Mercurial > hg > vampy-host
view vamp/collect.py @ 93:4bed6bf67243
Return simple array for simple data
author | Chris Cannam |
---|---|
date | Mon, 02 Feb 2015 16:08:42 +0000 |
parents | 1a08dd72f4d2 |
children | c3318a95625b |
line wrap: on
line source
'''A high-level interface to the vampyhost extension module, for quickly and easily running Vamp audio analysis plugins on audio files and buffers.''' import vampyhost import load import process import frames import numpy as np def timestamp_features(sample_rate, step_size, output_desc, features): n = -1 if output_desc["sample_type"] == vampyhost.ONE_SAMPLE_PER_STEP: for f in features: n = n + 1 t = vampyhost.frame_to_realtime(n * step_size, sample_rate) f["timestamp"] = t yield f elif output_desc["sample_type"] == vampyhost.FIXED_SAMPLE_RATE: output_rate = output_desc["sample_rate"] for f in features: if "has_timestamp" in f: n = int(f["timestamp"].to_float() * output_rate + 0.5) else: n = n + 1 f["timestamp"] = vampyhost.RealTime('seconds', float(n) / output_rate) yield f else: for f in features: yield f def fill_timestamps(results, sample_rate, step_size, output_desc): output = output_desc["identifier"] selected = [ r[output] for r in results ] stamped = timestamp_features(sample_rate, step_size, output_desc, selected) for s in stamped: yield s def deduce_shape(output_desc): if output_desc["has_duration"]: return "individual" if output_desc["sample_type"] == vampyhost.VARIABLE_SAMPLE_RATE: return "individual" if not output_desc["has_fixed_bin_count"]: return "individual" if output_desc["bin_count"] == 0: return "individual" if output_desc["bin_count"] > 1: return "matrix" return "vector" def process_and_reshape(data, sample_rate, key, output, parameters = {}): plugin, step_size, block_size = load.load_and_configure(data, sample_rate, key, parameters) if output == "": output_desc = plugin.get_output(0) output = output_desc["identifier"] else: output_desc = plugin.get_output(output) ff = frames.frames_from_array(data, step_size, block_size) results = process.process_frames_with_plugin(ff, sample_rate, step_size, plugin, [output]) shape = deduce_shape(output_desc) if shape == "vector": rv = np.array([r[output]["values"][0] for r in results]) elif shape == "matrix": rv = np.array( [[r[output]["values"][i] for r in results] for i in range(0, output_desc["bin_count"]-1)]) else: rv = list(fill_timestamps(results, sample_rate, step_size, output_desc)) plugin.unload() return rv def collect(data, sample_rate, key, output, parameters = {}): return process_and_reshape(data, sample_rate, key, output, parameters)