annotate plugin-doc/vamp-example-plugins.html @ 6:73f05249ac60 website

* Update Vamp example plugins RDF, add user doc
author cannam
date Fri, 14 Nov 2008 11:55:26 +0000
parents
children 60ee9a026a62
rev   line source
cannam@6 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
cannam@6 2 <html>
cannam@6 3 <head>
cannam@6 4 <link rel="stylesheet" media="screen" type="text/css" href="/screen.css"/>
cannam@6 5 <link rel="icon" type="image/png" href="/images/waveform.png"/>
cannam@6 6 <link rel="shortcut" type="image/png" href="/images/waveform.png"/>
cannam@6 7 <title>Vamp Example Plugins: User Documentation</title>
cannam@6 8 <meta name="robots" content="index"/>
cannam@6 9 </head>
cannam@6 10 <body>
cannam@6 11 <h1 id="header"><span>Vamp Example Plugins</span></h1>
cannam@6 12
cannam@6 13 <p>The <code>vamp-example-plugins</code> library contains a number of
cannam@6 14 <a href="http://www.vamp-plugins.org/">Vamp audio analysis
cannam@6 15 plugins</a> provided as part of the Vamp plugin SDK.
cannam@6 16
cannam@6 17 </p>
cannam@6 18 <p>These are simple, but sometimes useful, plugins whose source code you
cannam@6 19 are free to study and reuse in any proprietary or non-proprietary
cannam@6 20 plugins of your own without any licensing obligation.
cannam@6 21 </p>
cannam@6 22 <p>User documentation for the individual plugins in this library follows.
cannam@6 23 </p>
cannam@6 24 <div class="toc2">1. &nbsp;<a href="#amplitudefollower">Amplitude Follower</a></div>
cannam@6 25 <div class="toc2">2. &nbsp;<a href="#fixedtempo">Simple Fixed Tempo Estimator</a></div>
cannam@6 26 <div class="toc2">3. &nbsp;<a href="#percussiononsets">Simple Percussion Onset Detector</a></div>
cannam@6 27 <div class="toc2">4. &nbsp;<a href="#powerspectrum">Simple Power Spectrum</a></div>
cannam@6 28 <div class="toc2">5. &nbsp;<a href="#spectralcentroid">Spectral Centroid</a></div>
cannam@6 29 <div class="toc2">6. &nbsp;<a href="#zerocrossing">Zero Crossings</a></div>
cannam@6 30
cannam@6 31 <div class="oddcontent"><a name="amplitudefollower"></a><h2>1. &nbsp;Amplitude Follower</h2>
cannam@6 32
cannam@6 33 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:amplitudefollower</code><br>
cannam@6 34 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#amplitudefollower">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#amplitudefollower</a>
cannam@6 35 </p>
cannam@6 36 <p>Amplitude Follower tracks and returns the amplitude of the audio
cannam@6 37 signal sample by sample, returning peak values block by block.
cannam@6 38 </p>
cannam@6 39 </div><div class="evencontent"><a name="toc2"></a><h3>1.1. &nbsp;Parameters</h3>
cannam@6 40
cannam@6 41 <p><b>Attack time</b> (seconds) &ndash; The 60dB convergence time for an increase in amplitude.<br>
cannam@6 42 <b>Release time</b> (seconds) &ndash; The 60dB convergence time for a decrease in amplitude.
cannam@6 43 </p>
cannam@6 44 <p>For example, if you feed the plugin with a simple step function that
cannam@6 45 jumps from level A to level B, then the output will start off as A,
cannam@6 46 then at the moment of stepping it will start to converge exponentially
cannam@6 47 to B, reaching with 60dB of the actual value within the time specified
cannam@6 48 by the Attack time parameter.
cannam@6 49 </p>
cannam@6 50 <p>Similarly, if the plugin's input then steps down from B to A, the
cannam@6 51 output will start converging at the moment of stepping, reaching
cannam@6 52 within 60dB of the new value within the time specified by the Release
cannam@6 53 time parameter.
cannam@6 54 </p>
cannam@6 55 </div><div class="oddcontent"><a name="toc3"></a><h3>1.2. &nbsp;Outputs</h3>
cannam@6 56
cannam@6 57 </div><div class="evencontent"><a name="toc4"></a><h4>1.2.1. &nbsp;Amplitude</h4>
cannam@6 58
cannam@6 59 <p>The peak tracked amplitude (in volts) for the current processing block.
cannam@6 60 </p>
cannam@6 61 </div><div class="oddcontent"><a name="toc5"></a><h3>1.3. &nbsp;References and Credits</h3>
cannam@6 62
cannam@6 63 <p>Amplitude Follower uses a method from the SuperCollider audio
cannam@6 64 processing language. It was implemented as a Vamp plugin by Dan
cannam@6 65 Stowell.
cannam@6 66 </p>
cannam@6 67 </div><div class="evencontent"><a name="fixedtempo"></a><h2>2. &nbsp;Simple Fixed Tempo Estimator</h2>
cannam@6 68
cannam@6 69 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:fixedtempo</code><br>
cannam@6 70 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#fixedtempo">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#fixedtempo</a>
cannam@6 71 </p>
cannam@6 72 <p>Simple Fixed Tempo Estimator analyses a fragment of audio and
cannam@6 73 estimates its tempo. It assumes that its input is of fixed tempo, and
cannam@6 74 it analyses only the first (small but configurable number of) seconds
cannam@6 75 before returning a result, discarding all subsequent input.
cannam@6 76 </p>
cannam@6 77 <p>The plugin calculates an overall energy rise function across a series
cannam@6 78 of short frequency-domain input frames, takes the autocorrelation of
cannam@6 79 this function, filters it to stress possible metrical patterns,
cannam@6 80 locates peaks, and converts from autocorrelation lag to the
cannam@6 81 corresponding tempo.
cannam@6 82 </p>
cannam@6 83 <p>The filtering process involves searching for peaks at simple
cannam@6 84 metrically related intervals (at a given autocorrelation lag as well
cannam@6 85 as at 0.5, 2, and 4 times that lag), boosting each peak that shows
cannam@6 86 strong related peaks. A simplistic perceptual curve is also applied
cannam@6 87 in order to increase the probability of detecting a "likely" tempo.
cannam@6 88 For improved tempo precision, each tempo with strong related peaks is
cannam@6 89 averaged with the tempi calculated from those peaks.
cannam@6 90 </p>
cannam@6 91 <p>The method is best suited for 4/4 pop and dance rhythms.
cannam@6 92 </p>
cannam@6 93 <p>This plugin returns many of its intermediate calculations as
cannam@6 94 additional outputs, as well as the most favoured tempo. Although as a
cannam@6 95 tempo estimator it's still fairly primitive, it is intended to provide
cannam@6 96 a useful example of a slightly more complex feature extraction plugin
cannam@6 97 than the other examples, as well as one that returns several different
cannam@6 98 types of output at a time.
cannam@6 99 </p>
cannam@6 100 </div><div class="oddcontent"><a name="toc7"></a><h3>2.1. &nbsp;Parameters</h3>
cannam@6 101
cannam@6 102 <p><b>Minimum estimated tempo</b>, <b>Maximum estimated tempo</b> (bpm) &ndash; These
cannam@6 103 parameters control the range of values within which the tempo
cannam@6 104 estimator will return its estimate.
cannam@6 105 </p>
cannam@6 106 <p><b>Input duration to study</b> (seconds) &ndash; The tempo estimator uses only the
cannam@6 107 first part of its input, discarding any that follows. This parameter
cannam@6 108 controls how much input it will use. There is no value in increasing
cannam@6 109 this beyond 8x the duration of the slowest returned beat. The default
cannam@6 110 of 10 seconds is likely to be appropriate for most purposes.
cannam@6 111 </p>
cannam@6 112 </div><div class="evencontent"><a name="toc8"></a><h3>2.2. &nbsp;Outputs</h3>
cannam@6 113
cannam@6 114 </div><div class="oddcontent"><a name="toc9"></a><h4>2.2.1. &nbsp;Tempo</h4>
cannam@6 115
cannam@6 116 <p>The tempo estimator's best guess at the tempo of its input, in beats
cannam@6 117 per minute.
cannam@6 118 </p>
cannam@6 119 <p>This is returned as a feature whose timestamp and duration cover the
cannam@6 120 range of the input which was used in estimating the tempo, with a
cannam@6 121 single value containing the tempo.
cannam@6 122 </p>
cannam@6 123 </div><div class="evencontent"><a name="toc10"></a><h4>2.2.2. &nbsp;Tempo candidates</h4>
cannam@6 124
cannam@6 125 <p>Several guesses at the possible tempo. This output is returned as a
cannam@6 126 single feature whose timestamp and duration cover the range of the
cannam@6 127 input which was used in estimating the tempo, with up to 10 bins
cannam@6 128 containing one tempo value in each bin, with the "best guess" tempo in
cannam@6 129 bin 0.
cannam@6 130 </p>
cannam@6 131 </div><div class="oddcontent"><a name="toc11"></a><h4>2.2.3. &nbsp;Detection function</h4>
cannam@6 132
cannam@6 133 <p>The basic onset detection function used in tempo estimation.
cannam@6 134 </p>
cannam@6 135 </div><div class="evencontent"><a name="toc12"></a><h4>2.2.4. &nbsp;Autocorrelation function</h4>
cannam@6 136
cannam@6 137 <p>The autocorrelation of the onset detection function.
cannam@6 138 </p>
cannam@6 139 </div><div class="oddcontent"><a name="toc13"></a><h4>2.2.5. &nbsp;Filtered Autocorrelation</h4>
cannam@6 140
cannam@6 141 <p>The autocorrelation after filtering to boost values with possible
cannam@6 142 metrically related peaks and to apply perceptual weighting. The peak
cannam@6 143 value of this function is the one that will be used as the "best
cannam@6 144 guess".
cannam@6 145 </p>
cannam@6 146 </div><div class="evencontent"><a name="toc14"></a><h3>2.3. &nbsp;References and Credits</h3>
cannam@6 147
cannam@6 148 <p>Simple Fixed Tempo Estimator uses a method derived from work by
cannam@6 149 Matthew Davies: see for example M. E. P. Davies and M. D. Plumbley,
cannam@6 150 <i>Beat Tracking With A Two State Model</i>, in Proceedings of the IEEE
cannam@6 151 International Conference on Acoustics, Speech and Signal Processing
cannam@6 152 2005. This plugin, made by Chris Cannam, is only an unsubtle
cannam@6 153 simplification of a small part of the published method.
cannam@6 154 </p>
cannam@6 155 <p>The Queen Mary plugin set
cannam@6 156 (<a href="http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#qm-vamp-plugins">http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#qm-vamp-plugins</a>)
cannam@6 157 contains a Tempo and Beat Tracker plugin by Matthew Davies providing a
cannam@6 158 more realistic implementation.
cannam@6 159 </p>
cannam@6 160 </div><div class="oddcontent"><a name="percussiononsets"></a><h2>3. &nbsp;Simple Percussion Onset Detector</h2>
cannam@6 161
cannam@6 162 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:percussiononsets</code><br>
cannam@6 163 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#percussiononsets">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#percussiononsets</a>
cannam@6 164 </p>
cannam@6 165 <p>Simple Percussion Onset Detector estimates the locations of percussive
cannam@6 166 onsets in the audio signal.
cannam@6 167 </p>
cannam@6 168 <p>The principle is to exploit the broadband nature of noisy percussive
cannam@6 169 onsets by identifying only those frames in which the energy rise shows
cannam@6 170 a broadband profile.
cannam@6 171 </p>
cannam@6 172 <p>The plugin takes a series of frequency domain frames, and examines
cannam@6 173 each frame to count the number of bins whose energy content has
cannam@6 174 increased by more than a certain threshold since the prior frame.
cannam@6 175 Frames in which this number is at a peak relative to prior and
cannam@6 176 following frames and also exceeds another threshold value are
cannam@6 177 classified as percussive onsets.
cannam@6 178 </p>
cannam@6 179 </div><div class="evencontent"><a name="toc16"></a><h3>3.1. &nbsp;Parameters</h3>
cannam@6 180
cannam@6 181 <p><b>Energy rise threshold</b> (dB) &ndash; The rise in energy within a bin from one
cannam@6 182 frame to the next that is required for a bin to be counted toward the
cannam@6 183 detection function's bin count. This roughly corresponds to how
cannam@6 184 "loud" a percussive sound must be in order to be detected.
cannam@6 185 </p>
cannam@6 186 <p><b>Sensitivity</b> (%) &ndash; The proportion of bins that must exceed the energy
cannam@6 187 rise threshold in order for an onset to be detected (at frames in
cannam@6 188 which the detection function peaks). This roughly corresponds to how
cannam@6 189 "noisy" a percussive sound must be in order to be detected.
cannam@6 190 </p>
cannam@6 191 </div><div class="oddcontent"><a name="toc17"></a><h3>3.2. &nbsp;Outputs</h3>
cannam@6 192
cannam@6 193 </div><div class="evencontent"><a name="toc18"></a><h4>3.2.1. &nbsp;Onsets</h4>
cannam@6 194
cannam@6 195 <p>The estimated onset locations.
cannam@6 196 </p>
cannam@6 197 </div><div class="oddcontent"><a name="toc19"></a><h4>3.2.2. &nbsp;Detection Function</h4>
cannam@6 198
cannam@6 199 <p>The energy rise detection function whose peaks were used to estimate
cannam@6 200 onset locations.
cannam@6 201 </p>
cannam@6 202 </div><div class="evencontent"><a name="toc20"></a><h3>3.3. &nbsp;References and Credits</h3>
cannam@6 203
cannam@6 204 <p>The method used in Simple Percussion Onset Detector was described in
cannam@6 205 Dan Barry, Derry Fitzgerald, Eugene Coyle and
cannam@6 206 Bob Lawlor, <i>Drum Source Separation using Percussive Feature Detection and
cannam@6 207 Spectral Modulation</i>, ISSC 2005. The plugin was made by Chris Cannam.
cannam@6 208 </p>
cannam@6 209 </div><div class="oddcontent"><a name="powerspectrum"></a><h2>4. &nbsp;Simple Power Spectrum</h2>
cannam@6 210
cannam@6 211 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:powerspectrum</code><br>
cannam@6 212 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#powerspectrum">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#powerspectrum</a>
cannam@6 213 </p>
cannam@6 214 <p>Simple Power Spectrum returns a power spectrum calculated from
cannam@6 215 windowed short-time Fourier transforms of the input audio. (The power
cannam@6 216 spectrum for a frame consists of a sequence of the squares of the
cannam@6 217 magnitudes of the complex values for each frequency bin in the result
cannam@6 218 of the Fourier transform.)
cannam@6 219 </p>
cannam@6 220 <p>This very simple plugin is an illustration of the fact that if a
cannam@6 221 plugin requests frequency-domain input, its input will already be in
cannam@6 222 the form needed for a spectrum such as this. The plugin has no work
cannam@6 223 left to do except to calculate the squared magnitude from the
cannam@6 224 cartesian complex representation.
cannam@6 225 </p>
cannam@6 226 <p>This plugin also illustrates how to return "grid-type" visualisation
cannam@6 227 data from a Vamp plugin.
cannam@6 228 </p>
cannam@6 229 </div><div class="evencontent"><a name="toc22"></a><h3>4.1. &nbsp;Parameters</h3>
cannam@6 230
cannam@6 231 <p>None.
cannam@6 232 </p>
cannam@6 233 </div><div class="oddcontent"><a name="toc23"></a><h3>4.2. &nbsp;Outputs</h3>
cannam@6 234
cannam@6 235 </div><div class="evencontent"><a name="toc24"></a><h4>4.2.1. &nbsp;Power Spectrum</h4>
cannam@6 236
cannam@6 237 <p>The power spectrum calculated from the input frame. This output
cannam@6 238 returns a single feature per processing block, containing
cannam@6 239 blocksize/2+1 power values corresponding to the FFT bins from DC to
cannam@6 240 Nyquist inclusive. The DC bin is always returned.
cannam@6 241 </p>
cannam@6 242 </div><div class="oddcontent"><a name="spectralcentroid"></a><h2>5. &nbsp;Spectral Centroid</h2>
cannam@6 243
cannam@6 244 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:spectralcentroid</code><br>
cannam@6 245 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#spectralcentroid">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#spectralcentroid</a>
cannam@6 246 </p>
cannam@6 247 <p>Spectral Centroid calculates the "centre of gravity" of the frequency
cannam@6 248 spectrum for each input frame.
cannam@6 249 </p>
cannam@6 250 </div><div class="evencontent"><a name="toc26"></a><h3>5.1. &nbsp;Parameters</h3>
cannam@6 251
cannam@6 252 <p>None.
cannam@6 253 </p>
cannam@6 254 </div><div class="oddcontent"><a name="toc27"></a><h3>5.2. &nbsp;Outputs</h3>
cannam@6 255
cannam@6 256 </div><div class="evencontent"><a name="toc28"></a><h4>5.2.1. &nbsp;Log Frequency Centroid</h4>
cannam@6 257
cannam@6 258 <p>The centroid of the log-weighted frequency spectrum. That is, the sum
cannam@6 259 across Fourier transform output bins of the logarithm of the bin
cannam@6 260 frequency multiplied by the bin magnitude, divided by the sum of the
cannam@6 261 bin magnitudes, and the inverse logarithm taken so as to give the
cannam@6 262 result as a frequency in Hz.
cannam@6 263 </p>
cannam@6 264 </div><div class="oddcontent"><a name="toc29"></a><h4>5.2.2. &nbsp;Linear Frequency Centroid</h4>
cannam@6 265
cannam@6 266 <p>The centroid of the linear-weighted frequency spectrum. That is, the
cannam@6 267 sum across Fourier transform output bins of the bin frequency
cannam@6 268 multiplied by the bin magnitude, divided by the sum of the bin
cannam@6 269 magnitudes. The result is a frequency in Hz.
cannam@6 270 </p>
cannam@6 271 </div><div class="evencontent"><a name="zerocrossing"></a><h2>6. &nbsp;Zero Crossings</h2>
cannam@6 272
cannam@6 273 <p><b>System identifier</b> &ndash; <code>vamp-example-plugins:zerocrossing</code><br>
cannam@6 274 <b>RDF URI</b> &ndash; <a href="http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#zerocrossing">http://vamp-plugins.org/rdf/plugins/vamp-example-plugins#zerocrossing</a>
cannam@6 275 </p>
cannam@6 276 <p>Zero Crossings calculates the positions and density of "zero-crossing"
cannam@6 277 points in an audio waveform. For the purposes of this plugin, that
cannam@6 278 means those positions at which the sampled value switches from
cannam@6 279 zero-or-less to greater-than-zero, or vice versa.
cannam@6 280 </p>
cannam@6 281 </div><div class="oddcontent"><a name="toc31"></a><h3>6.1. &nbsp;Parameters</h3>
cannam@6 282
cannam@6 283 <p>None.
cannam@6 284 </p>
cannam@6 285 </div><div class="evencontent"><a name="toc32"></a><h3>6.2. &nbsp;Outputs</h3>
cannam@6 286
cannam@6 287 </div><div class="oddcontent"><a name="toc33"></a><h4>6.2.1. &nbsp;Zero Crossing Counts</h4>
cannam@6 288
cannam@6 289 <p>The number of zero-crossing points found in the current block of
cannam@6 290 samples, as a single-valued feature returned per processing block.
cannam@6 291 </p>
cannam@6 292 </div><div class="evencontent"><a name="toc34"></a><h4>6.2.2. &nbsp;Zero Crossings</h4>
cannam@6 293
cannam@6 294 <p>The locations of zero-crossing points, returning one feature
cannam@6 295 timestamped to the zero-crossing location, without values, for each
cannam@6 296 crossing point.
cannam@6 297 </p>
cannam@6 298 <p></p>
cannam@6 299
cannam@6 300 </div>
cannam@6 301 </body>
cannam@6 302 </html>