xue@1
|
1 //---------------------------------------------------------------------------
|
xue@1
|
2
|
Chris@2
|
3 #include <string.h>
|
xue@1
|
4 #include <stdlib.h>
|
xue@1
|
5 #include "fft.h"
|
xue@1
|
6
|
Chris@5
|
7 /** \file fft.h */
|
Chris@5
|
8
|
xue@1
|
9 //---------------------------------------------------------------------------
|
Chris@5
|
10 /**
|
xue@1
|
11 function Atan2: (0, 0)-safe atan2
|
xue@1
|
12
|
xue@1
|
13 Returns 0 is x=y=0, atan2(x,y) otherwise.
|
xue@1
|
14 */
|
xue@1
|
15 double Atan2(double y, double x)
|
xue@1
|
16 {
|
xue@1
|
17 if (x==0 && y==0) return 0;
|
xue@1
|
18 else return atan2(y, x);
|
xue@1
|
19 }//Atan2
|
xue@1
|
20
|
Chris@5
|
21 /**
|
xue@1
|
22 function BitInv: inverse bit order of Value within an $Order-bit expression.
|
xue@1
|
23
|
xue@1
|
24 In: integer Value smaller than 2^Order
|
xue@1
|
25
|
xue@1
|
26 Returns an integer whose lowest Order bits are the lowest Order bits of Value in reverse order.
|
xue@1
|
27 */
|
xue@1
|
28 int BitInv(int Value, int Order)
|
xue@1
|
29 {
|
xue@1
|
30 int Result;
|
xue@1
|
31 Result=0;
|
xue@1
|
32 for (int i=0;i<Order;i++)
|
xue@1
|
33 {
|
xue@1
|
34 Result=(Result<<1)+(Value&0x00000001);
|
xue@1
|
35 Value=Value>>1;
|
xue@1
|
36 }
|
xue@1
|
37 return Result;
|
xue@1
|
38 }//BitInv
|
xue@1
|
39
|
Chris@5
|
40 /**
|
xue@1
|
41 function SetTwiddleFactors: fill w[N/2] with twiddle factors used in N-point complex FFT.
|
xue@1
|
42
|
xue@1
|
43 In: N
|
xue@1
|
44 Out: array w[N/2] containing twiddle factors
|
xue@1
|
45
|
xue@1
|
46 No return value.
|
xue@1
|
47 */
|
xue@1
|
48 void SetTwiddleFactors(int N, cdouble* w)
|
xue@1
|
49 {
|
xue@1
|
50 double ep=-M_PI*2/N;
|
xue@1
|
51 for (int i=0; i<N/2; i++)
|
xue@1
|
52 {
|
xue@1
|
53 double tmp=ep*i;
|
xue@1
|
54 w[i].x=cos(tmp), w[i].y=sin(tmp);
|
xue@1
|
55 }
|
xue@1
|
56 }//SetTwiddleFactors
|
xue@1
|
57
|
xue@1
|
58 //---------------------------------------------------------------------------
|
Chris@5
|
59 /**
|
xue@1
|
60 function CFFTCbii: basic complex DIF-FFT module, applied after bit-inversed ordering of inputs
|
xue@1
|
61
|
xue@1
|
62 In: Order: integer, equals log2(Wid)
|
xue@1
|
63 W[Wid/2]: twiddle factors
|
xue@1
|
64 X[Wid]: complex waveform
|
xue@1
|
65 Out: X[Wid]: complex spectrum
|
xue@1
|
66
|
xue@1
|
67 No return value.
|
xue@1
|
68 */
|
xue@1
|
69 void CFFTCbii(int Order, cdouble* W, cdouble* X)
|
xue@1
|
70 {
|
xue@1
|
71 int i, j, k, ElemsPerGroup, Groups, X0, X1, X2;
|
xue@1
|
72 cdouble Temp;
|
xue@1
|
73 for (i=0; i<Order; i++)
|
xue@1
|
74 {
|
xue@1
|
75 ElemsPerGroup=1<<i;
|
xue@1
|
76 Groups=1<<(Order-i-1);
|
xue@1
|
77 X0=0;
|
xue@1
|
78 for (j=0; j<Groups; j++)
|
xue@1
|
79 {
|
xue@1
|
80 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
81 {
|
xue@1
|
82 int kGroups=k*Groups;
|
xue@1
|
83 X1=X0+k;
|
xue@1
|
84 X2=X1+ElemsPerGroup;
|
xue@1
|
85 //X(X2)<-X(X2)*W
|
xue@1
|
86 Temp.x=X[X2].x*W[kGroups].x-X[X2].y*W[kGroups].y,
|
xue@1
|
87 X[X2].y=X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x;
|
xue@1
|
88 X[X2].x=Temp.x;
|
xue@1
|
89 Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y;
|
xue@1
|
90 X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y;
|
xue@1
|
91 X[X1]=Temp;
|
xue@1
|
92 }
|
xue@1
|
93 X0+=ElemsPerGroup*2;
|
xue@1
|
94 }
|
xue@1
|
95 }
|
xue@1
|
96 }//CFFTCbii
|
xue@1
|
97
|
Chris@5
|
98 /**
|
xue@1
|
99 function CFFTC: in-place complex FFT
|
xue@1
|
100
|
xue@1
|
101 In: Order: integer, equals log2(Wid)
|
xue@1
|
102 W[Wid/2]: twiddle factors
|
xue@1
|
103 X[Wid]: complex waveform
|
xue@1
|
104 bitinv[Wid]: bit-inversion table
|
xue@1
|
105 Out: X[Wid]: complex spectrum
|
xue@1
|
106
|
xue@1
|
107 No return value.
|
xue@1
|
108 */
|
xue@1
|
109 void CFFTC(int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
110 {
|
xue@1
|
111 int N=1<<Order, i, jj;
|
xue@1
|
112 cdouble Temp;
|
xue@1
|
113 int* bitinv1=bitinv;
|
xue@1
|
114 if (!bitinv) bitinv=CreateBitInvTable(Order);
|
xue@1
|
115 for (i=1; i<N-1; i++)
|
xue@1
|
116 {
|
xue@1
|
117 jj=bitinv[i];
|
xue@1
|
118 if (i<jj)
|
xue@1
|
119 {
|
xue@1
|
120 Temp=X[i];
|
xue@1
|
121 X[i]=X[jj];
|
xue@1
|
122 X[jj]=Temp;
|
xue@1
|
123 }
|
xue@1
|
124 }
|
xue@1
|
125 if (!bitinv1) free(bitinv);
|
xue@1
|
126 CFFTCbii(Order, W, X);
|
xue@1
|
127 }//CFFTC
|
xue@1
|
128
|
Chris@5
|
129 /**
|
xue@1
|
130 function CFFTC: complex FFT
|
xue@1
|
131
|
xue@1
|
132 In: Input[Wid]: complex waveform
|
xue@1
|
133 Order: integer, equals log2(Wid)
|
xue@1
|
134 W[Wid/2]: twiddle factors
|
xue@1
|
135 bitinv[Wid]: bit-inversion table
|
xue@1
|
136 Out:X[Wid]: complex spectrum
|
xue@1
|
137 Amp[Wid]: amplitude spectrum
|
xue@1
|
138 Arg[Wid]: phase spectrum
|
xue@1
|
139
|
xue@1
|
140 No return value.
|
xue@1
|
141 */
|
xue@1
|
142 void CFFTC(cdouble* Input, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
143 {
|
xue@1
|
144 int i, N=1<<Order;
|
xue@1
|
145
|
xue@1
|
146 if (X!=Input) memcpy(X, Input, sizeof(cdouble)*N);
|
xue@1
|
147 CFFTC(Order, W, X, bitinv);
|
xue@1
|
148
|
xue@1
|
149 if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(X[i].x*X[i].x+X[i].y*X[i].y);
|
xue@1
|
150 if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(X[i].y, X[i].x);
|
xue@1
|
151 }//CFFTC
|
xue@1
|
152
|
xue@1
|
153 //---------------------------------------------------------------------------
|
Chris@5
|
154 /**
|
xue@1
|
155 function CIFFTCbii: basic complex IFFT module, applied after bit-inversed ordering of inputs
|
xue@1
|
156
|
xue@1
|
157 In: Order: integer, equals log2(Wid)
|
xue@1
|
158 W[Wid/2]: twiddle factors
|
xue@1
|
159 X[Wid]: complex spectrum
|
xue@1
|
160 Out: X[Wid]: complex waveform
|
xue@1
|
161
|
xue@1
|
162 No return value.
|
xue@1
|
163 */
|
xue@1
|
164 void CIFFTCbii(int Order, cdouble* W, cdouble* X)
|
xue@1
|
165 {
|
xue@1
|
166 int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2;
|
xue@1
|
167 cdouble Temp;
|
xue@1
|
168
|
xue@1
|
169 for (i=0; i<Order; i++)
|
xue@1
|
170 {
|
xue@1
|
171 ElemsPerGroup=1<<i;
|
xue@1
|
172 Groups=1<<(Order-i-1);
|
xue@1
|
173 X0=0;
|
xue@1
|
174 for (j=0; j<Groups; j++)
|
xue@1
|
175 {
|
xue@1
|
176 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
177 {
|
xue@1
|
178 int kGroups=k*Groups;
|
xue@1
|
179 X1=X0+k;
|
xue@1
|
180 X2=X1+ElemsPerGroup;
|
xue@1
|
181 Temp.x=X[X2].x*W[kGroups].x+X[X2].y*W[kGroups].y,
|
xue@1
|
182 X[X2].y=-X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x;
|
xue@1
|
183 X[X2].x=Temp.x;
|
xue@1
|
184 Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y;
|
xue@1
|
185 X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y;
|
xue@1
|
186 X[X1]=Temp;
|
xue@1
|
187 }
|
xue@1
|
188 X0=X0+ElemsPerGroup*2;
|
xue@1
|
189 }
|
xue@1
|
190 }
|
xue@1
|
191 for (i=0; i<N; i++)
|
xue@1
|
192 {
|
xue@1
|
193 X[i].x/=N;
|
xue@1
|
194 X[i].y/=N;
|
xue@1
|
195 }
|
xue@1
|
196 }//CIFFTCbii
|
xue@1
|
197
|
Chris@5
|
198 /**
|
xue@1
|
199 function CIFFTC: in-place complex IFFT
|
xue@1
|
200
|
xue@1
|
201 In: Order: integer, equals log2(Wid)
|
xue@1
|
202 W[Wid/2]: twiddle factors
|
xue@1
|
203 X[Wid]: complex spectrum
|
xue@1
|
204 bitinv[Wid]: bit-inversion table
|
xue@1
|
205 Out: X[Wid]: complex waveform
|
xue@1
|
206
|
xue@1
|
207 No return value.
|
xue@1
|
208 */
|
xue@1
|
209 void CIFFTC(int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
210 {
|
xue@1
|
211 int N=1<<Order, i, jj, *bitinv1=bitinv;
|
xue@1
|
212 cdouble Temp;
|
xue@1
|
213 if (!bitinv) bitinv=CreateBitInvTable(Order);
|
xue@1
|
214 for (i=1; i<N-1; i++)
|
xue@1
|
215 {
|
xue@1
|
216 jj=bitinv[i];
|
xue@1
|
217 if (i<jj)
|
xue@1
|
218 {
|
xue@1
|
219 Temp=X[i];
|
xue@1
|
220 X[i]=X[jj];
|
xue@1
|
221 X[jj]=Temp;
|
xue@1
|
222 }
|
xue@1
|
223 }
|
xue@1
|
224 if (!bitinv1) free(bitinv);
|
xue@1
|
225 CIFFTCbii(Order, W, X);
|
xue@1
|
226 }//CIFFTC
|
xue@1
|
227
|
Chris@5
|
228 /**
|
xue@1
|
229 function CIFFTC: complex IFFT
|
xue@1
|
230
|
xue@1
|
231 In: Input[Wid]: complex spectrum
|
xue@1
|
232 Order: integer, equals log2(Wid)
|
xue@1
|
233 W[Wid/2]: twiddle factors
|
xue@1
|
234 bitinv[Wid]: bit-inversion table
|
xue@1
|
235 Out:X[Wid]: complex waveform
|
xue@1
|
236
|
xue@1
|
237 No return value.
|
xue@1
|
238 */
|
xue@1
|
239 void CIFFTC(cdouble* Input, int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
240 {
|
xue@1
|
241 int N=1<<Order;
|
xue@1
|
242 if (X!=Input) memcpy(X, Input, sizeof(cdouble)*N);
|
xue@1
|
243 if (bitinv) CIFFTC(Order, W, X, bitinv);
|
xue@1
|
244 else CIFFTC(Order, W, X);
|
xue@1
|
245 }//CIFFTC
|
xue@1
|
246
|
xue@1
|
247 //---------------------------------------------------------------------------
|
Chris@5
|
248 /**
|
xue@1
|
249 function CIFFTR: complex-to-real IFFT
|
xue@1
|
250
|
xue@1
|
251 In: Input[Wid/2+1]: complex spectrum, imaginary parts of Input[0] and Input[Wid/2] are ignored
|
xue@1
|
252 Order: integer, equals log2(Wid)
|
xue@1
|
253 W[Wid/2]: twiddle factors
|
xue@1
|
254 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
255 Out:X[Wid]: real waveform
|
xue@1
|
256
|
xue@1
|
257 No return value.
|
xue@1
|
258 */
|
xue@1
|
259 void CIFFTR(cdouble* Input, int Order, cdouble* W, double* X, int* hbitinv)
|
xue@1
|
260 {
|
xue@1
|
261 int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2, *hbitinv1=hbitinv;
|
xue@1
|
262 cdouble Temp;
|
xue@1
|
263
|
xue@1
|
264 Order--; N/=2;
|
xue@1
|
265 if (!hbitinv) hbitinv=CreateBitInvTable(Order);
|
xue@1
|
266
|
xue@1
|
267 cdouble* Xc=(cdouble*)X;
|
xue@1
|
268
|
xue@1
|
269 Xc[0].y=0.5*(Input[0].x-Input[N].x);
|
xue@1
|
270 Xc[0].x=0.5*(Input[0].x+Input[N].x);
|
xue@1
|
271 for (int i=1; i<N/2; i++)
|
xue@1
|
272 {
|
xue@1
|
273 double frp=Input[i].x+Input[N-i].x, frn=Input[i].x-Input[N-i].x,
|
xue@1
|
274 fip=Input[i].y+Input[N-i].y, fin=Input[i].y-Input[N-i].y;
|
xue@1
|
275 Xc[i].x=0.5*(frp+frn*W[i].y-fip*W[i].x);
|
xue@1
|
276 Xc[i].y=0.5*(fin+frn*W[i].x+fip*W[i].y);
|
xue@1
|
277 Xc[N-i].x=0.5*(frp-frn*W[i].y+fip*W[i].x);
|
xue@1
|
278 Xc[N-i].y=0.5*(-fin+frn*W[i].x+fip*W[i].y);
|
xue@1
|
279 }
|
xue@1
|
280 Xc[N/2].x=Input[N/2].x;
|
xue@1
|
281 Xc[N/2].y=-Input[N/2].y;
|
xue@1
|
282
|
xue@1
|
283 ElemsPerGroup=1<<Order;
|
xue@1
|
284 Groups=1;
|
xue@1
|
285
|
xue@1
|
286 for (i=0; i<Order; i++)
|
xue@1
|
287 {
|
xue@1
|
288 ElemsPerGroup/=2;
|
xue@1
|
289 X0=0;
|
xue@1
|
290 for (j=0; j<Groups; j++)
|
xue@1
|
291 {
|
xue@1
|
292 int kGroups=hbitinv[j];
|
xue@1
|
293 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
294 {
|
xue@1
|
295 X1=X0+k;
|
xue@1
|
296 X2=X1+ElemsPerGroup;
|
xue@1
|
297 Temp.x=Xc[X2].x*W[kGroups].x+Xc[X2].y*W[kGroups].y,
|
xue@1
|
298 Xc[X2].y=-Xc[X2].x*W[kGroups].y+Xc[X2].y*W[kGroups].x;
|
xue@1
|
299 Xc[X2].x=Temp.x;
|
xue@1
|
300 Temp.x=Xc[X1].x+Xc[X2].x, Temp.y=Xc[X1].y+Xc[X2].y;
|
xue@1
|
301 Xc[X2].x=Xc[X1].x-Xc[X2].x, Xc[X2].y=Xc[X1].y-Xc[X2].y;
|
xue@1
|
302 Xc[X1].x=Temp.x, Xc[X1].y=Temp.y;
|
xue@1
|
303 }
|
xue@1
|
304 X0=X0+(ElemsPerGroup<<1);
|
xue@1
|
305 }
|
xue@1
|
306 Groups*=2;
|
xue@1
|
307 }
|
xue@1
|
308
|
xue@1
|
309 for (i=0; i<N; i++)
|
xue@1
|
310 {
|
xue@1
|
311 int jj=hbitinv[i];
|
xue@1
|
312 if (i<jj)
|
xue@1
|
313 {
|
xue@1
|
314 Temp=Xc[i];
|
xue@1
|
315 Xc[i]=Xc[jj];
|
xue@1
|
316 Xc[jj]=Temp;
|
xue@1
|
317 }
|
xue@1
|
318 }
|
xue@1
|
319 double norm=1.0/N;;
|
xue@1
|
320 N*=2;
|
xue@1
|
321 for (int i=0; i<N; i++) X[i]*=norm;
|
xue@1
|
322 if (!hbitinv1) free(hbitinv);
|
xue@1
|
323 }//CIFFTR
|
xue@1
|
324
|
xue@1
|
325 //---------------------------------------------------------------------------
|
Chris@5
|
326 /**
|
xue@1
|
327 function CreateBitInvTable: creates a table of bit-inversed integers
|
xue@1
|
328
|
xue@1
|
329 In: Order: interger, equals log2(size of table)
|
xue@1
|
330
|
xue@1
|
331 Returns a pointer to a newly allocated array containing the table. The returned pointer must be freed
|
xue@1
|
332 using free(), NOT delete[].
|
xue@1
|
333 */
|
xue@1
|
334 int* CreateBitInvTable(int Order)
|
xue@1
|
335 {
|
xue@1
|
336 int N=1<<Order;
|
xue@1
|
337 int* result=(int*)malloc(sizeof(int)*N);
|
xue@1
|
338 for (int i=0; i<N; i++) result[i]=BitInv(i, Order);
|
xue@1
|
339 return result;
|
xue@1
|
340 }//CreateBitInvTable
|
xue@1
|
341
|
xue@1
|
342
|
xue@1
|
343 //---------------------------------------------------------------------------
|
Chris@5
|
344 /**
|
xue@1
|
345 function RFFTC_ual: unaligned real-to-complex FFT
|
xue@1
|
346
|
xue@1
|
347 In: Input[Wid]: real waveform
|
xue@1
|
348 Order; integer, equals log2(Wid)
|
xue@1
|
349 W[Wid/2]: twiddle factors
|
xue@1
|
350 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
351 Out:X[Wid}: complex spectrum
|
xue@1
|
352 Amp[Wid]: amplitude spectrum
|
xue@1
|
353 Arg[Wid]: phase spetrum
|
xue@1
|
354
|
xue@1
|
355 No return value.
|
xue@1
|
356 */
|
xue@1
|
357 void RFFTC_ual(double* Input, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv)
|
xue@1
|
358 {
|
xue@1
|
359 int N=1<<Order, i, j, k, *hbitinv1=hbitinv, Groups, ElemsPerGroup, X0, X1, X2;
|
xue@1
|
360 cdouble Temp, zp, zn;
|
xue@1
|
361
|
xue@1
|
362 N/=2; Order--;
|
xue@1
|
363
|
xue@1
|
364 //Input being NULL implies external initialization of X. This is used by RFFTCW but is not
|
xue@1
|
365 //recommended for external use.
|
xue@1
|
366 if (Input)
|
xue@1
|
367 {
|
xue@1
|
368 if (!hbitinv) hbitinv=CreateBitInvTable(Order);
|
xue@1
|
369
|
xue@1
|
370 if (Input==(double*)X)
|
xue@1
|
371 {
|
xue@1
|
372 //Input being identical to X is not recommended for external use.
|
xue@1
|
373 for (int i=0; i<N; i++)
|
xue@1
|
374 {
|
xue@1
|
375 int bi=hbitinv[i];
|
xue@1
|
376 if (i<bi) {cdouble tmp=X[i]; X[i]=X[bi]; X[bi]=tmp;}
|
xue@1
|
377 }
|
xue@1
|
378 }
|
xue@1
|
379 else
|
xue@1
|
380 {
|
xue@1
|
381 for (i=0; i<N; i++) X[i]=((cdouble*)Input)[hbitinv[i]];
|
xue@1
|
382 }
|
xue@1
|
383 if (!hbitinv1) free(hbitinv);
|
xue@1
|
384 }
|
xue@1
|
385
|
xue@1
|
386 for (i=0; i<Order; i++)
|
xue@1
|
387 {
|
xue@1
|
388 ElemsPerGroup=1<<i;
|
xue@1
|
389 Groups=1<<(Order-i-1);
|
xue@1
|
390 X0=0;
|
xue@1
|
391 for (j=0; j<Groups; j++)
|
xue@1
|
392 {
|
xue@1
|
393 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
394 {
|
xue@1
|
395 X1=X0+k;
|
xue@1
|
396 X2=X1+ElemsPerGroup;
|
xue@1
|
397 int kGroups=k*2*Groups;
|
xue@1
|
398 Temp.x=X[X2].x*W[kGroups].x-X[X2].y*W[kGroups].y,
|
xue@1
|
399 X[X2].y=X[X2].x*W[kGroups].y+X[X2].y*W[kGroups].x;
|
xue@1
|
400 X[X2].x=Temp.x;
|
xue@1
|
401 Temp.x=X[X1].x+X[X2].x, Temp.y=X[X1].y+X[X2].y;
|
xue@1
|
402 X[X2].x=X[X1].x-X[X2].x, X[X2].y=X[X1].y-X[X2].y;
|
xue@1
|
403 X[X1]=Temp;
|
xue@1
|
404 }
|
xue@1
|
405 X0=X0+(ElemsPerGroup<<1);
|
xue@1
|
406 }
|
xue@1
|
407 }
|
xue@1
|
408 zp.x=X[0].x+X[0].y, zn.x=X[0].x-X[0].y;
|
xue@1
|
409 X[0].x=zp.x;
|
xue@1
|
410 X[0].y=0;
|
xue@1
|
411 X[N].x=zn.x;
|
xue@1
|
412 X[N].y=0;
|
xue@1
|
413 for (int k=1; k<N/2; k++)
|
xue@1
|
414 {
|
xue@1
|
415 zp.x=X[k].x+X[N-k].x, zn.x=X[k].x-X[N-k].x,
|
xue@1
|
416 zp.y=X[k].y+X[N-k].y, zn.y=X[k].y-X[N-k].y;
|
xue@1
|
417 X[k].x=0.5*(zp.x+W[k].y*zn.x+W[k].x*zp.y);
|
xue@1
|
418 X[k].y=0.5*(zn.y-W[k].x*zn.x+W[k].y*zp.y);
|
xue@1
|
419 X[N-k].x=0.5*(zp.x-W[k].y*zn.x-W[k].x*zp.y);
|
xue@1
|
420 X[N-k].y=0.5*(-zn.y-W[k].x*zn.x+W[k].y*zp.y);
|
xue@1
|
421 }
|
xue@1
|
422 //X[N/2].x=X[N/2].x;
|
xue@1
|
423 X[N/2].y=-X[N/2].y;
|
xue@1
|
424 N*=2;
|
xue@1
|
425
|
xue@1
|
426 for (int k=N/2+1; k<N; k++) X[k].x=X[N-k].x, X[k].y=-X[N-k].y;
|
xue@1
|
427 if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(X[i].x*X[i].x+X[i].y*X[i].y);
|
xue@1
|
428 if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(X[i].x, X[i].y);
|
xue@1
|
429 }//RFFTC_ual
|
xue@1
|
430
|
xue@1
|
431 //---------------------------------------------------------------------------
|
Chris@5
|
432 /**
|
xue@1
|
433 function RFFTCW: real-to-complex FFT with window
|
xue@1
|
434
|
xue@1
|
435 In: Input[Wid]: real waveform
|
xue@1
|
436 Window[Wid]: window function
|
xue@1
|
437 Order; integer, equals log2(Wid)
|
xue@1
|
438 W[Wid/2]: twiddle factors
|
xue@1
|
439 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
440 Out:X[Wid}: complex spectrum
|
xue@1
|
441 Amp[Wid]: amplitude spectrum
|
xue@1
|
442 Arg[Wid]: phase spetrum
|
xue@1
|
443
|
xue@1
|
444 No return value.
|
xue@1
|
445 */
|
xue@1
|
446 void RFFTCW(double* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv)
|
xue@1
|
447 {
|
xue@1
|
448 int N=1<<Order, *hbitinv1=hbitinv;
|
xue@1
|
449 if (!hbitinv) hbitinv=CreateBitInvTable(Order-1);
|
xue@1
|
450 N/=2;
|
xue@1
|
451
|
xue@1
|
452 if (Input==(double*)X)
|
xue@1
|
453 { //so that X[n].x IS Input[2n], X[n].y IS Input[2n+1]
|
xue@1
|
454 for (int n=0; n<N; n++)
|
xue@1
|
455 {
|
xue@1
|
456 int bi=hbitinv[n], n2=n+n, bi2=bi+bi;
|
xue@1
|
457 if (n<bi)
|
xue@1
|
458 {
|
xue@1
|
459 double tmp=X[n].x*Window[n2]; X[n].x=X[bi].x*Window[bi2]; X[bi].x=tmp;
|
xue@1
|
460 tmp=X[n].y*Window[n2+1]; X[n].y=X[bi].y*Window[bi2+1]; X[bi].y=tmp;
|
xue@1
|
461 }
|
xue@1
|
462 else if (n==bi)
|
xue@1
|
463 { //so that X[n].x IS Input[bi]
|
xue@1
|
464 X[n].x*=Window[bi2], X[n].y*=Window[bi2+1];
|
xue@1
|
465 }
|
xue@1
|
466 }
|
xue@1
|
467 }
|
xue@1
|
468 else
|
xue@1
|
469 {
|
xue@1
|
470 for (int n=0; n<N; n++)
|
xue@1
|
471 {
|
xue@1
|
472 int bi=hbitinv[n], bi2=bi+bi; X[n].x=Input[bi2]*Window[bi2], X[n].y=Input[bi2+1]*Window[bi2+1];
|
xue@1
|
473 }
|
xue@1
|
474 }
|
xue@1
|
475
|
xue@1
|
476 RFFTC_ual(0, Amp, Arg, Order, W, X, hbitinv);
|
xue@1
|
477 if (!hbitinv1) free(hbitinv);
|
xue@1
|
478 }//RFFTCW
|
xue@1
|
479
|
Chris@5
|
480 /**
|
xue@1
|
481 function RFFTCW: real-to-complex FFT with window
|
xue@1
|
482
|
xue@1
|
483 In: Input[Wid]: real waveform as _int16 array
|
xue@1
|
484 Window[Wid]: window function
|
xue@1
|
485 Order; integer, equals log2(Wid)
|
xue@1
|
486 W[Wid/2]: twiddle factors
|
xue@1
|
487 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
488 Out:X[Wid}: complex spectrum
|
xue@1
|
489 Amp[Wid]: amplitude spectrum
|
xue@1
|
490 Arg[Wid]: phase spetrum
|
xue@1
|
491
|
xue@1
|
492 No return value.
|
xue@1
|
493 */
|
xue@1
|
494 void RFFTCW(__int16* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* hbitinv)
|
xue@1
|
495 {
|
xue@1
|
496 int N=1<<Order, *hbitinv1=hbitinv;
|
xue@1
|
497
|
xue@1
|
498 N/=2;
|
xue@1
|
499 if (!hbitinv) hbitinv=CreateBitInvTable(Order-1);
|
xue@1
|
500 for (int n=0; n<N; n++)
|
xue@1
|
501 {
|
xue@1
|
502 int bi=hbitinv[n], bi2=bi+bi; X[n].x=Input[bi2]*Window[bi2], X[n].y=Input[bi2+1]*Window[bi2+1];
|
xue@1
|
503 }
|
xue@1
|
504
|
xue@1
|
505 RFFTC_ual(0, Amp, Arg, Order, W, X, hbitinv);
|
xue@1
|
506 if (!hbitinv1) free(hbitinv);
|
xue@1
|
507 }//RFFTCW
|
xue@1
|
508
|
xue@1
|
509 //---------------------------------------------------------------------------
|
Chris@5
|
510 /**
|
xue@1
|
511 function CFFTCW: complex FFT with window
|
xue@1
|
512
|
xue@1
|
513 In: Window[Wid]: window function
|
xue@1
|
514 Order: integer, equals log2(Wid)
|
xue@1
|
515 W[Wid/2]: twiddle factors
|
xue@1
|
516 X[Wid]: complex waveform
|
xue@1
|
517 bitinv[Wid]: bit-inversion table
|
xue@1
|
518 Out:X[Wid], complex spectrum
|
xue@1
|
519
|
xue@1
|
520 No return value.
|
xue@1
|
521 */
|
xue@1
|
522 void CFFTCW(double* Window, int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
523 {
|
xue@1
|
524 int N=1<<Order;
|
xue@1
|
525 for (int i=0; i<N; i++) X[i].x*=Window[i], X[i].y*=Window[i];
|
xue@1
|
526 CFFTC(Order, W, X, bitinv);
|
xue@1
|
527 }//CFFTCW
|
xue@1
|
528
|
Chris@5
|
529 /**
|
xue@1
|
530 function CFFTCW: complex FFT with window
|
xue@1
|
531
|
xue@1
|
532 In: Input[Wid]: complex waveform
|
xue@1
|
533 Window[Wid]: window function
|
xue@1
|
534 Order: integer, equals log2(Wid)
|
xue@1
|
535 W[Wid/2]: twiddle factors
|
xue@1
|
536 X[Wid]: complex waveform
|
xue@1
|
537 bitinv[Wid]: bit-inversion table
|
xue@1
|
538 Out:X[Wid], complex spectrum
|
xue@1
|
539 Amp[Wid], amplitude spectrum
|
xue@1
|
540 Arg[Wid], phase spectrum
|
xue@1
|
541
|
xue@1
|
542 No return value.
|
xue@1
|
543 */
|
xue@1
|
544 void CFFTCW(cdouble* Input, double* Window, double *Amp, double *Arg, int Order, cdouble* W, cdouble* X, int* bitinv)
|
xue@1
|
545 {
|
xue@1
|
546 int N=1<<Order;
|
xue@1
|
547 for (int i=0; i<N; i++) X[i].x=Input[i].x*Window[i], X[i].y=Input[i].y*Window[i];
|
xue@1
|
548 CFFTC(X, Amp, Arg, Order, W, X, bitinv);
|
xue@1
|
549 }//CFFTCW
|
xue@1
|
550
|
xue@1
|
551 //---------------------------------------------------------------------------
|
Chris@5
|
552 /**
|
xue@1
|
553 function RDCT1: fast DCT1 implemented using FFT. DCT-I has the time scale 0.5-sample shifted from the DFT.
|
xue@1
|
554
|
xue@1
|
555 In: Input[Wid]: real waveform
|
xue@1
|
556 Order: integer, equals log2(Wid)
|
xue@1
|
557 qW[Wid/8]: quarter table of twiddle factors
|
xue@1
|
558 qX[Wid/4]: quarter FFT data buffer
|
xue@1
|
559 qbitinv[Wid/4]: quarter bit-inversion table
|
xue@1
|
560 Out:Output[Wid]: DCT-I of Input.
|
xue@1
|
561
|
xue@1
|
562 No return value. Content of qW is destroyed on return. On calling the fft buffers should be allocated
|
xue@1
|
563 to size 0.25*Wid.
|
xue@1
|
564 */
|
xue@1
|
565 void RDCT1(double* Input, double* Output, int Order, cdouble* qW, cdouble* qX, int* qbitinv)
|
xue@1
|
566 {
|
xue@1
|
567 const double lmd0=sqrt(0.5);
|
xue@1
|
568 if (Order==0)
|
xue@1
|
569 {
|
xue@1
|
570 Output[0]=Input[0]*lmd0;
|
xue@1
|
571 return;
|
xue@1
|
572 }
|
xue@1
|
573 if (Order==1)
|
xue@1
|
574 {
|
xue@1
|
575 double tmp1=(Input[0]+Input[1])*lmd0;
|
xue@1
|
576 Output[1]=(Input[0]-Input[1])*lmd0;
|
xue@1
|
577 Output[0]=tmp1;
|
xue@1
|
578 return;
|
xue@1
|
579 }
|
xue@1
|
580 int order=Order-1, N=1<<(Order-1), C=1;
|
xue@1
|
581 bool createbitinv=!qbitinv;
|
xue@1
|
582 if (createbitinv) qbitinv=CreateBitInvTable(Order-2);
|
xue@1
|
583 double *even=(double*)malloc8(sizeof(double)*N*2);
|
xue@1
|
584 double *odd=&even[N];
|
xue@1
|
585 //data pass from Input to Output, combined with the first sequence split
|
xue@1
|
586 for (int i=0, N2=N*2; i<N; i++)
|
xue@1
|
587 {
|
xue@1
|
588 even[i]=Input[i]+Input[N2-1-i];
|
xue@1
|
589 odd[i]=Input[i]-Input[N2-1-i];
|
xue@1
|
590 }
|
xue@1
|
591 for (int i=0; i<N; i++) Output[i*2]=even[i], Output[i*2+1]=odd[i];
|
xue@1
|
592 while (order>1)
|
xue@1
|
593 {
|
xue@1
|
594 //N=2^order, 4|N, 2|hN
|
xue@1
|
595 //keep subsequence 0, 2C, 4C, ... 2(N-1)C
|
xue@1
|
596 //process sequence C, 3C, ..., (2N-1)C only
|
xue@1
|
597 //RDCT4 routine
|
xue@1
|
598 int hN=N/2, N2=N*2;
|
xue@1
|
599 for (int i=0; i<hN; i++)
|
xue@1
|
600 {
|
xue@1
|
601 double b=Output[(2*(2*i)+1)*C], c=Output[(2*(N-1-2*i)+1)*C], theta=-(i+0.25)*M_PI/N;
|
xue@1
|
602 double co=cos(theta), si=sin(theta);
|
xue@1
|
603 qX[i].x=b*co-c*si, qX[i].y=c*co+b*si;
|
xue@1
|
604 }
|
xue@1
|
605 CFFTC(order-1, qW, qX, qbitinv);
|
xue@1
|
606 for (int i=0; i<hN; i++)
|
xue@1
|
607 {
|
xue@1
|
608 double gr=qX[i].x, gi=qX[i].y, theta=-i*M_PI/N;
|
xue@1
|
609 double co=cos(theta), si=sin(theta);
|
xue@1
|
610 Output[(4*i+1)*C]=gr*co-gi*si;
|
xue@1
|
611 Output[(N2-4*i-1)*C]=-gr*si-gi*co;
|
xue@1
|
612 }
|
xue@1
|
613 N=(N>>1);
|
xue@1
|
614 C=(C<<1);
|
xue@1
|
615 for (int i=1; i<N/4; i++)
|
xue@1
|
616 qW[i]=qW[i*2];
|
xue@1
|
617 for (int i=1; i<N/2; i++)
|
xue@1
|
618 qbitinv[i]=qbitinv[i*2];
|
xue@1
|
619
|
xue@1
|
620 //splitting subsequence 0, 2C, 4C, ..., 2(N-1)C
|
xue@1
|
621 for (int i=0, N2=N*2; i<N; i++)
|
xue@1
|
622 {
|
xue@1
|
623 even[i]=Output[i*C]+Output[(N2-1-i)*C];
|
xue@1
|
624 odd[i]=Output[i*C]-Output[(N2-1-i)*C];
|
xue@1
|
625 }
|
xue@1
|
626 for (int i=0; i<N; i++)
|
xue@1
|
627 {
|
xue@1
|
628 Output[2*i*C]=even[i];
|
xue@1
|
629 Output[(2*i+1)*C]=odd[i];
|
xue@1
|
630 }
|
xue@1
|
631 order--;
|
xue@1
|
632 }
|
xue@1
|
633 //order==1
|
xue@1
|
634 //use C and 3C in DCT4
|
xue@1
|
635 //use 0 and 2C in DCT1
|
xue@1
|
636 double c1=cos(M_PI/8), c2=cos(3*M_PI/8);
|
xue@1
|
637 double tmp1=c1*Output[C]+c2*Output[3*C];
|
xue@1
|
638 Output[3*C]=c2*Output[C]-c1*Output[3*C];
|
xue@1
|
639 Output[C]=tmp1;
|
xue@1
|
640 tmp1=Output[0]+Output[2*C];
|
xue@1
|
641 Output[2*C]=(Output[0]-Output[2*C])*lmd0;
|
xue@1
|
642 Output[0]=tmp1*lmd0;
|
xue@1
|
643
|
xue@1
|
644 if (createbitinv) free(qbitinv);
|
xue@1
|
645 free8(even);
|
xue@1
|
646 }//RDCT1
|
xue@1
|
647
|
xue@1
|
648 //---------------------------------------------------------------------------
|
Chris@5
|
649 /**
|
xue@1
|
650 function RDCT4: fast DCT4 implemented using FFT. DCT-IV has both the time and frequency scales
|
xue@1
|
651 0.5-sample or 0.5-bin shifted from DFT.
|
xue@1
|
652
|
xue@1
|
653 In: Input[Wid]: real waveform
|
xue@1
|
654 Order: integer, equals log2(Wid)
|
xue@1
|
655 hW[Wid/4]: half table of twiddle factors
|
xue@1
|
656 hX[Wid/2]: hal FFT data buffer
|
xue@1
|
657 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
658 Out:Output[Wid]: DCT-IV of Input.
|
xue@1
|
659
|
xue@1
|
660 No return value. Content of hW not affected. On calling the fft buffers should be allocated to size
|
xue@1
|
661 0.5*Wid.
|
xue@1
|
662 */
|
xue@1
|
663 void RDCT4(double* Input, double* Output, int Order, cdouble* hW, cdouble* hX, int* hbitinv)
|
xue@1
|
664 {
|
xue@1
|
665 if (Order==0)
|
xue@1
|
666 {
|
xue@1
|
667 Output[0]=Input[0]/sqrt(2);
|
xue@1
|
668 return;
|
xue@1
|
669 }
|
xue@1
|
670 if (Order==1)
|
xue@1
|
671 {
|
xue@1
|
672 double c1=cos(M_PI/8), c2=cos(3*M_PI/8);
|
xue@1
|
673 double tmp1=c1*Input[0]+c2*Input[1];
|
xue@1
|
674 Output[1]=c2*Input[0]-c1*Input[1];
|
xue@1
|
675 Output[0]=tmp1;
|
xue@1
|
676 return;
|
xue@1
|
677 }
|
xue@1
|
678 int N=1<<Order, hN=N/2;
|
xue@1
|
679 for (int i=0; i<hN; i++)
|
xue@1
|
680 {
|
xue@1
|
681 double b=Input[2*i], c=Input[N-1-i*2], theta=-(i+0.25)*M_PI/N;
|
xue@1
|
682 double co=cos(theta), si=sin(theta);
|
xue@1
|
683 hX[i].x=b*co-c*si, hX[i].y=c*co+b*si;
|
xue@1
|
684 }
|
xue@1
|
685 CFFTC(Order-1, hW, hX, hbitinv);
|
xue@1
|
686 for (int i=0; i<hN; i++)
|
xue@1
|
687 {
|
xue@1
|
688 double gr=hX[i].x, gi=hX[i].y, theta=-i*M_PI/N;
|
xue@1
|
689 double co=cos(theta), si=sin(theta);
|
xue@1
|
690 Output[2*i]=gr*co-gi*si;
|
xue@1
|
691 Output[N-1-2*i]=-gr*si-gi*co;
|
xue@1
|
692 }
|
xue@1
|
693 }//RDCT4
|
xue@1
|
694
|
xue@1
|
695 //---------------------------------------------------------------------------
|
Chris@5
|
696 /**
|
xue@1
|
697 function RIDCT1: fast IDCT1 implemented using FFT.
|
xue@1
|
698
|
xue@1
|
699 In: Input[Wid]: DCT-I of some real waveform.
|
xue@1
|
700 Order: integer, equals log2(Wid)
|
xue@1
|
701 qW[Wid/8]: quarter table of twiddle factors
|
xue@1
|
702 qX[Wid/4]: quarter FFT data buffer
|
xue@1
|
703 qbitinv[Wid/4]: quarter bit-inversion table
|
xue@1
|
704 Out:Output[Wid]: IDCT-I of Input.
|
xue@1
|
705
|
xue@1
|
706 No return value. Content of qW is destroyed on return. On calling the fft buffers should be allocated
|
xue@1
|
707 to size 0.25*Wid.
|
xue@1
|
708 */
|
xue@1
|
709 void RIDCT1(double* Input, double* Output, int Order, cdouble* qW, cdouble* qX, int* qbitinv)
|
xue@1
|
710 {
|
xue@1
|
711 const double lmd0=sqrt(0.5);
|
xue@1
|
712 if (Order==0)
|
xue@1
|
713 {
|
xue@1
|
714 Output[0]=Input[0]/lmd0;
|
xue@1
|
715 return;
|
xue@1
|
716 }
|
xue@1
|
717 if (Order==1)
|
xue@1
|
718 {
|
xue@1
|
719 double tmp1=(Input[0]+Input[1])*lmd0;
|
xue@1
|
720 Output[1]=(Input[0]-Input[1])*lmd0;
|
xue@1
|
721 Output[0]=tmp1;
|
xue@1
|
722 return;
|
xue@1
|
723 }
|
xue@1
|
724 int order=Order-1, N=1<<(Order-1), C=1;
|
xue@1
|
725 bool createbitinv=!qbitinv;
|
xue@1
|
726 if (createbitinv) qbitinv=CreateBitInvTable(Order-2);
|
xue@1
|
727 double *even=(double*)malloc8(sizeof(double)*N*2);
|
xue@1
|
728 double *odd=&even[N];
|
xue@1
|
729
|
xue@1
|
730 while (order>0)
|
xue@1
|
731 {
|
xue@1
|
732 //N=2^order, 4|N, 2|hN
|
xue@1
|
733 //keep subsequence 0, 2C, 4C, ... 2(N-1)C
|
xue@1
|
734 //process sequence C, 3C, ..., (2N-1)C only
|
xue@1
|
735 //data pass from Input
|
xue@1
|
736 for (int i=0; i<N; i++)
|
xue@1
|
737 {
|
xue@1
|
738 odd[i]=Input[(i*2+1)*C];
|
xue@1
|
739 }
|
xue@1
|
740
|
xue@1
|
741 //IDCT4 routine
|
xue@1
|
742 //RIDCT4(odd, odd, order, qW, qX, qbitinv);
|
xue@1
|
743
|
xue@1
|
744 if (order==1)
|
xue@1
|
745 {
|
xue@1
|
746 double c1=cos(M_PI/8), c2=cos(3*M_PI/8);
|
xue@1
|
747 double tmp1=c1*odd[0]+c2*odd[1];
|
xue@1
|
748 odd[1]=c2*odd[0]-c1*odd[1];
|
xue@1
|
749 odd[0]=tmp1;
|
xue@1
|
750 }
|
xue@1
|
751 else
|
xue@1
|
752 {
|
xue@1
|
753 int hN=N/2;
|
xue@1
|
754 for (int i=0; i<hN; i++)
|
xue@1
|
755 {
|
xue@1
|
756 double b=odd[2*i], c=odd[N-1-i*2], theta=-(i+0.25)*M_PI/N;
|
xue@1
|
757 double co=cos(theta), si=sin(theta);
|
xue@1
|
758 qX[i].x=b*co-c*si, qX[i].y=c*co+b*si;
|
xue@1
|
759 }
|
xue@1
|
760 CFFTC(order-1, qW, qX, qbitinv);
|
xue@1
|
761 double i2N=2.0/N;
|
xue@1
|
762 for (int i=0; i<hN; i++)
|
xue@1
|
763 {
|
xue@1
|
764 double gr=qX[i].x, gi=qX[i].y, theta=-i*M_PI/N;
|
xue@1
|
765 double co=cos(theta), si=sin(theta);
|
xue@1
|
766 odd[2*i]=(gr*co-gi*si)*i2N;
|
xue@1
|
767 odd[N-1-2*i]=(-gr*si-gi*co)*i2N;
|
xue@1
|
768 }
|
xue@1
|
769 }
|
xue@1
|
770
|
xue@1
|
771 order--;
|
xue@1
|
772 N=(N>>1);
|
xue@1
|
773 C=(C<<1);
|
xue@1
|
774 for (int i=1; i<N/4; i++)
|
xue@1
|
775 qW[i]=qW[i*2];
|
xue@1
|
776 for (int i=1; i<N/2; i++)
|
xue@1
|
777 qbitinv[i]=qbitinv[i*2];
|
xue@1
|
778
|
xue@1
|
779 odd=&even[N];
|
xue@1
|
780 }
|
xue@1
|
781 //order==0
|
xue@1
|
782 even[0]=Input[0];
|
xue@1
|
783 even[1]=Input[C];
|
xue@1
|
784 double tmp1=(even[0]+even[1])*lmd0;
|
xue@1
|
785 Output[1]=(even[0]-even[1])*lmd0;
|
xue@1
|
786 Output[0]=tmp1;
|
xue@1
|
787 order++;
|
xue@1
|
788
|
xue@1
|
789 while (order<Order)
|
xue@1
|
790 {
|
xue@1
|
791 N=(N<<1);
|
xue@1
|
792 odd=&even[N];
|
xue@1
|
793 for (int i=0; i<N; i++)
|
xue@1
|
794 {
|
xue@1
|
795 Output[N*2-1-i]=(Output[i]-odd[i])/2;
|
xue@1
|
796 Output[i]=(Output[i]+odd[i])/2;
|
xue@1
|
797 }
|
xue@1
|
798 order++;
|
xue@1
|
799 }
|
xue@1
|
800
|
xue@1
|
801 if (createbitinv) free(qbitinv);
|
xue@1
|
802 free8(even);
|
xue@1
|
803 }//RIDCT1
|
xue@1
|
804
|
xue@1
|
805 //---------------------------------------------------------------------------
|
Chris@5
|
806 /**
|
xue@1
|
807 function RIDCT4: fast IDCT4 implemented using FFT.
|
xue@1
|
808
|
xue@1
|
809 In: Input[Wid]: DCT-IV of some real waveform
|
xue@1
|
810 Order: integer, equals log2(Wid)
|
xue@1
|
811 hW[Wid/4]: half table of twiddle factors
|
xue@1
|
812 hX[Wid/2]: hal FFT data buffer
|
xue@1
|
813 hbitinv[Wid/2]: half bit-inversion table
|
xue@1
|
814 Out:Output[Wid]: IDCT-IV of Input.
|
xue@1
|
815
|
xue@1
|
816 No return value. Content of hW not affected. On calling the fft buffers should be allocated to size
|
xue@1
|
817 0.5*Wid.
|
xue@1
|
818 */
|
xue@1
|
819 void RIDCT4(double* Input, double* Output, int Order, cdouble* hW, cdouble* hX, int* hbitinv)
|
xue@1
|
820 {
|
xue@1
|
821 if (Order==0)
|
xue@1
|
822 {
|
xue@1
|
823 Output[0]=Input[0]*sqrt(2);
|
xue@1
|
824 return;
|
xue@1
|
825 }
|
xue@1
|
826 if (Order==1)
|
xue@1
|
827 {
|
xue@1
|
828 double c1=cos(M_PI/8), c2=cos(3*M_PI/8);
|
xue@1
|
829 double tmp1=c1*Input[0]+c2*Input[1];
|
xue@1
|
830 Output[1]=c2*Input[0]-c1*Input[1];
|
xue@1
|
831 Output[0]=tmp1;
|
xue@1
|
832 return;
|
xue@1
|
833 }
|
xue@1
|
834 int N=1<<Order, hN=N/2;
|
xue@1
|
835 for (int i=0; i<hN; i++)
|
xue@1
|
836 {
|
xue@1
|
837 double b=Input[2*i], c=Input[N-1-i*2], theta=-(i+0.25)*M_PI/N;
|
xue@1
|
838 double co=cos(theta), si=sin(theta);
|
xue@1
|
839 hX[i].x=b*co-c*si, hX[i].y=c*co+b*si;
|
xue@1
|
840 }
|
xue@1
|
841 CFFTC(Order-1, hW, hX, hbitinv);
|
xue@1
|
842 double i2N=2.0/N;
|
xue@1
|
843 for (int i=0; i<hN; i++)
|
xue@1
|
844 {
|
xue@1
|
845 double gr=hX[i].x, gi=hX[i].y, theta=-i*M_PI/N;
|
xue@1
|
846 double co=cos(theta), si=sin(theta);
|
xue@1
|
847 Output[2*i]=(gr*co-gi*si)*i2N;
|
xue@1
|
848 Output[N-1-2*i]=(-gr*si-gi*co)*i2N;
|
xue@1
|
849 }
|
xue@1
|
850 }//RIDCT4
|
xue@1
|
851
|
xue@1
|
852 //---------------------------------------------------------------------------
|
Chris@5
|
853 /**
|
xue@1
|
854 function RLCT: real local cosine transform of equal frame widths Wid=2^Order
|
xue@1
|
855
|
xue@1
|
856 In: data[Count]: real waveform
|
xue@1
|
857 Order: integer, equals log2(Wid), Wid being the cosine atom size
|
xue@1
|
858 g[wid]: lap window, designed so that g[k] increases from 0 to 1 and g[k]^2+g[wid-1-k]^2=1
|
xue@1
|
859 example: wid=4, g[k]=sin(pi*(k+0.5)/8).
|
xue@1
|
860 Out:spec[Fr][Wid]: the local cosine transform
|
xue@1
|
861
|
xue@1
|
862 No return value.
|
xue@1
|
863 */
|
xue@1
|
864 void RLCT(double** spec, double* data, int Count, int Order, int wid, double* g)
|
xue@1
|
865 {
|
xue@1
|
866 int Wid=1<<Order, Fr=Count/Wid, hwid=wid/2;
|
xue@1
|
867 int* hbitinv=CreateBitInvTable(Order-1);
|
xue@1
|
868 cdouble *hx=(cdouble*)malloc8(sizeof(cdouble)*Wid*3/4), *hw=(cdouble*)&hx[Wid/2];
|
xue@1
|
869 double norm=sqrt(2.0/Wid);
|
xue@1
|
870 SetTwiddleFactors(Wid/2, hw);
|
xue@1
|
871
|
xue@1
|
872 for (int fr=0; fr<Fr; fr++)
|
xue@1
|
873 {
|
xue@1
|
874 if (fr==0)
|
xue@1
|
875 {
|
xue@1
|
876 memcpy(spec[fr], data, sizeof(double)*(Wid-hwid));
|
xue@1
|
877 for (int i=0, k=Wid+hwid-1, l=Wid-hwid; i<hwid; i++, k--, l++)
|
xue@1
|
878 spec[fr][l]=data[l]*g[wid-1-i]-data[k]*g[i];
|
xue@1
|
879 }
|
xue@1
|
880 else if (fr==Fr-1)
|
xue@1
|
881 {
|
xue@1
|
882 for (int i=hwid, j=fr*Wid, k=fr*Wid-1, l=0; i<wid; i++, j++, k--, l++)
|
xue@1
|
883 spec[fr][l]=data[k]*g[wid-1-i]+data[j]*g[i];
|
xue@1
|
884 memcpy(&spec[fr][hwid], &data[fr*Wid+hwid], sizeof(double)*(Wid-hwid));
|
xue@1
|
885 }
|
xue@1
|
886 else
|
xue@1
|
887 {
|
xue@1
|
888 for (int i=hwid, j=fr*Wid, k=fr*Wid-1, l=0; i<wid; i++, j++, k--, l++)
|
xue@1
|
889 spec[fr][l]=data[k]*g[wid-1-i]+data[j]*g[i];
|
xue@1
|
890 if (Wid>wid) memcpy(&spec[fr][hwid], &data[fr*Wid+hwid], sizeof(double)*(Wid-wid));
|
xue@1
|
891 for (int i=0, j=(fr+1)*Wid-hwid, k=(fr+1)*Wid+hwid-1, l=Wid-hwid; i<hwid; i++, j++, k--, l++)
|
xue@1
|
892 spec[fr][l]=data[j]*g[wid-1-i]-data[k]*g[i];
|
xue@1
|
893 }
|
xue@1
|
894 }
|
xue@1
|
895 for (int fr=0; fr<Fr; fr++)
|
xue@1
|
896 {
|
xue@1
|
897 if (fr==Fr-1)
|
xue@1
|
898 {
|
xue@1
|
899 for (int i=1; i<Wid/4; i++) hw[i]=hw[2*i], hbitinv[i]=hbitinv[2*i];
|
xue@1
|
900 RDCT1(spec[fr], spec[fr], Order, hw, hx, hbitinv);
|
xue@1
|
901 }
|
xue@1
|
902 else
|
xue@1
|
903 RDCT4(spec[fr], spec[fr], Order, hw, hx, hbitinv);
|
xue@1
|
904
|
xue@1
|
905 ////The following line can be removed if the corresponding line in RILCT(...) is removed
|
xue@1
|
906 for (int i=0; i<Wid; i++) spec[fr][i]*=norm;
|
xue@1
|
907 }
|
xue@1
|
908 free(hbitinv);
|
xue@1
|
909 free8(hx);
|
xue@1
|
910 }//RLCT
|
xue@1
|
911
|
xue@1
|
912 //---------------------------------------------------------------------------
|
Chris@5
|
913 /**
|
xue@1
|
914 function RILCT: inverse local cosine transform of equal frame widths Wid=2^Order
|
xue@1
|
915
|
xue@1
|
916 In: spec[Fr][Wid]: the local cosine transform
|
xue@1
|
917 Order: integer, equals log2(Wid), Wid being the cosine atom size
|
xue@1
|
918 g[wid]: lap window, designed so that g[k] increases from 0 to 1 and g[k]^2+g[wid-1-k]^2=1.
|
xue@1
|
919 example: wid=4, g[k]=sin(pi*(k+0.5)/8).
|
xue@1
|
920 Out:data[Count]: real waveform
|
xue@1
|
921
|
xue@1
|
922 No return value.
|
xue@1
|
923 */
|
xue@1
|
924 void RILCT(double* data, double** spec, int Fr, int Order, int wid, double* g)
|
xue@1
|
925 {
|
xue@1
|
926 int Wid=1<<Order, Count=Fr*Wid, hwid=wid/2, *hbitinv=CreateBitInvTable(Order-1);
|
xue@1
|
927 cdouble *hx=(cdouble*)malloc8(sizeof(cdouble)*Wid*3/4), *hw=&hx[Wid/2];
|
xue@1
|
928 double norm=sqrt(Wid/2.0);
|
xue@1
|
929 SetTwiddleFactors(Wid/2, hw);
|
xue@1
|
930
|
xue@1
|
931 for (int fr=0; fr<Fr; fr++)
|
xue@1
|
932 {
|
xue@1
|
933 if (fr==Fr-1)
|
xue@1
|
934 {
|
xue@1
|
935 for (int i=1; i<Wid/4; i++) hw[i]=hw[2*i], hbitinv[i]=hbitinv[i*2];
|
xue@1
|
936 RIDCT1(spec[fr], &data[fr*Wid], Order, hw, hx, hbitinv);
|
xue@1
|
937 }
|
xue@1
|
938 else
|
xue@1
|
939 RIDCT4(spec[fr], &data[fr*Wid], Order, hw, hx, hbitinv);
|
xue@1
|
940 }
|
xue@1
|
941 //unfolding
|
xue@1
|
942 for (int fr=1; fr<Fr; fr++)
|
xue@1
|
943 {
|
xue@1
|
944 double* h=&data[fr*Wid];
|
xue@1
|
945 for (int i=0; i<hwid; i++)
|
xue@1
|
946 {
|
xue@1
|
947 double a=h[i], b=h[-1-i], c=g[i+hwid], d=g[hwid-1-i];
|
xue@1
|
948 h[i]=a*c-b*d, h[-i-1]=b*c+a*d;
|
xue@1
|
949 }
|
xue@1
|
950 }
|
xue@1
|
951
|
xue@1
|
952 free8(hx);
|
xue@1
|
953 ////The following line can be removed if the corresponding line in RLCT(...) is removed
|
xue@1
|
954 for (int i=0; i<Count; i++) data[i]*=norm;
|
xue@1
|
955 }//RILCT
|
xue@1
|
956
|
xue@1
|
957 //---------------------------------------------------------------------------
|
Chris@5
|
958 /**
|
xue@1
|
959 function CMFTC: radix-2 complex multiresolution Fourier transform
|
xue@1
|
960
|
xue@1
|
961 In: x[Wid]: complex waveform
|
xue@1
|
962 Order: integer, equals log2(Wid)
|
xue@1
|
963 W[Wid/2]: twiddle factors
|
xue@1
|
964 Out:X[Order+1][Wid]: multiresolution FT of x. X[0] is the same as x itself.
|
xue@1
|
965
|
xue@1
|
966 No return value.
|
xue@1
|
967
|
xue@1
|
968 Further reading: Wen X. and M. Sandler, "Calculation of radix-2 discrete multiresolution Fourier
|
xue@1
|
969 transform," Signal Processing, vol.87 no.10, 2007, pp.2455-2460.
|
xue@1
|
970 */
|
xue@1
|
971 void CMFTC(cdouble* x, int Order, cdouble** X, cdouble* W)
|
xue@1
|
972 {
|
xue@1
|
973 X[0]=x;
|
xue@1
|
974 for (int n=1, L=1<<(Order-1), M=2; n<=Order; n++, L>>=1, M<<=1)
|
xue@1
|
975 {
|
xue@1
|
976 cdouble *Xn=X[n], *Xp=X[n-1];
|
xue@1
|
977 for (int l=0; l<L; l++)
|
xue@1
|
978 {
|
xue@1
|
979 cdouble* lX=&Xn[l*M];
|
xue@1
|
980 for (int m=0; m<M/2; m++)
|
xue@1
|
981 {
|
xue@1
|
982 lX[m].x=Xp[l*M+m].x+Xp[l*M+M/2+m].x;
|
xue@1
|
983 lX[m].y=Xp[l*M+m].y+Xp[l*M+M/2+m].y;
|
xue@1
|
984 double tmpr=x[l*M+m].x-x[l*M+M/2+m].x, tmpi=x[l*M+m].y-x[l*M+M/2+m].y;
|
xue@1
|
985 int iw=m*L;
|
xue@1
|
986 double wr=W[iw].x, wi=W[iw].y;
|
xue@1
|
987 lX[M/2+m].x=tmpr*wr-tmpi*wi;
|
xue@1
|
988 lX[M/2+m].y=tmpr*wi+tmpi*wr;
|
xue@1
|
989 }
|
xue@1
|
990 if (n==1) {}
|
xue@1
|
991 else if (n==2) //two-point DFT
|
xue@1
|
992 {
|
xue@1
|
993 cdouble *aX=&X[n][l*M+M/2];
|
xue@1
|
994 double tmp;
|
xue@1
|
995 tmp=aX[0].x+aX[1].x; aX[1].x=aX[0].x-aX[1].x; aX[0].x=tmp;
|
xue@1
|
996 tmp=aX[0].y+aX[1].y; aX[1].y=aX[0].y-aX[1].y; aX[0].y=tmp;
|
xue@1
|
997 }
|
xue@1
|
998 else if (n==3) //4-point DFT
|
xue@1
|
999 {
|
xue@1
|
1000 cdouble *aX=&X[n][l*M+M/2];
|
xue@1
|
1001 double tmp, tmp2;
|
xue@1
|
1002 tmp=aX[0].x+aX[2].x; aX[2].x=aX[0].x-aX[2].x; aX[0].x=tmp;
|
xue@1
|
1003 tmp=aX[0].y+aX[2].y; aX[2].y=aX[0].y-aX[2].y; aX[0].y=tmp;
|
xue@1
|
1004 tmp=aX[1].y+aX[3].y; tmp2=aX[1].y-aX[3].y; aX[1].y=tmp;
|
xue@1
|
1005 tmp=aX[3].x-aX[1].x; aX[1].x+=aX[3].x; aX[3].x=tmp2; aX[3].y=tmp;
|
xue@1
|
1006 tmp=aX[0].x+aX[1].x; aX[1].x=aX[0].x-aX[1].x; aX[0].x=tmp;
|
xue@1
|
1007 tmp=aX[0].y+aX[1].y; aX[1].y=aX[0].y-aX[1].y; aX[0].y=tmp;
|
xue@1
|
1008 tmp=aX[2].x+aX[3].x; aX[3].x=aX[2].x-aX[3].x; aX[2].x=tmp;
|
xue@1
|
1009 tmp=aX[2].y+aX[3].y; aX[3].y=aX[2].y-aX[3].y; aX[2].y=tmp;
|
xue@1
|
1010 }
|
xue@1
|
1011 else //n>3
|
xue@1
|
1012 {
|
xue@1
|
1013 cdouble *aX=&X[n][l*M+M/2];
|
xue@1
|
1014 for (int an=1, aL=1, aM=M/2; an<n; aL*=2, aM/=2, an++)
|
xue@1
|
1015 {
|
xue@1
|
1016 for (int al=0; al<aL; al++)
|
xue@1
|
1017 for (int am=0; am<aM/2; am++)
|
xue@1
|
1018 {
|
xue@1
|
1019 int iw=am*2*aL*L;
|
xue@1
|
1020 cdouble *lX=&aX[al*aM];
|
xue@1
|
1021 double x1r=lX[am].x, x1i=lX[am].y,
|
xue@1
|
1022 x2r=lX[aM/2+am].x, x2i=lX[aM/2+am].y;
|
xue@1
|
1023 lX[am].x=x1r+x2r, lX[am].y=x1i+x2i;
|
xue@1
|
1024 x1r=x1r-x2r, x1i=x1i-x2i;
|
xue@1
|
1025 lX[aM/2+am].x=x1r*W[iw].x-x1i*W[iw].y,
|
xue@1
|
1026 lX[aM/2+am].y=x1r*W[iw].y+x1i*W[iw].x;
|
xue@1
|
1027 }
|
xue@1
|
1028 }
|
xue@1
|
1029 }
|
xue@1
|
1030 }
|
xue@1
|
1031 }
|
xue@1
|
1032 }//CMFTC
|
xue@1
|
1033
|
xue@1
|
1034
|
xue@1
|
1035 //---------------------------------------------------------------------------
|
xue@1
|
1036 /*
|
xue@1
|
1037 Old versions no longer in use. For reference only.
|
xue@1
|
1038 */
|
xue@1
|
1039 void RFFTC_ual_old(double* Input, double *Amp, double *Arg, int Order, cdouble* W, double* XR, double* XI, int* bitinv)
|
xue@1
|
1040 {
|
xue@1
|
1041 int N=1<<Order, i, j, jj, k, *bitinv1=bitinv, Groups, ElemsPerGroup, X0, X1, X2;
|
xue@1
|
1042 cdouble Temp, zp, zn;
|
xue@1
|
1043
|
xue@1
|
1044 if (!bitinv) bitinv=CreateBitInvTable(Order);
|
xue@1
|
1045 if (XR!=Input) for (i=0; i<N; i++) XR[i]=Input[bitinv[i]];
|
xue@1
|
1046 else for (i=0; i<N; i++) {jj=bitinv[i]; if (i<jj) {Temp.x=XR[i]; XR[i]=XR[jj]; XR[jj]=Temp.x;}}
|
xue@1
|
1047 N/=2;
|
xue@1
|
1048 double* XII=&XR[N];
|
xue@1
|
1049 Order--;
|
xue@1
|
1050 if (!bitinv1) free(bitinv);
|
xue@1
|
1051 for (i=0; i<Order; i++)
|
xue@1
|
1052 {
|
xue@1
|
1053 ElemsPerGroup=1<<i;
|
xue@1
|
1054 Groups=1<<(Order-i-1);
|
xue@1
|
1055 X0=0;
|
xue@1
|
1056 for (j=0; j<Groups; j++)
|
xue@1
|
1057 {
|
xue@1
|
1058 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
1059 {
|
xue@1
|
1060 X1=X0+k;
|
xue@1
|
1061 X2=X1+ElemsPerGroup;
|
xue@1
|
1062 int kGroups=k*2*Groups;
|
xue@1
|
1063 Temp.x=XR[X2]*W[kGroups].x-XII[X2]*W[kGroups].y,
|
xue@1
|
1064 XII[X2]=XR[X2]*W[kGroups].y+XII[X2]*W[kGroups].x;
|
xue@1
|
1065 XR[X2]=Temp.x;
|
xue@1
|
1066 Temp.x=XR[X1]+XR[X2], Temp.y=XII[X1]+XII[X2];
|
xue@1
|
1067 XR[X2]=XR[X1]-XR[X2], XII[X2]=XII[X1]-XII[X2];
|
xue@1
|
1068 XR[X1]=Temp.x, XII[X1]=Temp.y;
|
xue@1
|
1069 }
|
xue@1
|
1070 X0=X0+(ElemsPerGroup<<1);
|
xue@1
|
1071 }
|
xue@1
|
1072 }
|
xue@1
|
1073 zp.x=XR[0]+XII[0], zn.x=XR[0]-XII[0];
|
xue@1
|
1074 XR[0]=zp.x;
|
xue@1
|
1075 XI[0]=0;
|
xue@1
|
1076 XR[N]=zn.x;
|
xue@1
|
1077 XI[N]=0;
|
xue@1
|
1078 for (int k=1; k<N/2; k++)
|
xue@1
|
1079 {
|
xue@1
|
1080 zp.x=XR[k]+XR[N-k], zn.x=XR[k]-XR[N-k],
|
xue@1
|
1081 zp.y=XII[k]+XII[N-k], zn.y=XII[k]-XII[N-k];
|
xue@1
|
1082 XR[k]=0.5*(zp.x+W[k].y*zn.x+W[k].x*zp.y);
|
xue@1
|
1083 XI[k]=0.5*(zn.y-W[k].x*zn.x+W[k].y*zp.y);
|
xue@1
|
1084 XR[N-k]=0.5*(zp.x-W[k].y*zn.x-W[k].x*zp.y);
|
xue@1
|
1085 XI[N-k]=0.5*(-zn.y-W[k].x*zn.x+W[k].y*zp.y);
|
xue@1
|
1086 }
|
xue@1
|
1087 XR[N/2]=XR[N/2];
|
xue@1
|
1088 XI[N/2]=-XII[N/2];
|
xue@1
|
1089 N*=2;
|
xue@1
|
1090
|
xue@1
|
1091 for (int k=N/2+1; k<N; k++) XR[k]=XR[N-k], XI[k]=-XI[N-k];
|
xue@1
|
1092 if (Amp) for (i=0; i<N; i++) Amp[i]=sqrt(XR[i]*XR[i]+XI[i]*XI[i]);
|
xue@1
|
1093 if (Arg) for (i=0; i<N; i++) Arg[i]=Atan2(XI[i], XR[i]);
|
xue@1
|
1094 }//RFFTC_ual_old
|
xue@1
|
1095
|
xue@1
|
1096 void CIFFTR_old(cdouble* Input, int Order, cdouble* W, double* X, int* bitinv)
|
xue@1
|
1097 {
|
xue@1
|
1098 int N=1<<Order, i, j, k, Groups, ElemsPerGroup, X0, X1, X2, *bitinv1=bitinv;
|
xue@1
|
1099 cdouble Temp;
|
xue@1
|
1100 if (!bitinv) bitinv=CreateBitInvTable(Order);
|
xue@1
|
1101
|
xue@1
|
1102 Order--;
|
xue@1
|
1103 N/=2;
|
xue@1
|
1104 double* XII=&X[N];
|
xue@1
|
1105
|
xue@1
|
1106 X[0]=0.5*(Input[0].x+Input[N].x);
|
xue@1
|
1107 XII[0]=0.5*(Input[0].x-Input[N].x);
|
xue@1
|
1108 for (int i=1; i<N/2; i++)
|
xue@1
|
1109 {
|
xue@1
|
1110 double frp=Input[i].x+Input[N-i].x, frn=Input[i].x-Input[N-i].x,
|
xue@1
|
1111 fip=Input[i].y+Input[N-i].y, fin=Input[i].y-Input[N-i].y;
|
xue@1
|
1112 X[i]=0.5*(frp+frn*W[i].y-fip*W[i].x);
|
xue@1
|
1113 XII[i]=0.5*(fin+frn*W[i].x+fip*W[i].y);
|
xue@1
|
1114 X[N-i]=0.5*(frp-frn*W[i].y+fip*W[i].x);
|
xue@1
|
1115 XII[N-i]=0.5*(-fin+frn*W[i].x+fip*W[i].y);
|
xue@1
|
1116 }
|
xue@1
|
1117 X[N/2]=Input[N/2].x;
|
xue@1
|
1118 XII[N/2]=-Input[N/2].y;
|
xue@1
|
1119
|
xue@1
|
1120 ElemsPerGroup=1<<Order;
|
xue@1
|
1121 Groups=1;
|
xue@1
|
1122
|
xue@1
|
1123 for (i=0; i<Order; i++)
|
xue@1
|
1124 {
|
xue@1
|
1125 ElemsPerGroup/=2;
|
xue@1
|
1126 X0=0;
|
xue@1
|
1127 for (j=0; j<Groups; j++)
|
xue@1
|
1128 {
|
xue@1
|
1129 int kGroups=bitinv[j]/2;
|
xue@1
|
1130 for (k=0; k<ElemsPerGroup; k++)
|
xue@1
|
1131 {
|
xue@1
|
1132 X1=X0+k;
|
xue@1
|
1133 X2=X1+ElemsPerGroup;
|
xue@1
|
1134 Temp.x=X[X2]*W[kGroups].x+XII[X2]*W[kGroups].y,
|
xue@1
|
1135 XII[X2]=-X[X2]*W[kGroups].y+XII[X2]*W[kGroups].x;
|
xue@1
|
1136 X[X2]=Temp.x;
|
xue@1
|
1137 Temp.x=X[X1]+X[X2], Temp.y=XII[X1]+XII[X2];
|
xue@1
|
1138 X[X2]=X[X1]-X[X2], XII[X2]=XII[X1]-XII[X2];
|
xue@1
|
1139 X[X1]=Temp.x, XII[X1]=Temp.y;
|
xue@1
|
1140 }
|
xue@1
|
1141 X0=X0+(ElemsPerGroup<<1);
|
xue@1
|
1142 }
|
xue@1
|
1143 Groups*=2;
|
xue@1
|
1144 }
|
xue@1
|
1145
|
xue@1
|
1146 N*=2;
|
xue@1
|
1147 Order++;
|
xue@1
|
1148 for (i=0; i<N; i++)
|
xue@1
|
1149 {
|
xue@1
|
1150 int jj=bitinv[i];
|
xue@1
|
1151 if (i<jj)
|
xue@1
|
1152 {
|
xue@1
|
1153 Temp.x=X[i];
|
xue@1
|
1154 X[i]=X[jj];
|
xue@1
|
1155 X[jj]=Temp.x;
|
xue@1
|
1156 }
|
xue@1
|
1157 }
|
xue@1
|
1158 for (int i=0; i<N; i++) X[i]/=(N/2);
|
xue@1
|
1159 if (!bitinv1) free(bitinv);
|
xue@1
|
1160 }//RFFTC_ual_old
|
xue@1
|
1161
|