annotate scripts/score_plot.py @ 246:83584c6b09b5

Scripts: merge all three plot scripts in to one (box plot, scatter plot, mean plus confidence interval plot); bug fixes
author Brecht De Man <b.deman@qmul.ac.uk>
date Mon, 29 Jun 2015 17:19:46 +0100
parents
children 3c5689af726b
rev   line source
b@246 1 #!/usr/bin/python
b@246 2
b@246 3 import sys
b@246 4 import os
b@246 5 import csv
b@246 6 import matplotlib.pyplot as plt
b@246 7 import numpy as np
b@246 8 import scipy as sp
b@246 9 import scipy.stats
b@246 10
b@246 11 # CONFIGURATION
b@246 12
b@246 13 # Which type(s) of plot do you want?
b@246 14 enable_boxplot = False # show box plot
b@246 15 enable_confidence = True # show confidence interval
b@246 16 confidence = 0.90 # confidence value (for confidence interval plot)
b@246 17 enable_individual = True # show all individual ratings
b@246 18 show_individual = [] # show specific individuals
b@246 19 show_legend = False # show names of individuals
b@246 20 #TODO: Merge, implement this functionality
b@246 21 #TODO: Control by CLI arguments (plot types, save and/or show, ...)
b@246 22
b@246 23 # Enter folder where rating CSV files are (generated with score_parser.py or same format).
b@246 24 rating_folder = '../saves/ratings/' # folder with rating csv files
b@246 25
b@246 26 # Font settings
b@246 27 font = {'weight' : 'bold',
b@246 28 'size' : 10}
b@246 29 plt.rc('font', **font)
b@246 30
b@246 31
b@246 32 # CODE
b@246 33
b@246 34 # get every csv file in folder
b@246 35 for file in os.listdir(rating_folder): # You have to put this in folder where rating csv files are.
b@246 36 if file.endswith(".csv"):
b@246 37 page_name = file[:-4] # file name (without extension) is page ID
b@246 38
b@246 39 # get header
b@246 40 with open(rating_folder+file, 'rb') as readfile: # read this csv file
b@246 41 filereader = csv.reader(readfile, delimiter=',')
b@246 42 headerrow = filereader.next() # use headerrow as X-axis
b@246 43 headerrow = headerrow[1:]
b@246 44
b@246 45 # read ratings into matrix
b@246 46 # ratings = np.loadtxt(open(rating_folder+file,"rb"),
b@246 47 # delimiter=",",
b@246 48 # skiprows=1,
b@246 49 # usecols=range(1,len(headerrow)+1)
b@246 50 # )
b@246 51 ratings = np.genfromtxt(readfile,
b@246 52 delimiter=",",
b@246 53 #skip_header = 1,
b@246 54 converters = {3: lambda s: float(s or 'Nan')},
b@246 55 usecols=range(1,len(headerrow)+1)
b@246 56 )
b@246 57
b@246 58 # assert at least 2 subjects (move on to next file if violated)
b@246 59 if ratings.shape[1]<2:
b@246 60 print "WARNING: Just one subject for " + page_name + ". Moving on to next file."
b@246 61 break
b@246 62
b@246 63 # BOXPLOT
b@246 64 if enable_boxplot:
b@246 65 plt.boxplot(ratings)
b@246 66
b@246 67 # CONFIDENCE INTERVAL
b@246 68 if enable_confidence:
b@246 69 iterator = 0
b@246 70 for column in ratings.T: # iterate over transposed matrix
b@246 71 # remove all 'Nan's from column
b@246 72 column = column[~np.isnan(column)]
b@246 73
b@246 74 # get number of non-Nan ratings (= #subjects)
b@246 75 n = column.size
b@246 76
b@246 77 # get mean
b@246 78 mean_rating = np.mean(column)
b@246 79
b@246 80 # get errors
b@246 81 err = scipy.stats.sem(column)* sp.stats.t._ppf((1+confidence)/2., n-1)
b@246 82
b@246 83 # draw plot
b@246 84 plt.errorbar(iterator+1,
b@246 85 mean_rating,
b@246 86 yerr=err,
b@246 87 marker="x",
b@246 88 color ="k",
b@246 89 markersize=12,
b@246 90 linestyle='None')
b@246 91
b@246 92 iterator += 1 # increase counter
b@246 93
b@246 94
b@246 95 # INDIVIDUAL PLOT
b@246 96 if enable_individual or show_individual:
b@246 97 # marker list and color map to cycle through
b@246 98 markerlist = ["x", ".", "o", "*", "+", "v", ">", "<", "8", "s", "p"]
b@246 99 colormap = ['b', 'r', 'g', 'c', 'm', 'y', 'k']
b@246 100 increment = 0
b@246 101 linehandles = []
b@246 102 legendnames = []
b@246 103 with open(rating_folder+file, 'rb') as readfile: # read this csv file
b@246 104 filereader = csv.reader(readfile, delimiter=',')
b@246 105 headerrow = filereader.next() # use headerrow as X-axis
b@246 106 headerrow = headerrow[1:]
b@246 107 for row in filereader:
b@246 108 subject_id = row[0][:-4] # read from beginning of line
b@246 109 # assume plotting all individuals if no individual(s) specified
b@246 110 if not show_individual or subject_id in show_individual:
b@246 111 plothandle, = plt.plot(range(1,len(row)), # x-values
b@246 112 ratings[increment,:],#row[1:], # y-values: csv values except subject name
b@246 113 color=colormap[increment%len(colormap)],
b@246 114 marker=markerlist[increment%len(markerlist)],
b@246 115 markersize=10,
b@246 116 linestyle='None',
b@246 117 label=subject_id
b@246 118 )
b@246 119 linehandles.append(plothandle)
b@246 120 legendnames.append(subject_id)
b@246 121 if show_legend:
b@246 122 plt.legend(linehandles, legendnames,
b@246 123 loc='upper right',
b@246 124 bbox_to_anchor=(1.1, 1),
b@246 125 borderaxespad=0.,
b@246 126 numpoints=1 # remove extra marker
b@246 127 )
b@246 128 increment += 1 # increase counter
b@246 129
b@246 130 # TITLE, AXIS LABELS AND LIMITS
b@246 131 plt.title(page_name)
b@246 132 plt.xlabel('Fragment')
b@246 133 plt.xlim(0, len(headerrow)+1) # only show relevant region, leave space left & right)
b@246 134 plt.xticks(range(1, len(headerrow)+1), headerrow) # show fragment names
b@246 135 plt.ylabel('Rating')
b@246 136 plt.ylim(0,1)
b@246 137
b@246 138
b@246 139
b@246 140 # SHOW PLOT
b@246 141 #plt.show()
b@246 142 #exit()
b@246 143
b@246 144 # SAVE PLOT
b@246 145 # automatically
b@246 146 plot_type = ("-box" if enable_boxplot else "") + \
b@246 147 ("-conf" if enable_confidence else "") + \
b@246 148 ("-ind" if enable_individual else "")
b@246 149 plt.savefig(rating_folder+page_name+plot_type+".png")
b@246 150 plt.close()