xue@1
|
1 #ifndef hssfH
|
xue@1
|
2 #define hssfH
|
xue@1
|
3
|
Chris@5
|
4 /**
|
Chris@5
|
5 \file hssf.h - source-filter modeling for harmonic sinusoids
|
xue@1
|
6
|
xue@1
|
7 Further reading: Wen X. and M. Sandler, "Source-filter modeling in sinusoid domain," in Proc. AES 126th
|
xue@1
|
8 Convention, Munich, 2009.
|
xue@1
|
9 */
|
xue@1
|
10
|
xue@1
|
11
|
xue@1
|
12 #include <stdio.h>
|
xue@1
|
13 #include "hs.h"
|
xue@1
|
14
|
xue@1
|
15 //---------------------------------------------------------------------------
|
xue@1
|
16 const double Amel=1127.0104803341574386544633680278;
|
xue@1
|
17 const bool useA0=true; //if true, use A0D+A0C instead of A0C in S-F decomposition as pre-normalizer
|
xue@1
|
18
|
xue@1
|
19
|
Chris@5
|
20 /**
|
xue@1
|
21 TSF is the class implementing source-filter model for harmonic sinusoids. TSF shares the basic framework
|
xue@1
|
22 of the vibrato description class TVo, but implements a more compact source-filter representation. It does
|
xue@1
|
23 not go into detailed vibrato analysis such as extraction modulator shape.
|
xue@1
|
24
|
xue@1
|
25 An analysis/synthesis cycle converts THS to TSF and back.
|
xue@1
|
26 */
|
xue@1
|
27
|
xue@1
|
28 struct TSF
|
xue@1
|
29 {
|
xue@1
|
30 //basic characteristics
|
Chris@5
|
31 int M; ///< number of partials
|
Chris@5
|
32 int L; ///< number of frames
|
Chris@5
|
33 int P; ///< number of segmentation points
|
Chris@5
|
34 double offst; ///< hop size
|
Chris@5
|
35 double* F0C; ///< [0:L-1] pitch carrier
|
Chris@5
|
36 double* F0D; ///< [0:L-1] pitch modulator
|
Chris@5
|
37 double* logA0C; ///< [0:L-1] amplitude carreir
|
Chris@5
|
38 double* logA0D; ///< [0:L-1] amplitude modulator
|
xue@1
|
39
|
Chris@5
|
40 double* lp; ///< [0:P-1] peak positions
|
xue@1
|
41
|
Chris@5
|
42 double F; ///< filter: band with (linear or mel) associated to each b[][]
|
Chris@5
|
43 double Fs; ///< sampling frequency
|
Chris@5
|
44 int FScaleMode; ///< linear or mel
|
Chris@5
|
45 int K; ///< number of filter bands
|
Chris@5
|
46 double** b; ///< [0:L-1][0:M-1] single-frame source, in dB
|
Chris@5
|
47 double** h; ///< [0:L-1][0:K+1] single-frame filter, in dB
|
Chris@5
|
48 double* avgb; ///< [0:M-1] average source
|
Chris@5
|
49 double* avgh; ///< [0:K+1] average filter
|
xue@1
|
50
|
xue@1
|
51 //other properties
|
xue@1
|
52
|
Chris@5
|
53 double rate; ///< vibrato rate
|
Chris@5
|
54 double regularity;///< vibrato regularity
|
Chris@5
|
55 double F0max; ///< maximal fundamental frequency
|
Chris@5
|
56 double F0min; ///< minimal fundamental frequency
|
Chris@5
|
57 double F0Cmax; ///< maximal fundamental carrier frequency
|
Chris@5
|
58 double F0Cmin; ///< minimal fundamental carrier frequency
|
Chris@5
|
59 double F0Overall; ///< overall average fundamental frequency
|
Chris@5
|
60 double F0Dmax; ///< maximal fundamental modulator frequency
|
Chris@5
|
61 double F0Dmin; ///< minimal fundamental modulator frequency
|
Chris@5
|
62 double* F0; ///< [0:L-1] fundamental frequency
|
Chris@5
|
63 double* logA0; ///< [0:L-1] log amplitude
|
xue@1
|
64
|
xue@1
|
65 TSF();
|
xue@1
|
66 ~TSF();
|
xue@1
|
67
|
xue@1
|
68 //copy function
|
xue@1
|
69 void Duplicate(TSF& SF);
|
xue@1
|
70
|
xue@1
|
71 //output routines
|
xue@1
|
72 double LogAF(double f);
|
xue@1
|
73 double LogAF(double f, int fr);
|
xue@1
|
74 double LogAS(int m, int fr);
|
xue@1
|
75
|
xue@1
|
76 //memory handling routines
|
xue@1
|
77 void AllocateL(int AnL);
|
xue@1
|
78 void ReAllocateL(int newL);
|
xue@1
|
79 void AllocateP();
|
xue@1
|
80 void AllocateSF();
|
xue@1
|
81
|
xue@1
|
82 //I/O routines
|
xue@1
|
83 void SaveSFToFileHandle(FILE* f);
|
xue@1
|
84 void SaveToFileHandle(FILE* f);
|
xue@1
|
85 void LoadSFFromFileHandle(FILE* f);
|
xue@1
|
86 void LoadFromFileHandle(FILE* f);
|
xue@1
|
87 void SaveToFile(char* filename);
|
xue@1
|
88
|
xue@1
|
89 //other member functions
|
xue@1
|
90 void ShiftFilterByDB(double dB);
|
xue@1
|
91 };
|
xue@1
|
92
|
xue@1
|
93 //--tool procedures----------------------------------------------------------
|
xue@1
|
94 int Sign(double);
|
xue@1
|
95
|
xue@1
|
96 //--general source-filter model routines-------------------------------------
|
xue@1
|
97 void S_F_b(TSF& SF, atom** Partials);
|
xue@1
|
98
|
xue@1
|
99 //--slow-variation SF estimation routines------------------------------------
|
xue@1
|
100 double P2_DelFtr(double** d, int L, int K, double** x, double F);
|
xue@1
|
101 double P3_DelSrc(double** d, int L, int M, int K, double** x, double** f, double F);
|
xue@1
|
102 int SF_SV(double** h, int L, int M, int K, double** a, double** f, double F, double theta, double ep, int maxiter);
|
xue@1
|
103 double S_F_SV(int M, atom** Partials, double* logA0C, double* lp, int P, int& K, double** h, double* avgh, double** b, double* avgb, double F=0.005, int FScaleMode=0, double theta=0.5, double Fs=44100);
|
xue@1
|
104 void SF_SV_cf(double* h, double** b, int L, int M, int K, double** a, double** f, double F, double ep, int maxiter);
|
xue@1
|
105 double S_F_SV_cf(int afres, double* LogAF, double* LogAS, int Fr, int M, atom** Partials, double* A0C, double* lp, int P, int& K, double** h, double** b, double F=0.005, int FScaleMode=0, double Fs=44100);
|
xue@1
|
106
|
xue@1
|
107 //--filter-bank SF estimation routines---------------------------------------
|
xue@1
|
108 int SF_FB(double* hl, int M, int K, double** al, double** fl, double F, int LMode);
|
xue@1
|
109 double S_F_FB(int M, atom** Partials, double* logA0C, double* lp, int P, int& K, double** h, double* avgh, double** b, double* avgb, double F=0.005, int FScaleMode=0, double Fs=44100);
|
xue@1
|
110
|
xue@1
|
111 //--source-filter analysis and synthesis routines----------------------------
|
xue@1
|
112 void AnalyzeSF_1(THS& HS, TSF& SF, double sps, double offst);
|
xue@1
|
113 void AnalyzeSF_2(THS& HS, TSF& SF, double*& cyclefrs, double*& cyclefs, double sps, int* cyclefrcount=0, int SFMode=0, double SFF=0.01, int SFFScale=0, double SFtheta=0);
|
xue@1
|
114 void AnalyzeSF(THS& HS, TSF& SF, double*& cyclefrs, double*& cyclefs, double sps, double offst, int* cyclefrcount=0, int SFMode=0, double SFF=0.01, int SFFScale=0, double SFtheta=0);
|
xue@1
|
115 void SynthesizeSF(THS* HS, TSF* SF, double sps);
|
xue@1
|
116
|
xue@1
|
117
|
xue@1
|
118 #endif
|