Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/geometry/strategies/cartesian/cart_intersect.hpp @ 133:4acb5d8d80b6 tip
Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author | Chris Cannam |
---|---|
date | Tue, 30 Jul 2019 12:25:44 +0100 |
parents | c530137014c0 |
children |
line wrap: on
line source
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2014. // Modifications copyright (c) 2014, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP #include <algorithm> #include <boost/geometry/core/exception.hpp> #include <boost/geometry/geometries/concepts/point_concept.hpp> #include <boost/geometry/geometries/concepts/segment_concept.hpp> #include <boost/geometry/arithmetic/determinant.hpp> #include <boost/geometry/algorithms/detail/assign_values.hpp> #include <boost/geometry/algorithms/detail/assign_indexed_point.hpp> #include <boost/geometry/algorithms/detail/equals/point_point.hpp> #include <boost/geometry/algorithms/detail/recalculate.hpp> #include <boost/geometry/util/math.hpp> #include <boost/geometry/util/select_calculation_type.hpp> // Temporary / will be Strategy as template parameter #include <boost/geometry/strategies/side.hpp> #include <boost/geometry/strategies/cartesian/side_by_triangle.hpp> #include <boost/geometry/strategies/side_info.hpp> #include <boost/geometry/strategies/intersection_result.hpp> #include <boost/geometry/policies/robustness/robust_point_type.hpp> #include <boost/geometry/policies/robustness/segment_ratio_type.hpp> #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS) # include <boost/geometry/io/wkt/write.hpp> #endif namespace boost { namespace geometry { namespace strategy { namespace intersection { /*! \see http://mathworld.wolfram.com/Line-LineIntersection.html */ template <typename Policy, typename CalculationType = void> struct relate_cartesian_segments { typedef typename Policy::return_type return_type; template <typename D, typename W, typename ResultType> static inline void cramers_rule(D const& dx_a, D const& dy_a, D const& dx_b, D const& dy_b, W const& wx, W const& wy, // out: ResultType& d, ResultType& da) { // Cramers rule d = geometry::detail::determinant<ResultType>(dx_a, dy_a, dx_b, dy_b); da = geometry::detail::determinant<ResultType>(dx_b, dy_b, wx, wy); // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1 // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a) } // Relate segments a and b template <typename Segment1, typename Segment2, typename RobustPolicy> static inline return_type apply(Segment1 const& a, Segment2 const& b, RobustPolicy const& robust_policy) { // type them all as in Segment1 - TODO reconsider this, most precise? typedef typename geometry::point_type<Segment1>::type point_type; typedef typename geometry::robust_point_type < point_type, RobustPolicy >::type robust_point_type; point_type a0, a1, b0, b1; robust_point_type a0_rob, a1_rob, b0_rob, b1_rob; detail::assign_point_from_index<0>(a, a0); detail::assign_point_from_index<1>(a, a1); detail::assign_point_from_index<0>(b, b0); detail::assign_point_from_index<1>(b, b1); geometry::recalculate(a0_rob, a0, robust_policy); geometry::recalculate(a1_rob, a1, robust_policy); geometry::recalculate(b0_rob, b0, robust_policy); geometry::recalculate(b1_rob, b1, robust_policy); return apply(a, b, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob); } // The main entry-routine, calculating intersections of segments a / b template <typename Segment1, typename Segment2, typename RobustPolicy, typename RobustPoint> static inline return_type apply(Segment1 const& a, Segment2 const& b, RobustPolicy const& robust_policy, RobustPoint const& robust_a1, RobustPoint const& robust_a2, RobustPoint const& robust_b1, RobustPoint const& robust_b2) { BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment1>) ); BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment2>) ); boost::ignore_unused_variable_warning(robust_policy); typedef typename select_calculation_type <Segment1, Segment2, CalculationType>::type coordinate_type; using geometry::detail::equals::equals_point_point; bool const a_is_point = equals_point_point(robust_a1, robust_a2); bool const b_is_point = equals_point_point(robust_b1, robust_b2); typedef side::side_by_triangle<coordinate_type> side; if(a_is_point && b_is_point) { return equals_point_point(robust_a1, robust_b2) ? Policy::degenerate(a, true) : Policy::disjoint() ; } side_info sides; sides.set<0>(side::apply(robust_b1, robust_b2, robust_a1), side::apply(robust_b1, robust_b2, robust_a2)); sides.set<1>(side::apply(robust_a1, robust_a2, robust_b1), side::apply(robust_a1, robust_a2, robust_b2)); bool collinear = sides.collinear(); if (sides.same<0>() || sides.same<1>()) { // Both points are at same side of other segment, we can leave return Policy::disjoint(); } typedef typename select_most_precise < coordinate_type, double >::type promoted_type; typedef typename geometry::coordinate_type < RobustPoint >::type robust_coordinate_type; typedef typename segment_ratio_type < typename geometry::point_type<Segment1>::type, // TODO: most precise point? RobustPolicy >::type ratio_type; segment_intersection_info < coordinate_type, promoted_type, ratio_type > sinfo; sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b); sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b); robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1); robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1); robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1); robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1); // r: ratio 0-1 where intersection divides A/B // (only calculated for non-collinear segments) if (! collinear) { robust_coordinate_type robust_da0, robust_da; robust_coordinate_type robust_db0, robust_db; cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b, get<0>(robust_a1) - get<0>(robust_b1), get<1>(robust_a1) - get<1>(robust_b1), robust_da0, robust_da); cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a, get<0>(robust_b1) - get<0>(robust_a1), get<1>(robust_b1) - get<1>(robust_a1), robust_db0, robust_db); math::detail::equals_factor_policy<robust_coordinate_type> policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b); robust_coordinate_type const zero = 0; if (math::detail::equals_by_policy(robust_da0, zero, policy) || math::detail::equals_by_policy(robust_db0, zero, policy)) { // If this is the case, no rescaling is done for FP precision. // We set it to collinear, but it indicates a robustness issue. sides.set<0>(0,0); sides.set<1>(0,0); collinear = true; } else { sinfo.robust_ra.assign(robust_da, robust_da0); sinfo.robust_rb.assign(robust_db, robust_db0); } } if (collinear) { std::pair<bool, bool> const collinear_use_first = is_x_more_significant(geometry::math::abs(robust_dx_a), geometry::math::abs(robust_dy_a), geometry::math::abs(robust_dx_b), geometry::math::abs(robust_dy_b), a_is_point, b_is_point); if (collinear_use_first.second) { // Degenerate cases: segments of single point, lying on other segment, are not disjoint // This situation is collinear too if (collinear_use_first.first) { return relate_collinear<0, ratio_type>(a, b, robust_a1, robust_a2, robust_b1, robust_b2, a_is_point, b_is_point); } else { // Y direction contains larger segments (maybe dx is zero) return relate_collinear<1, ratio_type>(a, b, robust_a1, robust_a2, robust_b1, robust_b2, a_is_point, b_is_point); } } } return Policy::segments_crosses(sides, sinfo, a, b); } private: // first is true if x is more significant // second is true if the more significant difference is not 0 template <typename RobustCoordinateType> static inline std::pair<bool, bool> is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a, RobustCoordinateType const& abs_robust_dy_a, RobustCoordinateType const& abs_robust_dx_b, RobustCoordinateType const& abs_robust_dy_b, bool const a_is_point, bool const b_is_point) { //BOOST_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated"); // for degenerated segments the second is always true because this function // shouldn't be called if both segments were degenerated if (a_is_point) { return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true); } else if (b_is_point) { return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true); } else { RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b); RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b); return min_dx == min_dy ? std::make_pair(true, min_dx > RobustCoordinateType(0)) : std::make_pair(min_dx > min_dy, true); } } template < std::size_t Dimension, typename RatioType, typename Segment1, typename Segment2, typename RobustPoint > static inline return_type relate_collinear(Segment1 const& a, Segment2 const& b, RobustPoint const& robust_a1, RobustPoint const& robust_a2, RobustPoint const& robust_b1, RobustPoint const& robust_b2, bool a_is_point, bool b_is_point) { if (a_is_point) { return relate_one_degenerate<RatioType>(a, get<Dimension>(robust_a1), get<Dimension>(robust_b1), get<Dimension>(robust_b2), true); } if (b_is_point) { return relate_one_degenerate<RatioType>(b, get<Dimension>(robust_b1), get<Dimension>(robust_a1), get<Dimension>(robust_a2), false); } return relate_collinear<RatioType>(a, b, get<Dimension>(robust_a1), get<Dimension>(robust_a2), get<Dimension>(robust_b1), get<Dimension>(robust_b2)); } /// Relate segments known collinear template < typename RatioType, typename Segment1, typename Segment2, typename RobustType > static inline return_type relate_collinear(Segment1 const& a , Segment2 const& b , RobustType oa_1, RobustType oa_2 , RobustType ob_1, RobustType ob_2 ) { // Calculate the ratios where a starts in b, b starts in a // a1--------->a2 (2..7) // b1----->b2 (5..8) // length_a: 7-2=5 // length_b: 8-5=3 // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a) // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b) // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b) // A arrives (a2 on b), B departs (b1 on a) // If both are reversed: // a2<---------a1 (7..2) // b2<-----b1 (8..5) // length_a: 2-7=-5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts) // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a) // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // If both one is reversed: // a1--------->a2 (2..7) // b2<-----b1 (8..5) // length_a: 7-2=+5 // length_b: 5-8=-3 // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends) // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) RobustType const length_a = oa_2 - oa_1; // no abs, see above RobustType const length_b = ob_2 - ob_1; RatioType ra_from(oa_1 - ob_1, length_b); RatioType ra_to(oa_2 - ob_1, length_b); RatioType rb_from(ob_1 - oa_1, length_a); RatioType rb_to(ob_2 - oa_1, length_a); // use absolute measure to detect endpoints intersection // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values int const a1_wrt_b = position_value(oa_1, ob_1, ob_2); int const a2_wrt_b = position_value(oa_2, ob_1, ob_2); int const b1_wrt_a = position_value(ob_1, oa_1, oa_2); int const b2_wrt_a = position_value(ob_2, oa_1, oa_2); // fix the ratios if necessary // CONSIDER: fixing ratios also in other cases, if they're inconsistent // e.g. if ratio == 1 or 0 (so IP at the endpoint) // but position value indicates that the IP is in the middle of the segment // because one of the segments is very long // In such case the ratios could be moved into the middle direction // by some small value (e.g. EPS+1ULP) if (a1_wrt_b == 1) { ra_from.assign(0, 1); rb_from.assign(0, 1); } else if (a1_wrt_b == 3) { ra_from.assign(1, 1); rb_to.assign(0, 1); } if (a2_wrt_b == 1) { ra_to.assign(0, 1); rb_from.assign(1, 1); } else if (a2_wrt_b == 3) { ra_to.assign(1, 1); rb_to.assign(1, 1); } if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3)) //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right())) { return Policy::disjoint(); } bool const opposite = math::sign(length_a) != math::sign(length_b); return Policy::segments_collinear(a, b, opposite, a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a, ra_from, ra_to, rb_from, rb_to); } /// Relate segments where one is degenerate template < typename RatioType, typename DegenerateSegment, typename RobustType > static inline return_type relate_one_degenerate( DegenerateSegment const& degenerate_segment , RobustType d , RobustType s1, RobustType s2 , bool a_degenerate ) { // Calculate the ratios where ds starts in s // a1--------->a2 (2..6) // b1/b2 (4..4) // Ratio: (4-2)/(6-2) RatioType const ratio(d - s1, s2 - s1); if (!ratio.on_segment()) { return Policy::disjoint(); } return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate); } template <typename ProjCoord1, typename ProjCoord2> static inline int position_value(ProjCoord1 const& ca1, ProjCoord2 const& cb1, ProjCoord2 const& cb2) { // S1x 0 1 2 3 4 // S2 |----------> return math::equals(ca1, cb1) ? 1 : math::equals(ca1, cb2) ? 3 : cb1 < cb2 ? ( ca1 < cb1 ? 0 : ca1 > cb2 ? 4 : 2 ) : ( ca1 > cb1 ? 0 : ca1 < cb2 ? 4 : 2 ); } }; }} // namespace strategy::intersection }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP