
|
xue@1
|
1508 for (int k=j-2; k<i; k++) b[i-j][j]-=b[i-k][k]*b[k-j][j];
|
xue@1
|
1509 for (int k=j-2; k<i; k++) b[j-i][i]-=b[j-k][k]*b[k-i][i];
|
xue@1
|
1510 b[j-i][i]/=b[0][i];
|
xue@1
|
1511 }
|
xue@1
|
1512 }
|
xue@1
|
1513 for (int k=N-3; k<N-1; k++) b[0][N-1]-=b[N-1-k][k]*b[k-N+1][N-1];
|
xue@1
|
1514 return 0;
|
xue@1
|
1515 }//LU_PD*/
|
xue@1
|
1516
|
Chris@5
|
1517 /**
|
xue@1
|
1518 function LU_PD: solve pentadiagonal system Ax=c
|
xue@1
|
1519
|
xue@1
|
1520 In: pentadiagonal matrix A[N][N] stored in a compact format in b[-2:2][N], vector c[N]
|
xue@1
|
1521 Out: vector c now containing x.
|
xue@1
|
1522
|
xue@1
|
1523 Returns 0 if successful. On return b is in the LU form.
|
xue@1
|
1524 */
|
xue@1
|
1525 int LU_PD(int N, double** b, double* c)
|
xue@1
|
1526 {
|
xue@1
|
1527 int result=LU_PD(N, b);
|
xue@1
|
1528 if (result==0)
|
xue@1
|
1529 {
|
xue@1
|
1530 //L loop
|
xue@1
|
1531 c[1]=c[1]-b[1][0]*c[0];
|
xue@1
|
1532 for (int i=2; i<N; i++)
|
xue@1
|
1533 c[i]=c[i]-b[1][i-1]*c[i-1]-b[2][i-2]*c[i-2];
|
xue@1
|
1534 //U loop
|
xue@1
|
1535 c[N-1]/=b[0][N-1];
|
xue@1
|
1536 c[N-2]=(c[N-2]-b[-1][N-1]*c[N-1])/b[0][N-2];
|
xue@1
|
1537 for (int i=N-3; i>=0; i--)
|
xue@1
|
1538 c[i]=(c[i]-b[-1][i+1]*c[i+1]-b[-2][i+2]*c[i+2])/b[0][i];
|
xue@1
|
1539 }
|
xue@1
|
1540 return result;
|
xue@1
|
1541 }//LU_PD
|
xue@1
|
1542
|
xue@1
|
1543 //---------------------------------------------------------------------------
|
Chris@5
|
1544 /**
|
xue@1
|
1545 function LUCP: LU decomposition A=LU with column pivoting
|
xue@1
|
1546
|
xue@1
|
1547 In: matrix A[N][N]
|
xue@1
|
1548 Out: matrix A[N][N] now holding L and U by L_U[i][j]=A[ind[i]][j], where L_U
|
xue@1
|
1549 hosts L and U according to mode:
|
xue@1
|
1550 mode=0: L diag=abs(U diag), U diag as return
|
xue@1
|
1551 mode=1: L diag=1, U diag as return
|
xue@1
|
1552 mode=2: U diag=1, L diag as return
|
xue@1
|
1553
|
xue@1
|
1554 Returns the determinant of A.
|
xue@1
|
1555 */
|
xue@1
|
1556 double LUCP(double **A, int N, int *ind, int &parity, int mode)
|
xue@1
|
1557 {
|
xue@1
|
1558 double det=1;
|
xue@1
|
1559 parity=1;
|
xue@1
|
1560
|
xue@1
|
1561 for (int i=0; i<N; i++) ind[i]=i;
|
xue@1
|
1562 double vmax, *norm=new double[N]; //norm[n] is the maxima of row n
|
xue@1
|
1563 for (int i=0; i<N; i++)
|
xue@1
|
1564 {
|
xue@1
|
1565 vmax=fabs(A[i][0]);
|
xue@1
|
1566 double tmp;
|
xue@1
|
1567 for (int j=1; j<N; j++) if ((tmp=fabs(A[i][j]))>vmax) vmax=tmp;
|
xue@1
|
1568 if (vmax==0) { parity=0; goto deletenorm; } //det=0 at this point
|
xue@1
|
1569 norm[i]=1/vmax;
|
xue@1
|
1570 }
|
xue@1
|
1571
|
xue@1
|
1572 int maxind;
|
xue@1
|
1573 for (int j=0; j<N; j++)
|
xue@1
|
1574 { //Column j
|
xue@1
|
1575 for (int i=0; i<j; i++)
|
xue@1
|
1576 {
|
xue@1
|
1577 //row i, i<j
|
xue@1
|
1578 double tmp=A[i][j];
|
xue@1
|
1579 for (int k=0; k<i; k++) tmp-=A[i][k]*A[k][j];
|
xue@1
|
1580 A[i][j]=tmp;
|
xue@1
|
1581 }
|
xue@1
|
1582 for (int i=j; i<N; i++)
|
xue@1
|
1583 {
|
xue@1
|
1584 //row i, i>=j
|
xue@1
|
1585 double tmp=A[i][j]; for (int k=0; k<j; k++) tmp-=A[i][k]*A[k][j]; A[i][j]=tmp;
|
xue@1
|
1586 double tmp2=norm[i]*fabs(tmp);
|
xue@1
|
1587 if (i==j || tmp2>=vmax) maxind=i, vmax=tmp2;
|
xue@1
|
1588 }
|
xue@1
|
1589 if (vmax==0) { parity=0; goto deletenorm; } //pivot being zero
|
xue@1
|
1590 if (j!=maxind)
|
xue@1
|
1591 {
|
xue@1
|
1592 //do column pivoting: switching rows
|
xue@1
|
1593 for (int k=0; k<N; k++) { double tmp=A[maxind][k]; A[maxind][k]=A[j][k]; A[j][k]=tmp; }
|
xue@1
|
1594 parity=-parity;
|
xue@1
|
1595 norm[maxind]=norm[j];
|
xue@1
|
1596 }
|
xue@1
|
1597 int itmp=ind[j]; ind[j]=ind[maxind]; ind[maxind]=itmp;
|
xue@1
|
1598 if (j!=N-1)
|
xue@1
|
1599 {
|
xue@1
|
1600 double den=1/A[j][j];
|
xue@1
|
1601 for (int i=j+1; i<N; i++) A[i][j]*=den;
|
xue@1
|
1602 }
|
xue@1
|
1603 det*=A[j][j];
|
xue@1
|
1604 } //Go back for the next column in the reduction.
|
xue@1
|
1605
|
xue@1
|
1606 if (mode==0)
|
xue@1
|
1607 {
|
xue@1
|
1608 for (int i=0; i<N-1; i++)
|
xue@1
|
1609 {
|
xue@1
|
1610 double den=sqrt(fabs(A[i][i]));
|
xue@1
|
1611 double iden=1/den;
|
xue@1
|
1612 for (int j=i+1; j<N; j++) A[j][i]*=den, A[i][j]*=iden;
|
xue@1
|
1613 A[i][i]*=iden;
|
xue@1
|
1614 }
|
xue@1
|
1615 A[N-1][N-1]/=sqrt(fabs(A[N-1][N-1]));
|
xue@1
|
1616 }
|
xue@1
|
1617 else if (mode==2)
|
xue@1
|
1618 {
|
xue@1
|
1619 for (int i=0; i<N-1; i++)
|
xue@1
|
1620 {
|
xue@1
|
1621 double den=A[i][i];
|
xue@1
|
1622 double iden=1/den;
|
xue@1
|
1623 for (int j=i+1; j<N; j++) A[j][i]*=den, A[i][j]*=iden;
|
xue@1
|
1624 }
|
xue@1
|
1625 }
|
xue@1
|
1626
|
xue@1
|
1627 deletenorm:
|
xue@1
|
1628 delete[] norm;
|
xue@1
|
1629 return det*parity;
|
xue@1
|
1630 }//LUCP
|
xue@1
|
1631
|
xue@1
|
1632 //---------------------------------------------------------------------------
|
Chris@5
|
1633 /**
|
xue@1
|
1634 function maxind: returns the index of the maximal value of data[from:(to-1)].
|
xue@1
|
1635
|
xue@1
|
1636 In: vector data containing at least $to entries.
|
xue@1
|
1637 Out: the index to the maximal entry of data[from:(to-1)]
|
xue@1
|
1638
|
xue@1
|
1639 Returns the index to the maximal value.
|
xue@1
|
1640 */
|
xue@1
|
1641 int maxind(double* data, int from, int to)
|
xue@1
|
1642 {
|
xue@1
|
1643 int result=from;
|
xue@1
|
1644 for (int i=from+1; i<to; i++) if (data[result]<data[i]) result=i;
|
xue@1
|
1645 return result;
|
xue@1
|
1646 }//maxind
|
xue@1
|
1647
|
xue@1
|
1648 //---------------------------------------------------------------------------
|
xue@1
|
1649 /*
|
xue@1
|
1650 macro Multiply_vect: matrix-vector multiplications
|
xue@1
|
1651
|
xue@1
|
1652 Each expansion of this macro implements two functions named $MULTIPLY that do matrix-vector
|
xue@1
|
1653 multiplication. Functions are named after their exact functions. For example, MultiplyXty() does
|
xue@1
|
1654 multiplication of the transpose of matrix X with vector y, where postfix "t" attched to Y stands for
|
xue@1
|
1655 transpose. Likewise, the postfix "c" stands for conjugate, and "h" stnads for Hermitian (conjugate
|
xue@1
|
1656 transpose).
|
xue@1
|
1657
|
xue@1
|
1658 Two dimension arguments are needed by each function. The first of the two is the number of entries to
|
xue@1
|
1659 the output vector; the second of the two is the "other" dimension of the matrix multiplier.
|
xue@1
|
1660 */
|
xue@1
|
1661 #define Multiply_vect(MULTIPLY, DbZ, DbX, DbY, xx, yy) \
|
xue@1
|
1662 DbZ* MULTIPLY(int M, int N, DbZ* z, DbX* x, DbY* y, MList* List) \
|
xue@1
|
1663 { \
|
xue@1
|
1664 if (!z){z=new DbZ[M]; if (List) List->Add(z, 1);} \
|
xue@1
|
1665 for (int m=0; m<M; m++){z[m]=0; for (int n=0; n<N; n++) z[m]+=xx*yy;} \
|
xue@1
|
1666 return z; \
|
xue@1
|
1667 } \
|
xue@1
|
1668 DbZ* MULTIPLY(int M, int N, DbX* x, DbY* y, MList* List) \
|
xue@1
|
1669 { \
|
xue@1
|
1670 DbZ* z=new DbZ[M]; if (List) List->Add(z, 1); \
|
xue@1
|
1671 for (int m=0; m<M; m++){z[m]=0; for (int n=0; n<N; n++) z[m]+=xx*yy;} \
|
xue@1
|
1672 return z; \
|
xue@1
|
1673 }
|
xue@1
|
1674 //function MultiplyXy: z[M]=x[M][N]y[N], identical z and y NOT ALLOWED
|
xue@1
|
1675 Multiply_vect(MultiplyXy, double, double*, double, x[m][n], y[n])
|
xue@1
|
1676 Multiply_vect(MultiplyXy, cdouble, cdouble*, cdouble, x[m][n], y[n])
|
xue@1
|
1677 Multiply_vect(MultiplyXy, cdouble, double*, cdouble, x[m][n], y[n])
|
xue@1
|
1678 //function MultiplyxY: z[M]=x[N]y[N][M], identical z and x NOT ALLOWED
|
xue@1
|
1679 Multiply_vect(MultiplyxY, double, double, double*, x[n], y[n][m])
|
xue@1
|
1680 Multiply_vect(MultiplyxY, cdouble, cdouble, cdouble*, x[n], y[n][m])
|
xue@1
|
1681 //function MultiplyXty: z[M]=xt[M][N]y[N]
|
xue@1
|
1682 Multiply_vect(MultiplyXty, double, double*, double, x[n][m], y[n])
|
xue@1
|
1683 Multiply_vect(MultiplyXty, cdouble, cdouble*, cdouble, x[n][m], y[n])
|
xue@1
|
1684 //function MultiplyXhy: z[M]=xh[M][N]y[N]
|
xue@1
|
1685 Multiply_vect(MultiplyXhy, cdouble, cdouble*, cdouble, *x[n][m], y[n])
|
xue@1
|
1686 //function MultiplyxYt: z[M]=x[N]yt[N][M]
|
xue@1
|
1687 Multiply_vect(MultiplyxYt, double, double, double*, x[n], y[m][n])
|
xue@1
|
1688 //function MultiplyXcy: z[M]=(x*)[M][N]y[N]
|
xue@1
|
1689 Multiply_vect(MultiplyXcy, cdouble, cdouble*, cdouble, *x[m][n], y[n])
|
xue@1
|
1690 Multiply_vect(MultiplyXcy, cdouble, cdouble*, cfloat, *x[m][n], y[n])
|
xue@1
|
1691
|
xue@1
|
1692 //---------------------------------------------------------------------------
|
Chris@5
|
1693 /**
|
xue@1
|
1694 function Norm1: L-1 norm of a square matrix A
|
xue@1
|
1695
|
xue@1
|
1696 In: matrix A[N][N]
|
xue@1
|
1697 Out: its L-1 norm
|
xue@1
|
1698
|
xue@1
|
1699 Returns the L-1 norm.
|
xue@1
|
1700 */
|
xue@1
|
1701 double Norm1(int N, double** A)
|
xue@1
|
1702 {
|
xue@1
|
1703 double result=0, norm;
|
xue@1
|
1704 for (int i=0; i<N; i++)
|
xue@1
|
1705 {
|
xue@1
|
1706 norm=0; for (int j=0; j<N; j++) norm+=fabs(A[i][j]);
|
xue@1
|
1707 if (result<norm) result=norm;
|
xue@1
|
1708 }
|
xue@1
|
1709 return result;
|
xue@1
|
1710 }//Norm1
|
xue@1
|
1711
|
xue@1
|
1712 //---------------------------------------------------------------------------
|
Chris@5
|
1713 /**
|
xue@1
|
1714 function QL: QL method for solving tridiagonal symmetric matrix eigenvalue problem.
|
xue@1
|
1715
|
xue@1
|
1716 In: A[N][N]: tridiagonal symmetric matrix stored in d[N] and sd[] arranged so that d[0:n-1] contains
|
xue@1
|
1717 the diagonal elements of A, sd[0]=0, sd[1:n-1] contains the subdiagonal elements of A.
|
xue@1
|
1718 z[N][N]: pre-transform matrix z[N][N] compatible with HouseHolder() routine.
|
xue@1
|
1719 Out: d[N]: the eigenvalues of A
|
xue@1
|
1720 z[N][N] the eigenvectors of A.
|
xue@1
|
1721
|
xue@1
|
1722 Returns 0 if successful. sd[] should have storage for at least N+1 entries.
|
xue@1
|
1723 */
|
xue@1
|
1724 int QL(int N, double* d, double* sd, double** z)
|
xue@1
|
1725 {
|
xue@1
|
1726 const int maxiter=30;
|
xue@1
|
1727 for (int i=1; i<N; i++) sd[i-1]=sd[i];
|
xue@1
|
1728 sd[N]=0.0;
|
xue@1
|
1729 for (int l=0; l<N; l++)
|
xue@1
|
1730 {
|
xue@1
|
1731 int iter=0, m;
|
xue@1
|
1732 do
|
xue@1
|
1733 {
|
xue@1
|
1734 for (m=l; m<N-1; m++)
|
xue@1
|
1735 {
|
xue@1
|
1736 double dd=fabs(d[m])+fabs(d[m+1]);
|
xue@1
|
1737 if (fabs(sd[m])+dd==dd) break;
|
xue@1
|
1738 }
|
xue@1
|
1739 if (m!=l)
|
xue@1
|
1740 {
|
xue@1
|
1741 iter++;
|
xue@1
|
1742 if (iter>=maxiter) return 1;
|
xue@1
|
1743 double g=(d[l+1]-d[l])/(2*sd[l]);
|
xue@1
|
1744 double r=sqrt(g*g+1);
|
xue@1
|
1745 g=d[m]-d[l]+sd[l]/(g+(g>=0?r:-r));
|
xue@1
|
1746 double s=1, c=1, p=0;
|
xue@1
|
1747 int i;
|
xue@1
|
1748 for (i=m-1; i>=l; i--)
|
xue@1
|
1749 {
|
xue@1
|
1750 double f=s*sd[i], b=c*sd[i];
|
xue@1
|
1751 sd[i+1]=(r=sqrt(f*f+g*g));
|
xue@1
|
1752 if (r==0)
|
xue@1
|
1753 {
|
xue@1
|
1754 d[i+1]-=p;
|
xue@1
|
1755 sd[m]=0;
|
xue@1
|
1756 break;
|
xue@1
|
1757 }
|
xue@1
|
1758 s=f/r, c=g/r;
|
xue@1
|
1759 g=d[i+1]-p;
|
xue@1
|
1760 r=(d[i]-g)*s+2.0*c*b;
|
xue@1
|
1761 p=s*r;
|
xue@1
|
1762 d[i+1]=g+p;
|
xue@1
|
1763 g=c*r-b;
|
xue@1
|
1764 for (int k=0; k<N; k++)
|
xue@1
|
1765 {
|
xue@1
|
1766 f=z[k][i+1];
|
xue@1
|
1767 z[k][i+1]=s*z[k][i]+c*f;
|
xue@1
|
1768 z[k][i]=c*z[k][i]-s*f;
|
xue@1
|
1769 }
|
xue@1
|
1770 }
|
xue@1
|
1771 if (r==0 && i>=l) continue;
|
xue@1
|
1772 d[l]-=p;
|
xue@1
|
1773 sd[l]=g;
|
xue@1
|
1774 sd[m]=0.0;
|
xue@1
|
1775 }
|
xue@1
|
1776 }
|
xue@1
|
1777 while (m!=l);
|
xue@1
|
1778 }
|
xue@1
|
1779 return 0;
|
xue@1
|
1780 }//QL
|
xue@1
|
1781
|
xue@1
|
1782 //---------------------------------------------------------------------------
|
Chris@5
|
1783 /**
|
xue@1
|
1784 function QR: nr version of QR method for solving upper Hessenberg system A. This is compatible with
|
xue@1
|
1785 Hessenb method.
|
xue@1
|
1786
|
xue@1
|
1787 In: matrix A[N][N]
|
xue@1
|
1788 Out: vector ev[N] of eigenvalues
|
xue@1
|
1789
|
xue@1
|
1790 Returns 0 on success. Content of matrix A is destroyed on return.
|
xue@1
|
1791 */
|
xue@1
|
1792 int QR(int N, double **A, cdouble* ev)
|
xue@1
|
1793 {
|
xue@1
|
1794 int n=N, m, l, k, j, iter, i, mmin, maxiter=30;
|
xue@1
|
1795 double **a=A, z, y, x, w, v, u, t=0, s, r, q, p, a1=0;
|
xue@1
|
1796 for (i=0; i<n; i++) for (j=i-1>0?i-1:0; j<n; j++) a1+=fabs(a[i][j]);
|
xue@1
|
1797 n--;
|
xue@1
|
1798 while (n>=0)
|
xue@1
|
1799 {
|
xue@1
|
1800 iter=0;
|
xue@1
|
1801 do
|
xue@1
|
1802 {
|
xue@1
|
1803 for (l=n; l>0; l--)
|
xue@1
|
1804 {
|
xue@1
|
1805 s=fabs(a[l-1][l-1])+fabs(a[l][l]);
|
xue@1
|
1806 if (s==0) s=a1;
|
xue@1
|
1807 if (fabs(a[l][l-1])+s==s) {a[l][l-1]=0; break;}
|
xue@1
|
1808 }
|
xue@1
|
1809 x=a[n][n];
|
xue@1
|
1810 if (l==n) {ev[n].x=x+t; ev[n--].y=0;}
|
xue@1
|
1811 else
|
xue@1
|
1812 {
|
xue@1
|
1813 y=a[n-1][n-1], w=a[n][n-1]*a[n-1][n];
|
xue@1
|
1814 if (l==(n-1))
|
xue@1
|
1815 {
|
xue@1
|
1816 p=0.5*(y-x);
|
xue@1
|
1817 q=p*p+w;
|
xue@1
|
1818 z=sqrt(fabs(q));
|
xue@1
|
1819 x+=t;
|
xue@1
|
1820 if (q>=0)
|
xue@1
|
1821 {
|
xue@1
|
1822 z=p+(p>=0?z:-z);
|
xue@1
|
1823 ev[n-1].x=ev[n].x=x+z;
|
xue@1
|
1824 if (z) ev[n].x=x-w/z;
|
xue@1
|
1825 ev[n-1].y=ev[n].y=0;
|
xue@1
|
1826 }
|
xue@1
|
1827 else
|
xue@1
|
1828 {
|
xue@1
|
1829 ev[n-1].x=ev[n].x=x+p;
|
xue@1
|
1830 ev[n].y=z; ev[n-1].y=-z;
|
xue@1
|
1831 }
|
xue@1
|
1832 n-=2;
|
xue@1
|
1833 }
|
xue@1
|
1834 else
|
xue@1
|
1835 {
|
xue@1
|
1836 if (iter>=maxiter) return 1;
|
xue@1
|
1837 if (iter%10==9)
|
xue@1
|
1838 {
|
xue@1
|
1839 t+=x;
|
xue@1
|
1840 for (i=0; i<=n; i++) a[i][i]-=x;
|
xue@1
|
1841 s=fabs(a[n][n-1])+fabs(a[n-1][n-2]);
|
xue@1
|
1842 y=x=0.75*s;
|
xue@1
|
1843 w=-0.4375*s*s;
|
xue@1
|
1844 }
|
xue@1
|
1845 iter++;
|
xue@1
|
1846 for (m=n-2; m>=l; m--)
|
xue@1
|
1847 {
|
xue@1
|
1848 z=a[m][m];
|
xue@1
|
1849 r=x-z; s=y-z;
|
xue@1
|
1850 p=(r*s-w)/a[m+1][m]+a[m][m+1]; q=a[m+1][m+1]-z-r-s; r=a[m+2][m+1];
|
xue@1
|
1851 s=fabs(p)+fabs(q)+fabs(r);
|
xue@1
|
1852 p/=s; q/=s; r/=s;
|
xue@1
|
1853 if (m==l) break;
|
xue@1
|
1854 u=fabs(a[m][m-1])*(fabs(q)+fabs(r));
|
xue@1
|
1855 v=fabs(p)*(fabs(a[m-1][m-1])+fabs(z)+fabs(a[m+1][m+1]));
|
xue@1
|
1856 if (u+v==v) break;
|
xue@1
|
1857 }
|
xue@1
|
1858 for (i=m+2; i<=n; i++)
|
xue@1
|
1859 {
|
xue@1
|
1860 a[i][i-2]=0;
|
xue@1
|
1861 if (i!=m+2) a[i][i-3]=0;
|
xue@1
|
1862 }
|
xue@1
|
1863 for (k=m; k<=n-1; k++)
|
xue@1
|
1864 {
|
xue@1
|
1865 if (k!=m)
|
xue@1
|
1866 {
|
xue@1
|
1867 p=a[k][k-1];
|
xue@1
|
1868 q=a[k+1][k-1];
|
xue@1
|
1869 r=0;
|
xue@1
|
1870 if (k!=n-1) r=a[k+2][k-1];
|
xue@1
|
1871 x=fabs(p)+fabs(q)+fabs(r);
|
xue@1
|
1872 if (x!=0) p/=x, q/=x, r/=x;
|
xue@1
|
1873 }
|
xue@1
|
1874 if (p>=0) s=sqrt(p*p+q*q+r*r);
|
xue@1
|
1875 else s=-sqrt(p*p+q*q+r*r);
|
xue@1
|
1876 if (s!=0)
|
xue@1
|
1877 {
|
xue@1
|
1878 if (k==m)
|
xue@1
|
1879 {
|
xue@1
|
1880 if (l!=m) a[k][k-1]=-a[k][k-1];
|
xue@1
|
1881 }
|
xue@1
|
1882 else a[k][k-1]=-s*x;
|
xue@1
|
1883 p+=s;
|
xue@1
|
1884 x=p/s; y=q/s; z=r/s; q/=p; r/=p;
|
xue@1
|
1885 for (j=k; j<=n; j++)
|
xue@1
|
1886 {
|
xue@1
|
1887 p=a[k][j]+q*a[k+1][j];
|
xue@1
|
1888 if (k!=n-1)
|
xue@1
|
1889 {
|
xue@1
|
1890 p+=r*a[k+2][j];
|
xue@1
|
1891 a[k+2][j]-=p*z;
|
xue@1
|
1892 }
|
xue@1
|
1893 a[k+1][j]-=p*y; a[k][j]-=p*x;
|
xue@1
|
1894 }
|
xue@1
|
1895 mmin=n<k+3?n:k+3;
|
xue@1
|
1896 for (i=l; i<=mmin; i++)
|
xue@1
|
1897 {
|
xue@1
|
1898 p=x*a[i][k]+y*a[i][k+1];
|
xue@1
|
1899 if (k!=(n-1))
|
xue@1
|
1900 {
|
xue@1
|
1901 p+=z*a[i][k+2];
|
xue@1
|
1902 a[i][k+2]-=p*r;
|
xue@1
|
1903 }
|
xue@1
|
1904 a[i][k+1]-=p*q; a[i][k]-=p;
|
xue@1
|
1905 }
|
xue@1
|
1906 }
|
xue@1
|
1907 }
|
xue@1
|
1908 }
|
xue@1
|
1909 }
|
xue@1
|
1910 } while (n>l+1);
|
xue@1
|
1911 }
|
xue@1
|
1912 return 0;
|
xue@1
|
1913 }//QR
|
xue@1
|
1914
|
Chris@5
|
1915 /**
|
xue@1
|
1916 function QR_GS: QR decomposition A=QR using Gram-Schmidt method
|
xue@1
|
1917
|
xue@1
|
1918 In: matrix A[M][N], M>=N
|
xue@1
|
1919 Out: Q[M][N], R[N][N]
|
xue@1
|
1920
|
xue@1
|
1921 No return value.
|
xue@1
|
1922 */
|
xue@1
|
1923 void QR_GS(int M, int N, double** A, double** Q, double** R)
|
xue@1
|
1924 {
|
xue@1
|
1925 double *u=new double[M];
|
xue@1
|
1926 for (int n=0; n<N; n++)
|
xue@1
|
1927 {
|
xue@1
|
1928 memset(R[n], 0, sizeof(double)*N);
|
xue@1
|
1929 for (int m=0; m<M; m++) u[m]=A[m][n];
|
xue@1
|
1930 for (int k=0; k<n; k++)
|
xue@1
|
1931 {
|
xue@1
|
1932 double ip=0; for (int m=0; m<M; m++) ip+=u[m]*Q[m][k];
|
xue@1
|
1933 for (int m=0; m<M; m++) u[m]-=ip*Q[m][k];
|
xue@1
|
1934 R[k][n]=ip;
|
xue@1
|
1935 }
|
xue@1
|
1936 double iu=0; for (int m=0; m<M; m++) iu+=u[m]*u[m]; iu=sqrt(iu);
|
xue@1
|
1937 R[n][n]=iu;
|
xue@1
|
1938 iu=1.0/iu; for (int m=0; m<M; m++) Q[m][n]=u[m]*iu;
|
xue@1
|
1939 }
|
xue@1
|
1940 delete[] u;
|
xue@1
|
1941 }//QR_GS
|
xue@1
|
1942
|
Chris@5
|
1943 /**
|
xue@1
|
1944 function QR_householder: QR decomposition using householder transform
|
xue@1
|
1945
|
xue@1
|
1946 In: A[M][N], M>=N
|
xue@1
|
1947 Out: Q[M][M], R[M][N]
|
xue@1
|
1948
|
xue@1
|
1949 No return value.
|
xue@1
|
1950 */
|
xue@1
|
1951 void QR_householder(int M, int N, double** A, double** Q, double** R)
|
xue@1
|
1952 {
|
xue@1
|
1953 double *u=new double[M*3], *ur=&u[M], *qu=&u[M*2];
|
xue@1
|
1954 for (int m=0; m<M; m++)
|
xue@1
|
1955 {
|
xue@1
|
1956 memcpy(R[m], A[m], sizeof(double)*N);
|
xue@1
|
1957 memset(Q[m], 0, sizeof(double)*M); Q[m][m]=1;
|
xue@1
|
1958 }
|
xue@1
|
1959 for (int n=0; n<N; n++)
|
xue@1
|
1960 {
|
xue@1
|
1961 double alf=0; for (int m=n; m<M; m++) alf+=R[m][n]*R[m][n]; alf=sqrt(alf);
|
xue@1
|
1962 if (R[n][n]>0) alf=-alf;
|
xue@1
|
1963 for (int m=n; m<M; m++) u[m]=R[m][n]; u[n]=u[n]-alf;
|
xue@1
|
1964 double iu2=0; for (int m=n; m<M; m++) iu2+=u[m]*u[m]; iu2=2.0/iu2;
|
xue@1
|
1965 for (int m=n; m<N; m++)
|
xue@1
|
1966 {
|
xue@1
|
1967 ur[m]=0; for (int k=n; k<M; k++) ur[m]+=u[k]*R[k][m];
|
xue@1
|
1968 }
|
xue@1
|
1969 for (int m=0; m<M; m++)
|
xue@1
|
1970 {
|
xue@1
|
1971 qu[m]=0; for (int k=n; k<M; k++) qu[m]+=Q[m][k]*u[k];
|
xue@1
|
1972 }
|
xue@1
|
1973 for (int m=n; m<M; m++) u[m]=u[m]*iu2;
|
xue@1
|
1974 for (int m=n; m<M; m++) for (int k=n; k<N; k++) R[m][k]-=u[m]*ur[k];
|
xue@1
|
1975 for (int m=0; m<M; m++) for (int k=n; k<M; k++) Q[m][k]-=qu[m]*u[k];
|
xue@1
|
1976 }
|
xue@1
|
1977 delete[] u;
|
xue@1
|
1978 }//QR_householder
|
xue@1
|
1979
|
xue@1
|
1980 //---------------------------------------------------------------------------
|
Chris@5
|
1981 /**
|
xue@1
|
1982 function QU: Unitary decomposition A=QU, where Q is unitary and U is upper triangular
|
xue@1
|
1983
|
xue@1
|
1984 In: matrix A[N][N]
|
xue@1
|
1985 Out: matrices Q[N][N], A[n][n] now containing U
|
xue@1
|
1986
|
xue@1
|
1987 No return value.
|
xue@1
|
1988 */
|
xue@1
|
1989 void QU(int N, double** Q, double** A)
|
xue@1
|
1990 {
|
xue@1
|
1991 int sizeN=sizeof(double)*N;
|
xue@1
|
1992 for (int i=0; i<N; i++) {memset(Q[i], 0, sizeN); Q[i][i]=1;}
|
xue@1
|
1993
|
xue@1
|
1994 double m, s, c, *tmpi=new double[N], *tmpj=new double[N];
|
xue@1
|
1995 for (int i=1; i<N; i++) for (int j=0; j<i; j++)
|
xue@1
|
1996 if (A[i][j]!=0)
|
xue@1
|
1997 {
|
xue@1
|
1998 m=sqrt(A[j][j]*A[j][j]+A[i][j]*A[i][j]);
|
xue@1
|
1999 s=A[i][j]/m;
|
xue@1
|
2000 c=A[j][j]/m;
|
xue@1
|
2001 for (int k=0; k<N; k++) tmpi[k]=-s*A[j][k]+c*A[i][k], tmpj[k]=c*A[j][k]+s*A[i][k];
|
xue@1
|
2002 memcpy(A[i], tmpi, sizeN), memcpy(A[j], tmpj, sizeN);
|
xue@1
|
2003 for (int k=0; k<N; k++) tmpi[k]=-s*Q[j][k]+c*Q[i][k], tmpj[k]=c*Q[j][k]+s*Q[i][k];
|
xue@1
|
2004 memcpy(Q[i], tmpi, sizeN), memcpy(Q[j], tmpj, sizeN);
|
xue@1
|
2005 }
|
xue@1
|
2006 delete[] tmpi; delete[] tmpj;
|
xue@1
|
2007 transpose(N, Q);
|
xue@1
|
2008 }//QU
|
xue@1
|
2009
|
xue@1
|
2010 //---------------------------------------------------------------------------
|
Chris@5
|
2011 /**
|
xue@1
|
2012 function Real: extracts the real part of matrix X
|
xue@1
|
2013
|
xue@1
|
2014 In: matrix x[M][N];
|
xue@1
|
2015 Out: matrix z[M][N]
|
xue@1
|
2016
|
xue@1
|
2017 Returns pointer to z. z is created anew if z=0 is specified on start.
|
xue@1
|
2018 */
|
xue@1
|
2019 double** Real(int M, int N, double** z, cdouble** x, MList* List)
|
xue@1
|
2020 {
|
xue@1
|
2021 if (!z){Allocate2(double, M, N, z); if (List) List->Add(z, 2);}
|
xue@1
|
2022 for (int m=0; m<M; m++) for (int n=0; n<N; n++) z[m][n]=x[m][n].x;
|
xue@1
|
2023 return z;
|
xue@1
|
2024 }//Real
|
xue@1
|
2025 double** Real(int M, int N, cdouble** x, MList* List){return Real(M, N, 0, x, List);}
|
xue@1
|
2026
|
xue@1
|
2027 //---------------------------------------------------------------------------
|
Chris@5
|
2028 /**
|
xue@1
|
2029 function Roots: finds the roots of a polynomial. x^N+p[N-1]x^(N-1)+p[N-2]x^(N-2)...+p[0]
|
xue@1
|
2030
|
xue@1
|
2031 In: vector p[N] of polynomial coefficients.
|
xue@1
|
2032 Out: vector r[N] of roots.
|
xue@1
|
2033
|
xue@1
|
2034 Returns 0 if successful.
|
xue@1
|
2035 */
|
xue@1
|
2036 int Roots(int N, double* p, cdouble* r)
|
xue@1
|
2037 {
|
xue@1
|
2038 double** A=new double*[N]; A[0]=new double[N*N]; for (int i=1; i<N; i++) A[i]=&A[0][i*N];
|
xue@1
|
2039 for (int i=0; i<N; i++) A[0][i]=-p[N-1-i];
|
xue@1
|
2040 if (N>1) memset(A[1], 0, sizeof(double)*N*(N-1));
|
xue@1
|
2041 for (int i=1; i<N; i++) A[i][i-1]=1;
|
xue@1
|
2042 BalanceSim(N, A);
|
xue@1
|
2043 double result=QR(N, A, r);
|
xue@1
|
2044 delete[] A[0]; delete[] A;
|
xue@1
|
2045 return result;
|
xue@1
|
2046 }//Roots
|
xue@1
|
2047 //real implementation
|
xue@1
|
2048 int Roots(int N, double* p, double* rr, double* ri)
|
xue@1
|
2049 {
|
xue@1
|
2050 cdouble* r=new cdouble[N];
|
xue@1
|
2051 int result=Roots(N, p, r);
|
xue@1
|
2052 for (int n=0; n<N; n++) rr[n]=r[n].x, ri[n]=r[n].y;
|
xue@1
|
2053 delete[] r;
|
xue@1
|
2054 return result;
|
xue@1
|
2055 }//Roots
|
xue@1
|
2056
|
xue@1
|
2057 //---------------------------------------------------------------------------
|
Chris@5
|
2058 /**
|
xue@1
|
2059 function SorI: Sor iteration algorithm for solving linear system Ax=b.
|
xue@1
|
2060
|
xue@1
|
2061 Sor method is an extension of the Gaussian-Siedel method, with the latter equivalent to the former
|
xue@1
|
2062 with w set to 1. The Sor iteration is given by x(k)=(D-wL)^(-1)(((1-w)D+wU)x(k-1)+wb), where 0<w<2, D
|
xue@1
|
2063 is diagonal, L is lower triangular, U is upper triangular and A=L+D+U. Sor method converges if A is
|
xue@1
|
2064 positive definite.
|
xue@1
|
2065
|
xue@1
|
2066 In: matrix A[N][N], vector b[N], initial vector x0[N]
|
xue@1
|
2067 Out: vector x0[N]
|
xue@1
|
2068
|
xue@1
|
2069 Returns 0 if successful. Contents of matrix A and vector b are unchanged on return.
|
xue@1
|
2070 */
|
xue@1
|
2071 int SorI(int N, double* x0, double** a, double* b, double w, double ep, int maxiter)
|
xue@1
|
2072 {
|
xue@1
|
2073 double e, v=1-w, *x=new double[N];
|
xue@1
|
2074 int k=0, sizeN=sizeof(double)*N;
|
xue@1
|
2075 while (k<maxiter)
|
xue@1
|
2076 {
|
xue@1
|
2077 for (int i=0; i<N; i++)
|
xue@1
|
2078 {
|
xue@1
|
2079 x[i]=b[i];
|
xue@1
|
2080 for (int j=0; j<i; j++) x[i]-=a[i][j]*x[j];
|
xue@1
|
2081 for (int j=i+1; j<N; j++) x[i]-=a[i][j]*x0[j];
|
xue@1
|
2082 x[i]=v*x0[i]+w*x[i]/a[i][i];
|
xue@1
|
2083 }
|
xue@1
|
2084 e=0; for (int j=0; j<N; j++) e+=fabs(x[j]-x0[j]);
|
xue@1
|
2085 memcpy(x0, x, sizeN);
|
xue@1
|
2086 if (e<ep) break;
|
xue@1
|
2087 k++;
|
xue@1
|
2088 }
|
xue@1
|
2089 delete[] x;
|
xue@1
|
2090 if (k>=maxiter) return 1;
|
xue@1
|
2091 return 0;
|
xue@1
|
2092 }//SorI
|
xue@1
|
2093
|
xue@1
|
2094 //---------------------------------------------------------------------------
|
xue@1
|
2095 //Submatrix routines
|
xue@1
|
2096
|
Chris@5
|
2097 /**
|
xue@1
|
2098 function SetSubMatrix: copy matrix x[Y][X] into matrix z at (Y1, X1).
|
xue@1
|
2099
|
xue@1
|
2100 In: matrix x[Y][X], matrix z with dimensions no less than [Y+Y1][X+X1]
|
xue@1
|
2101 Out: matrix z, updated.
|
xue@1
|
2102
|
xue@1
|
2103 No return value.
|
xue@1
|
2104 */
|
xue@1
|
2105 void SetSubMatrix(double** z, double** x, int Y1, int Y, int X1, int X)
|
xue@1
|
2106 {
|
xue@1
|
2107 for (int y=0; y<Y; y++) memcpy(&z[Y1+y][X1], x[y], sizeof(double)*X);
|
xue@1
|
2108 }//SetSubMatrix
|
xue@1
|
2109 //complex version
|
xue@1
|
2110 void SetSubMatrix(cdouble** z, cdouble** x, int Y1, int Y, int X1, int X)
|
xue@1
|
2111 {
|
xue@1
|
2112 for (int y=0; y<Y; y++) memcpy(&z[Y1+y][X1], x[y], sizeof(cdouble)*X);
|
xue@1
|
2113 }//SetSubMatrix
|
xue@1
|
2114
|
Chris@5
|
2115 /**
|
xue@1
|
2116 function SubMatrix: extract a submatrix of x at (Y1, X1) to z[Y][X].
|
xue@1
|
2117
|
xue@1
|
2118 In: matrix x of dimensions no less than [Y+Y1][X+X1]
|
xue@1
|
2119 Out: matrix z[Y][X].
|
xue@1
|
2120
|
xue@1
|
2121 Returns pointer to z. z is created anew if z=0 is specifid on start.
|
xue@1
|
2122 */
|
xue@1
|
2123 cdouble** SubMatrix(cdouble** z, cdouble** x, int Y1, int Y, int X1, int X, MList* List)
|
xue@1
|
2124 {
|
xue@1
|
2125 if (!z) {Allocate2(cdouble, Y, X, z); if (List) List->Add(z, 2);}
|
xue@1
|
2126 for (int y=0; y<Y; y++) memcpy(z[y], &x[Y1+y][X1], sizeof(cdouble)*X);
|
xue@1
|
2127 return z;
|
xue@1
|
2128 }//SetSubMatrix
|
xue@1
|
2129 //wrapper function
|
xue@1
|
2130 cdouble** SubMatrix(cdouble** x, int Y1, int Y, int X1, int X, MList* List)
|
xue@1
|
2131 {
|
xue@1
|
2132 return SubMatrix(0, x, Y1, Y, X1, X, List);
|
xue@1
|
2133 }//SetSubMatrix
|
xue@1
|
2134
|
Chris@5
|
2135 /**
|
xue@1
|
2136 function SubVector: extract a subvector of x at X1 to z[X].
|
xue@1
|
2137
|
xue@1
|
2138 In: vector x no shorter than X+X1.
|
xue@1
|
2139 Out: vector z[X].
|
xue@1
|
2140
|
xue@1
|
2141 Returns pointer to z. z is created anew if z=0 is specifid on start.
|
xue@1
|
2142 */
|
xue@1
|
2143 cdouble* SubVector(cdouble* z, cdouble* x, int X1, int X, MList* List)
|
xue@1
|
2144 {
|
xue@1
|
2145 if (!z){z=new cdouble[X]; if (List) List->Add(z, 1);}
|
xue@1
|
2146 memcpy(z, &x[X1], sizeof(cdouble)*X);
|
xue@1
|
2147 return z;
|
xue@1
|
2148 }//SubVector
|
xue@1
|
2149 //wrapper function
|
xue@1
|
2150 cdouble* SubVector(cdouble* x, int X1, int X, MList* List)
|
xue@1
|
2151 {
|
xue@1
|
2152 return SubVector(0, x, X1, X, List);
|
xue@1
|
2153 }//SubVector
|
xue@1
|
2154
|
xue@1
|
2155 //---------------------------------------------------------------------------
|
Chris@5
|
2156 /**
|
xue@1
|
2157 function transpose: matrix transpose: A'->A
|
xue@1
|
2158
|
xue@1
|
2159 In: matrix a[N][N]
|
xue@1
|
2160 Out: matrix a[N][N] after transpose
|
xue@1
|
2161
|
xue@1
|
2162 No return value.
|
xue@1
|
2163 */
|
xue@1
|
2164 void transpose(int N, double** a)
|
xue@1
|
2165 {
|
xue@1
|
2166 double tmp;
|
xue@1
|
2167 for (int i=1; i<N; i++) for (int j=0; j<i; j++) {tmp=a[i][j]; a[i][j]=a[j][i]; a[j][i]=tmp;}
|
xue@1
|
2168 }//transpose
|
xue@1
|
2169 //complex version
|
xue@1
|
2170 void transpose(int N, cdouble** a)
|
xue@1
|
2171 {
|
xue@1
|
2172 cdouble tmp;
|
xue@1
|
2173 for (int i=1; i<N; i++) for (int j=0; j<i; j++) {tmp=a[i][j]; a[i][j]=a[j][i]; a[j][i]=tmp;}
|
xue@1
|
2174 }//transpose
|
xue@1
|
2175
|
Chris@5
|
2176 /**
|
xue@1
|
2177 function transpose: matrix transpose: A'->Z
|
xue@1
|
2178
|
xue@1
|
2179 In: matrix a[M][N]
|
xue@1
|
2180 Out: matrix z[N][M]
|
xue@1
|
2181
|
xue@1
|
2182 Returns pointer to z. z is created anew if z=0 is specifid on start.
|
xue@1
|
2183 */
|
xue@1
|
2184 double** transpose(int N, int M, double** ta, double** a, MList* List)
|
xue@1
|
2185 {
|
xue@1
|
2186 if (!ta) {Allocate2(double, N, M, ta); if (List) List->Add(ta, 2);}
|
xue@1
|
2187 for (int n=0; n<N; n++) for (int m=0; m<M; m++) ta[n][m]=a[m][n];
|
xue@1
|
2188 return ta;
|
xue@1
|
2189 }//transpose
|
xue@1
|
2190 //wrapper function
|
xue@1
|
2191 double** transpose(int N, int M, double** a, MList* List)
|
xue@1
|
2192 {
|
xue@1
|
2193 return transpose(N, M, 0, a, List);
|
xue@1
|
2194 }//transpose
|
xue@1
|
2195
|
xue@1
|
2196 //---------------------------------------------------------------------------
|
Chris@5
|
2197 /**
|
xue@1
|
2198 function Unitary: given x & y s.t. |x|=|y|, find unitary matrix P s.t. Px=y. P is given in closed form
|
xue@1
|
2199 as I-(x-y)(x-y)'/(x-y)'x
|
xue@1
|
2200
|
xue@1
|
2201 In: vectors x[N] and y[N]
|
xue@1
|
2202 Out: matrix P[N][N]
|
xue@1
|
2203
|
xue@1
|
2204 Returns pointer to P. P is created anew if P=0 is specified on start.
|
xue@1
|
2205 */
|
xue@1
|
2206 double** Unitary(int N, double** P, double* x, double* y, MList* List)
|
xue@1
|
2207 {
|
xue@1
|
2208 if (!P) {Allocate2(double, N, N, P); if (List) List->Add(P, 2);}
|
xue@1
|
2209 int sizeN=sizeof(double)*N;
|
xue@1
|
2210 for (int i=0; i<N; i++) {memset(P[i], 0, sizeN); P[i][i]=1;}
|
xue@1
|
2211
|
xue@1
|
2212 double* w=MultiAdd(N, x, y, -1.0); //w=x-y
|
xue@1
|
2213 double m=Inner(N, x, w); //m=(x-y)'x
|
xue@1
|
2214 if (m!=0)
|
xue@1
|
2215 {
|
xue@1
|
2216 m=1.0/m; //m=1/(x-y)'x
|
xue@1
|
2217 double* mw=Multiply(N, w, m);
|
xue@1
|
2218 for (int i=0; i<N; i++) for (int j=0; j<N; j++) P[i][j]=P[i][j]-mw[i]*w[j];
|
xue@1
|
2219 delete[] mw;
|
xue@1
|
2220 }
|
xue@1
|
2221 delete[] w;
|
xue@1
|
2222 return P;
|
xue@1
|
2223 }//Unitary
|
xue@1
|
2224 //complex version
|
xue@1
|
2225 cdouble** Unitary(int N, cdouble** P, cdouble* x, cdouble* y, MList* List)
|
xue@1
|
2226 {
|
xue@1
|
2227 if (!P) {Allocate2(cdouble, N, N, P);}
|
xue@1
|
2228 int sizeN=sizeof(cdouble)*N;
|
xue@1
|
2229 for (int i=0; i<N; i++) {memset(P[i], 0, sizeN); P[i][i]=1;}
|
xue@1
|
2230
|
xue@1
|
2231 cdouble *w=MultiAdd(N, x, y, -1);
|
xue@1
|
2232 cdouble m=Inner(N, x, w);
|
xue@1
|
2233 if (m!=0)
|
xue@1
|
2234 {
|
xue@1
|
2235 m=m.cinv();
|
xue@1
|
2236 cdouble *mw=Multiply(N, w, m);
|
xue@1
|
2237 for (int i=0; i<N; i++) for (int j=0; j<N; j++) P[i][j]=P[i][j]-(mw[i]^w[j]),
|
xue@1
|
2238 delete[] mw;
|
xue@1
|
2239 }
|
xue@1
|
2240 delete[] w;
|
xue@1
|
2241 if (List) List->Add(P, 2);
|
xue@1
|
2242 return P;
|
xue@1
|
2243 }//Unitary
|
xue@1
|
2244 //wrapper functions
|
xue@1
|
2245 double** Unitary(int N, double* x, double* y, MList* List){return Unitary(N, 0, x, y, List);}
|
xue@1
|
2246 cdouble** Unitary(int N, cdouble* x, cdouble* y, MList* List){return Unitary(N, 0, x, y, List);}
|
xue@1
|
2247
|
xue@1
|
2248
|
xue@1
|
2249
|