annotate NoveltyCurve.cpp @ 13:7680cc4c0073

* Tidying - made length of array variables type size_t and for loops unsigned int, where index > 0. * Window length parameter is now a dropdown box.
author Carl Bussey <c.bussey@se10.qmul.ac.uk>
date Wed, 13 Aug 2014 14:18:00 +0100
parents 09fb76606b2b
children
rev   line source
c@5 1 //
c@5 2 // NoveltyCurve.cpp
c@5 3 // Tempogram
c@5 4 //
c@5 5 // Created by Carl Bussey on 10/07/2014.
c@5 6 // Copyright (c) 2014 Carl Bussey. All rights reserved.
c@5 7 //
c@5 8
c@11 9 //Spectrogram dimensions should be flipped?
c@11 10
c@7 11 #include "NoveltyCurve.h"
c@11 12 #include <memory>
c@5 13 using namespace std;
c@5 14
c@13 15 NoveltyCurve::NoveltyCurve(const float &samplingFrequency, const size_t &fftLength, const size_t &numberOfBlocks, const size_t &compressionConstant) :
c@5 16 m_samplingFrequency(samplingFrequency),
c@7 17 m_fftLength(fftLength),
c@7 18 m_blockSize(fftLength/2 + 1),
c@5 19 m_numberOfBlocks(numberOfBlocks),
c@5 20 m_compressionConstant(compressionConstant),
c@5 21 m_numberOfBands(5),
c@13 22 m_pBandBoundaries(0),
c@13 23 m_pBandSum(0)
c@5 24 {
c@5 25 initialise();
c@5 26 }
c@5 27
c@5 28 NoveltyCurve::~NoveltyCurve(){
c@5 29 cleanup();
c@5 30 }
c@5 31
c@9 32 //allocate all space and set variable
c@5 33 void
c@5 34 NoveltyCurve::initialise(){
c@5 35
c@13 36 // for bandwise processing, the band is split into 5 bands. m_pBandBoundaries contains the upper and lower bin boundaries for each band.
c@13 37 m_pBandBoundaries = new int[m_numberOfBands+1];
c@13 38 m_pBandBoundaries[0] = 0;
c@13 39 for (unsigned int band = 1; band < m_numberOfBands; band++){
c@13 40 float lowFreq = 500*pow(2.5, (int)band-1);
c@13 41 m_pBandBoundaries[band] = m_fftLength*lowFreq/m_samplingFrequency;
c@5 42 }
c@13 43 m_pBandBoundaries[m_numberOfBands] = m_blockSize;
c@5 44
c@13 45 m_pBandSum = new float [m_numberOfBands];
c@5 46 }
c@5 47
c@9 48 //delete space allocated in initialise()
c@5 49 void
c@5 50 NoveltyCurve::cleanup(){
c@13 51 delete []m_pBandBoundaries;
c@13 52 m_pBandBoundaries = 0;
c@13 53 delete []m_pBandSum;
c@13 54 m_pBandSum = 0;
c@5 55 }
c@5 56
c@9 57 //calculate max of spectrogram
c@13 58 float NoveltyCurve::calculateMax(const vector< vector<float> > &spectrogram) const
c@13 59 {
c@5 60 float max = 0;
c@5 61
c@13 62 for (unsigned int j = 0; j < m_numberOfBlocks; j++){
c@13 63 for (unsigned int i = 0; i < m_blockSize; i++){
c@7 64 max = max > fabs(spectrogram[i][j]) ? max : fabs(spectrogram[i][j]);
c@5 65 }
c@5 66 }
c@5 67
c@5 68 return max;
c@5 69 }
c@5 70
c@9 71 //subtract local average of novelty curve
c@9 72 //uses m_hannWindow as filter
c@13 73 void NoveltyCurve::subtractLocalAverage(vector<float> &noveltyCurve, const size_t &smoothLength) const
c@13 74 {
c@5 75 vector<float> localAverage(m_numberOfBlocks);
c@5 76
c@13 77 float * m_hannWindow = new float[smoothLength];
c@13 78 WindowFunction::hanning(m_hannWindow, smoothLength, true);
c@9 79
c@13 80 FIRFilter filter(m_numberOfBlocks, smoothLength);
c@11 81 filter.process(&noveltyCurve[0], m_hannWindow, &localAverage[0]);
c@5 82
c@7 83 assert(noveltyCurve.size() == m_numberOfBlocks);
c@13 84 for (unsigned int i = 0; i < m_numberOfBlocks; i++){
c@5 85 noveltyCurve[i] -= localAverage[i];
c@5 86 noveltyCurve[i] = noveltyCurve[i] >= 0 ? noveltyCurve[i] : 0;
c@5 87 }
c@9 88
c@11 89 delete []m_hannWindow;
c@13 90 m_hannWindow = 0;
c@5 91 }
c@5 92
c@9 93 //smoothed differentiator filter. Flips upper half of hanning window about y-axis to create coefficients.
c@13 94 void NoveltyCurve::smoothedDifferentiator(vector< vector<float> > &spectrogram, const size_t &smoothLength) const
c@13 95 {
c@7 96
c@7 97 float * diffHannWindow = new float [smoothLength];
c@7 98 WindowFunction::hanning(diffHannWindow, smoothLength, true);
c@7 99
c@7 100 if(smoothLength%2) diffHannWindow[(smoothLength+1)/2 - 1] = 0;
c@13 101 for(unsigned int i = (smoothLength+1)/2; i < smoothLength; i++){
c@7 102 diffHannWindow[i] = -diffHannWindow[i];
c@7 103 }
c@7 104
c@11 105 FIRFilter smoothFilter(m_numberOfBlocks, smoothLength);
c@7 106
c@13 107 for (unsigned int i = 0; i < m_blockSize; i++){
c@11 108 smoothFilter.process(&spectrogram[i][0], diffHannWindow, &spectrogram[i][0]);
c@7 109 }
c@7 110 }
c@7 111
c@9 112 //half rectification (set negative to zero)
c@13 113 void NoveltyCurve::halfWaveRectify(vector< vector<float> > &spectrogram) const
c@13 114 {
c@13 115 for (unsigned int block = 0; block < m_numberOfBlocks; block++){
c@13 116 for (unsigned int k = 0; k < m_blockSize; k++){
c@7 117 if (spectrogram[k][block] < 0.0) spectrogram[k][block] = 0.0;
c@7 118 }
c@7 119 }
c@7 120 }
c@7 121
c@9 122 //process method
c@5 123 vector<float>
c@13 124 NoveltyCurve::spectrogramToNoveltyCurve(Spectrogram spectrogram) const
c@13 125 {
c@13 126 std::vector<float> noveltyCurve(m_numberOfBlocks);
c@7 127
c@7 128 assert(spectrogram.size() == m_blockSize);
c@7 129 assert(spectrogram[0].size() == m_numberOfBlocks);
c@5 130
c@9 131 //normalise and log spectrogram
c@5 132 float normaliseScale = calculateMax(spectrogram);
c@13 133 for (unsigned int block = 0; block < m_numberOfBlocks; block++){
c@13 134 for (unsigned int k = 0; k < m_blockSize; k++){
c@7 135 if(normaliseScale != 0.0) spectrogram[k][block] /= normaliseScale; //normalise
c@7 136 spectrogram[k][block] = log(1+m_compressionConstant*spectrogram[k][block]);
c@7 137 }
c@7 138 }
c@7 139
c@9 140 //smooted differentiator
c@7 141 smoothedDifferentiator(spectrogram, 5); //make smoothLength a parameter!
c@9 142 //halfwave rectification
c@7 143 halfWaveRectify(spectrogram);
c@7 144
c@9 145 //bandwise processing
c@13 146 for (unsigned int block = 0; block < m_numberOfBlocks; block++){
c@13 147 for (unsigned int band = 0; band < m_numberOfBands; band++){
c@13 148 int k = m_pBandBoundaries[band];
c@13 149 int bandEnd = m_pBandBoundaries[band+1];
c@13 150 m_pBandSum[band] = 0;
c@5 151
c@7 152 while(k < bandEnd){
c@13 153 m_pBandSum[band] += spectrogram[k][block];
c@7 154 k++;
c@5 155 }
c@5 156 }
c@5 157 float total = 0;
c@13 158 for(unsigned int band = 0; band < m_numberOfBands; band++){
c@13 159 total += m_pBandSum[band];
c@5 160 }
c@13 161 noveltyCurve[block] = total/m_numberOfBands;
c@5 162 }
c@5 163
c@9 164 //subtract local averages
c@13 165 subtractLocalAverage(noveltyCurve, 65);
c@5 166
c@13 167 return noveltyCurve;
c@7 168 }