Mercurial > hg > vampy-host
view vamp/collect.py @ 94:c3318a95625b
Return step as well
author | Chris Cannam |
---|---|
date | Mon, 02 Feb 2015 16:32:44 +0000 |
parents | 4bed6bf67243 |
children | 3e5791890b65 |
line wrap: on
line source
'''A high-level interface to the vampyhost extension module, for quickly and easily running Vamp audio analysis plugins on audio files and buffers.''' import vampyhost import load import process import frames import numpy as np def get_feature_step_time(sample_rate, step_size, output_desc): if output_desc["sample_type"] == vampyhost.ONE_SAMPLE_PER_STEP: return vampyhost.frame_to_realtime(step_size, sample_rate) elif output_desc["sample_type"] == vampyhost.FIXED_SAMPLE_RATE: return vampyhost.RealTime('seconds', 1.0 / output_desc["sample_rate"]) else: return 1 def timestamp_features(sample_rate, step_size, output_desc, features): n = -1 if output_desc["sample_type"] == vampyhost.ONE_SAMPLE_PER_STEP: for f in features: n = n + 1 t = vampyhost.frame_to_realtime(n * step_size, sample_rate) f["timestamp"] = t yield f elif output_desc["sample_type"] == vampyhost.FIXED_SAMPLE_RATE: output_rate = output_desc["sample_rate"] for f in features: if "has_timestamp" in f: n = int(f["timestamp"].to_float() * output_rate + 0.5) else: n = n + 1 f["timestamp"] = vampyhost.RealTime('seconds', float(n) / output_rate) yield f else: for f in features: yield f def fill_timestamps(results, sample_rate, step_size, output_desc): output = output_desc["identifier"] selected = [ r[output] for r in results ] stamped = timestamp_features(sample_rate, step_size, output_desc, selected) for s in stamped: yield s def deduce_shape(output_desc): if output_desc["has_duration"]: return "individual" if output_desc["sample_type"] == vampyhost.VARIABLE_SAMPLE_RATE: return "individual" if not output_desc["has_fixed_bin_count"]: return "individual" if output_desc["bin_count"] == 0: return "individual" if output_desc["bin_count"] == 1: return "vector" return "matrix" def process_and_reshape(data, sample_rate, key, output, parameters = {}): plugin, step_size, block_size = load.load_and_configure(data, sample_rate, key, parameters) if output == "": output_desc = plugin.get_output(0) output = output_desc["identifier"] else: output_desc = plugin.get_output(output) ff = frames.frames_from_array(data, step_size, block_size) results = process.process_frames_with_plugin(ff, sample_rate, step_size, plugin, [output]) shape = deduce_shape(output_desc) out_step = get_feature_step_time(sample_rate, step_size, output_desc) if shape == "vector": rv = ( out_step, np.array([r[output]["values"][0] for r in results]) ) elif shape == "matrix": rv = ( out_step, np.array( [[r[output]["values"][i] for r in results] for i in range(0, output_desc["bin_count"])]) ) else: rv = list(fill_timestamps(results, sample_rate, step_size, output_desc)) plugin.unload() return rv def collect(data, sample_rate, key, output, parameters = {}): return process_and_reshape(data, sample_rate, key, output, parameters)