b@246
|
1 #!/usr/bin/python
|
b@246
|
2
|
b@246
|
3 import sys
|
b@246
|
4 import os
|
b@246
|
5 import csv
|
b@246
|
6 import matplotlib.pyplot as plt
|
b@246
|
7 import numpy as np
|
b@246
|
8 import scipy as sp
|
b@246
|
9 import scipy.stats
|
b@246
|
10
|
b@246
|
11 # CONFIGURATION
|
b@246
|
12
|
b@246
|
13 # Which type(s) of plot do you want?
|
b@246
|
14 enable_boxplot = False # show box plot
|
b@246
|
15 enable_confidence = True # show confidence interval
|
b@246
|
16 confidence = 0.90 # confidence value (for confidence interval plot)
|
b@246
|
17 enable_individual = True # show all individual ratings
|
b@246
|
18 show_individual = [] # show specific individuals
|
b@246
|
19 show_legend = False # show names of individuals
|
b@246
|
20 #TODO: Merge, implement this functionality
|
b@246
|
21 #TODO: Control by CLI arguments (plot types, save and/or show, ...)
|
b@246
|
22
|
b@246
|
23 # Enter folder where rating CSV files are (generated with score_parser.py or same format).
|
b@246
|
24 rating_folder = '../saves/ratings/' # folder with rating csv files
|
b@246
|
25
|
b@246
|
26 # Font settings
|
b@246
|
27 font = {'weight' : 'bold',
|
b@246
|
28 'size' : 10}
|
b@246
|
29 plt.rc('font', **font)
|
b@246
|
30
|
b@246
|
31
|
b@246
|
32 # CODE
|
b@246
|
33
|
b@246
|
34 # get every csv file in folder
|
b@246
|
35 for file in os.listdir(rating_folder): # You have to put this in folder where rating csv files are.
|
b@246
|
36 if file.endswith(".csv"):
|
b@246
|
37 page_name = file[:-4] # file name (without extension) is page ID
|
b@246
|
38
|
b@246
|
39 # get header
|
b@246
|
40 with open(rating_folder+file, 'rb') as readfile: # read this csv file
|
b@246
|
41 filereader = csv.reader(readfile, delimiter=',')
|
b@246
|
42 headerrow = filereader.next() # use headerrow as X-axis
|
b@246
|
43 headerrow = headerrow[1:]
|
b@246
|
44
|
b@246
|
45 # read ratings into matrix
|
b@246
|
46 # ratings = np.loadtxt(open(rating_folder+file,"rb"),
|
b@246
|
47 # delimiter=",",
|
b@246
|
48 # skiprows=1,
|
b@246
|
49 # usecols=range(1,len(headerrow)+1)
|
b@246
|
50 # )
|
b@246
|
51 ratings = np.genfromtxt(readfile,
|
b@246
|
52 delimiter=",",
|
b@246
|
53 #skip_header = 1,
|
b@246
|
54 converters = {3: lambda s: float(s or 'Nan')},
|
b@246
|
55 usecols=range(1,len(headerrow)+1)
|
b@246
|
56 )
|
b@246
|
57
|
b@246
|
58 # assert at least 2 subjects (move on to next file if violated)
|
b@246
|
59 if ratings.shape[1]<2:
|
b@246
|
60 print "WARNING: Just one subject for " + page_name + ". Moving on to next file."
|
b@246
|
61 break
|
b@246
|
62
|
b@246
|
63 # BOXPLOT
|
b@246
|
64 if enable_boxplot:
|
b@246
|
65 plt.boxplot(ratings)
|
b@246
|
66
|
b@246
|
67 # CONFIDENCE INTERVAL
|
b@246
|
68 if enable_confidence:
|
b@246
|
69 iterator = 0
|
b@246
|
70 for column in ratings.T: # iterate over transposed matrix
|
b@246
|
71 # remove all 'Nan's from column
|
b@246
|
72 column = column[~np.isnan(column)]
|
b@246
|
73
|
b@246
|
74 # get number of non-Nan ratings (= #subjects)
|
b@246
|
75 n = column.size
|
b@246
|
76
|
b@246
|
77 # get mean
|
b@246
|
78 mean_rating = np.mean(column)
|
b@246
|
79
|
b@246
|
80 # get errors
|
b@246
|
81 err = scipy.stats.sem(column)* sp.stats.t._ppf((1+confidence)/2., n-1)
|
b@246
|
82
|
b@246
|
83 # draw plot
|
b@246
|
84 plt.errorbar(iterator+1,
|
b@246
|
85 mean_rating,
|
b@246
|
86 yerr=err,
|
b@246
|
87 marker="x",
|
b@246
|
88 color ="k",
|
b@246
|
89 markersize=12,
|
b@246
|
90 linestyle='None')
|
b@246
|
91
|
b@246
|
92 iterator += 1 # increase counter
|
b@246
|
93
|
b@246
|
94
|
b@246
|
95 # INDIVIDUAL PLOT
|
b@246
|
96 if enable_individual or show_individual:
|
b@246
|
97 # marker list and color map to cycle through
|
b@246
|
98 markerlist = ["x", ".", "o", "*", "+", "v", ">", "<", "8", "s", "p"]
|
b@246
|
99 colormap = ['b', 'r', 'g', 'c', 'm', 'y', 'k']
|
b@246
|
100 increment = 0
|
b@246
|
101 linehandles = []
|
b@246
|
102 legendnames = []
|
b@246
|
103 with open(rating_folder+file, 'rb') as readfile: # read this csv file
|
b@246
|
104 filereader = csv.reader(readfile, delimiter=',')
|
b@246
|
105 headerrow = filereader.next() # use headerrow as X-axis
|
b@246
|
106 headerrow = headerrow[1:]
|
b@246
|
107 for row in filereader:
|
b@246
|
108 subject_id = row[0][:-4] # read from beginning of line
|
b@246
|
109 # assume plotting all individuals if no individual(s) specified
|
b@246
|
110 if not show_individual or subject_id in show_individual:
|
b@246
|
111 plothandle, = plt.plot(range(1,len(row)), # x-values
|
b@246
|
112 ratings[increment,:],#row[1:], # y-values: csv values except subject name
|
b@246
|
113 color=colormap[increment%len(colormap)],
|
b@246
|
114 marker=markerlist[increment%len(markerlist)],
|
b@246
|
115 markersize=10,
|
b@246
|
116 linestyle='None',
|
b@246
|
117 label=subject_id
|
b@246
|
118 )
|
b@246
|
119 linehandles.append(plothandle)
|
b@246
|
120 legendnames.append(subject_id)
|
b@246
|
121 if show_legend:
|
b@246
|
122 plt.legend(linehandles, legendnames,
|
b@246
|
123 loc='upper right',
|
b@246
|
124 bbox_to_anchor=(1.1, 1),
|
b@246
|
125 borderaxespad=0.,
|
b@246
|
126 numpoints=1 # remove extra marker
|
b@246
|
127 )
|
b@246
|
128 increment += 1 # increase counter
|
b@246
|
129
|
b@246
|
130 # TITLE, AXIS LABELS AND LIMITS
|
b@246
|
131 plt.title(page_name)
|
b@246
|
132 plt.xlabel('Fragment')
|
b@246
|
133 plt.xlim(0, len(headerrow)+1) # only show relevant region, leave space left & right)
|
b@246
|
134 plt.xticks(range(1, len(headerrow)+1), headerrow) # show fragment names
|
b@246
|
135 plt.ylabel('Rating')
|
b@246
|
136 plt.ylim(0,1)
|
b@246
|
137
|
b@246
|
138
|
b@246
|
139
|
b@246
|
140 # SHOW PLOT
|
b@246
|
141 #plt.show()
|
b@246
|
142 #exit()
|
b@246
|
143
|
b@246
|
144 # SAVE PLOT
|
b@246
|
145 # automatically
|
b@246
|
146 plot_type = ("-box" if enable_boxplot else "") + \
|
b@246
|
147 ("-conf" if enable_confidence else "") + \
|
b@246
|
148 ("-ind" if enable_individual else "")
|
b@246
|
149 plt.savefig(rating_folder+page_name+plot_type+".png")
|
b@246
|
150 plt.close()
|