Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/container/detail/tree.hpp @ 133:4acb5d8d80b6 tip
Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author | Chris Cannam |
---|---|
date | Tue, 30 Jul 2019 12:25:44 +0100 |
parents | c530137014c0 |
children |
line wrap: on
line source
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_TREE_HPP #define BOOST_CONTAINER_TREE_HPP #ifndef BOOST_CONFIG_HPP # include <boost/config.hpp> #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include <boost/container/detail/config_begin.hpp> #include <boost/container/detail/workaround.hpp> // container #include <boost/container/allocator_traits.hpp> #include <boost/container/container_fwd.hpp> #include <boost/container/options.hpp> // container/detail #include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare #include <boost/container/detail/compare_functors.hpp> #include <boost/container/detail/destroyers.hpp> #include <boost/container/detail/iterator.hpp> #include <boost/container/detail/iterators.hpp> #include <boost/container/detail/node_alloc_holder.hpp> #include <boost/container/detail/pair.hpp> #include <boost/container/detail/type_traits.hpp> // intrusive #include <boost/intrusive/pointer_traits.hpp> #include <boost/intrusive/rbtree.hpp> #include <boost/intrusive/avltree.hpp> #include <boost/intrusive/splaytree.hpp> #include <boost/intrusive/sgtree.hpp> // intrusive/detail #include <boost/intrusive/detail/minimal_pair_header.hpp> //pair // move #include <boost/move/utility_core.hpp> // move/detail #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include <boost/move/detail/fwd_macros.hpp> #endif // other #include <boost/core/no_exceptions_support.hpp> namespace boost { namespace container { namespace container_detail { template<class Key, class T, class Compare, class KeyOfValue> struct tree_value_compare : public Compare { typedef T value_type; typedef Compare key_compare; typedef KeyOfValue key_of_value; typedef Key key_type; explicit tree_value_compare(const key_compare &kcomp) : Compare(kcomp) {} tree_value_compare() : Compare() {} const key_compare &key_comp() const { return static_cast<const key_compare &>(*this); } key_compare &key_comp() { return static_cast<key_compare &>(*this); } template<class U> struct is_key { static const bool value = is_same<const U, const key_type>::value; }; template<class U> typename enable_if_c<is_key<U>::value, const key_type &>::type key_forward(const U &key) const { return key; } template<class U> typename enable_if_c<!is_key<U>::value, const key_type &>::type key_forward(const U &key) const { return KeyOfValue()(key); } template<class KeyType, class KeyType2> bool operator()(const KeyType &key1, const KeyType2 &key2) const { return key_compare::operator()(this->key_forward(key1), this->key_forward(key2)); } template<class KeyType, class KeyType2> bool operator()(const KeyType &key1, const KeyType2 &key2) { return key_compare::operator()(this->key_forward(key1), this->key_forward(key2)); } }; template<class VoidPointer, boost::container::tree_type_enum tree_type_value, bool OptimizeSize> struct intrusive_tree_hook; template<class VoidPointer, bool OptimizeSize> struct intrusive_tree_hook<VoidPointer, boost::container::red_black_tree, OptimizeSize> { typedef typename container_detail::bi::make_set_base_hook < container_detail::bi::void_pointer<VoidPointer> , container_detail::bi::link_mode<container_detail::bi::normal_link> , container_detail::bi::optimize_size<OptimizeSize> >::type type; }; template<class VoidPointer, bool OptimizeSize> struct intrusive_tree_hook<VoidPointer, boost::container::avl_tree, OptimizeSize> { typedef typename container_detail::bi::make_avl_set_base_hook < container_detail::bi::void_pointer<VoidPointer> , container_detail::bi::link_mode<container_detail::bi::normal_link> , container_detail::bi::optimize_size<OptimizeSize> >::type type; }; template<class VoidPointer, bool OptimizeSize> struct intrusive_tree_hook<VoidPointer, boost::container::scapegoat_tree, OptimizeSize> { typedef typename container_detail::bi::make_bs_set_base_hook < container_detail::bi::void_pointer<VoidPointer> , container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type; }; template<class VoidPointer, bool OptimizeSize> struct intrusive_tree_hook<VoidPointer, boost::container::splay_tree, OptimizeSize> { typedef typename container_detail::bi::make_bs_set_base_hook < container_detail::bi::void_pointer<VoidPointer> , container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type; }; //This trait is used to type-pun std::pair because in C++03 //compilers std::pair is useless for C++11 features template<class T> struct tree_internal_data_type { typedef T type; }; template<class T1, class T2> struct tree_internal_data_type< std::pair<T1, T2> > { typedef pair<T1, T2> type; }; //The node to be store in the tree template <class T, class VoidPointer, boost::container::tree_type_enum tree_type_value, bool OptimizeSize> struct tree_node : public intrusive_tree_hook<VoidPointer, tree_type_value, OptimizeSize>::type { private: //BOOST_COPYABLE_AND_MOVABLE(tree_node) tree_node(); public: typedef typename intrusive_tree_hook <VoidPointer, tree_type_value, OptimizeSize>::type hook_type; typedef T value_type; typedef typename tree_internal_data_type<T>::type internal_type; typedef tree_node< T, VoidPointer , tree_type_value, OptimizeSize> node_type; T &get_data() { T* ptr = reinterpret_cast<T*>(&this->m_data); return *ptr; } const T &get_data() const { const T* ptr = reinterpret_cast<const T*>(&this->m_data); return *ptr; } internal_type m_data; template<class T1, class T2> void do_assign(const std::pair<const T1, T2> &p) { const_cast<T1&>(m_data.first) = p.first; m_data.second = p.second; } template<class T1, class T2> void do_assign(const pair<const T1, T2> &p) { const_cast<T1&>(m_data.first) = p.first; m_data.second = p.second; } template<class V> void do_assign(const V &v) { m_data = v; } template<class T1, class T2> void do_move_assign(std::pair<const T1, T2> &p) { const_cast<T1&>(m_data.first) = ::boost::move(p.first); m_data.second = ::boost::move(p.second); } template<class T1, class T2> void do_move_assign(pair<const T1, T2> &p) { const_cast<T1&>(m_data.first) = ::boost::move(p.first); m_data.second = ::boost::move(p.second); } template<class V> void do_move_assign(V &v) { m_data = ::boost::move(v); } }; template <class T, class VoidPointer, boost::container::tree_type_enum tree_type_value, bool OptimizeSize> struct iiterator_node_value_type< tree_node<T, VoidPointer, tree_type_value, OptimizeSize> > { typedef T type; }; template<class Node, class Icont> class insert_equal_end_hint_functor { Icont &icont_; public: insert_equal_end_hint_functor(Icont &icont) : icont_(icont) {} void operator()(Node &n) { this->icont_.insert_equal(this->icont_.cend(), n); } }; template<class Node, class Icont> class push_back_functor { Icont &icont_; public: push_back_functor(Icont &icont) : icont_(icont) {} void operator()(Node &n) { this->icont_.push_back(n); } }; }//namespace container_detail { namespace container_detail { template< class NodeType, class NodeCompareType , class SizeType, class HookType , boost::container::tree_type_enum tree_type_value> struct intrusive_tree_dispatch; template<class NodeType, class NodeCompareType, class SizeType, class HookType> struct intrusive_tree_dispatch <NodeType, NodeCompareType, SizeType, HookType, boost::container::red_black_tree> { typedef typename container_detail::bi::make_rbtree <NodeType ,container_detail::bi::compare<NodeCompareType> ,container_detail::bi::base_hook<HookType> ,container_detail::bi::constant_time_size<true> ,container_detail::bi::size_type<SizeType> >::type type; }; template<class NodeType, class NodeCompareType, class SizeType, class HookType> struct intrusive_tree_dispatch <NodeType, NodeCompareType, SizeType, HookType, boost::container::avl_tree> { typedef typename container_detail::bi::make_avltree <NodeType ,container_detail::bi::compare<NodeCompareType> ,container_detail::bi::base_hook<HookType> ,container_detail::bi::constant_time_size<true> ,container_detail::bi::size_type<SizeType> >::type type; }; template<class NodeType, class NodeCompareType, class SizeType, class HookType> struct intrusive_tree_dispatch <NodeType, NodeCompareType, SizeType, HookType, boost::container::scapegoat_tree> { typedef typename container_detail::bi::make_sgtree <NodeType ,container_detail::bi::compare<NodeCompareType> ,container_detail::bi::base_hook<HookType> ,container_detail::bi::floating_point<true> ,container_detail::bi::size_type<SizeType> >::type type; }; template<class NodeType, class NodeCompareType, class SizeType, class HookType> struct intrusive_tree_dispatch <NodeType, NodeCompareType, SizeType, HookType, boost::container::splay_tree> { typedef typename container_detail::bi::make_splaytree <NodeType ,container_detail::bi::compare<NodeCompareType> ,container_detail::bi::base_hook<HookType> ,container_detail::bi::constant_time_size<true> ,container_detail::bi::size_type<SizeType> >::type type; }; template<class Allocator, class ValueCompare, boost::container::tree_type_enum tree_type_value, bool OptimizeSize> struct intrusive_tree_type { private: typedef typename boost::container:: allocator_traits<Allocator>::value_type value_type; typedef typename boost::container:: allocator_traits<Allocator>::void_pointer void_pointer; typedef typename boost::container:: allocator_traits<Allocator>::size_type size_type; typedef typename container_detail::tree_node < value_type, void_pointer , tree_type_value, OptimizeSize> node_type; typedef value_to_node_compare <node_type, ValueCompare> node_compare_type; //Deducing the hook type from node_type (e.g. node_type::hook_type) would //provoke an early instantiation of node_type that could ruin recursive //tree definitions, so retype the complete type to avoid any problem. typedef typename intrusive_tree_hook <void_pointer, tree_type_value , OptimizeSize>::type hook_type; public: typedef typename intrusive_tree_dispatch < node_type, node_compare_type , size_type, hook_type , tree_type_value>::type type; }; //Trait to detect manually rebalanceable tree types template<boost::container::tree_type_enum tree_type_value> struct is_manually_balanceable { static const bool value = true; }; template<> struct is_manually_balanceable<red_black_tree> { static const bool value = false; }; template<> struct is_manually_balanceable<avl_tree> { static const bool value = false; }; //Proxy traits to implement different operations depending on the //is_manually_balanceable<>::value template< boost::container::tree_type_enum tree_type_value , bool IsManuallyRebalanceable = is_manually_balanceable<tree_type_value>::value> struct intrusive_tree_proxy { template<class Icont> static void rebalance(Icont &) {} }; template<boost::container::tree_type_enum tree_type_value> struct intrusive_tree_proxy<tree_type_value, true> { template<class Icont> static void rebalance(Icont &c) { c.rebalance(); } }; } //namespace container_detail { namespace container_detail { //This functor will be used with Intrusive clone functions to obtain //already allocated nodes from a intrusive container instead of //allocating new ones. When the intrusive container runs out of nodes //the node holder is used instead. template<class AllocHolder, bool DoMove> class RecyclingCloner { typedef typename AllocHolder::intrusive_container intrusive_container; typedef typename AllocHolder::Node node_type; typedef typename AllocHolder::NodePtr node_ptr_type; public: RecyclingCloner(AllocHolder &holder, intrusive_container &itree) : m_holder(holder), m_icont(itree) {} static void do_assign(node_ptr_type &p, const node_type &other, bool_<true>) { p->do_move_assign(const_cast<node_type &>(other).m_data); } static void do_assign(node_ptr_type &p, const node_type &other, bool_<false>) { p->do_assign(other.m_data); } node_ptr_type operator()(const node_type &other) const { if(node_ptr_type p = m_icont.unlink_leftmost_without_rebalance()){ //First recycle a node (this can't throw) BOOST_TRY{ //This can throw this->do_assign(p, other, bool_<DoMove>()); return p; } BOOST_CATCH(...){ //If there is an exception destroy the whole source m_holder.destroy_node(p); while((p = m_icont.unlink_leftmost_without_rebalance())){ m_holder.destroy_node(p); } BOOST_RETHROW } BOOST_CATCH_END } else{ return m_holder.create_node(other.m_data); } } AllocHolder &m_holder; intrusive_container &m_icont; }; template<class KeyValueCompare, class Node> //where KeyValueCompare is tree_value_compare<Key, T, Compare, KeyOfValue> struct key_node_compare : private KeyValueCompare { explicit key_node_compare(const KeyValueCompare &comp) : KeyValueCompare(comp) {} template<class T> struct is_node { static const bool value = is_same<T, Node>::value; }; template<class T> typename enable_if_c<is_node<T>::value, const typename KeyValueCompare::value_type &>::type key_forward(const T &node) const { return node.get_data(); } template<class T> typename enable_if_c<!is_node<T>::value, const T &>::type key_forward(const T &key) const { return key; } template<class KeyType, class KeyType2> bool operator()(const KeyType &key1, const KeyType2 &key2) const { return KeyValueCompare::operator()(this->key_forward(key1), this->key_forward(key2)); } }; template <class Key, class T, class KeyOfValue, class Compare, class Allocator, class Options = tree_assoc_defaults> class tree : protected container_detail::node_alloc_holder < Allocator , typename container_detail::intrusive_tree_type < Allocator, tree_value_compare<Key, T, Compare, KeyOfValue> //ValComp , Options::tree_type, Options::optimize_size>::type > { typedef tree_value_compare <Key, T, Compare, KeyOfValue> ValComp; typedef typename container_detail::intrusive_tree_type < Allocator, ValComp, Options::tree_type , Options::optimize_size>::type Icont; typedef container_detail::node_alloc_holder <Allocator, Icont> AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef tree < Key, T, KeyOfValue , Compare, Allocator, Options> ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef boost::container:: allocator_traits<NodeAlloc> allocator_traits_type; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef typename Icont::iterator iiterator; typedef typename Icont::const_iterator iconst_iterator; typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer; typedef typename AllocHolder::alloc_version alloc_version; typedef intrusive_tree_proxy<Options::tree_type> intrusive_tree_proxy_t; BOOST_COPYABLE_AND_MOVABLE(tree) public: typedef Key key_type; typedef T value_type; typedef Allocator allocator_type; typedef Compare key_compare; typedef ValComp value_compare; typedef typename boost::container:: allocator_traits<Allocator>::pointer pointer; typedef typename boost::container:: allocator_traits<Allocator>::const_pointer const_pointer; typedef typename boost::container:: allocator_traits<Allocator>::reference reference; typedef typename boost::container:: allocator_traits<Allocator>::const_reference const_reference; typedef typename boost::container:: allocator_traits<Allocator>::size_type size_type; typedef typename boost::container:: allocator_traits<Allocator>::difference_type difference_type; typedef difference_type tree_difference_type; typedef pointer tree_pointer; typedef const_pointer tree_const_pointer; typedef reference tree_reference; typedef const_reference tree_const_reference; typedef NodeAlloc stored_allocator_type; private: typedef key_node_compare<value_compare, Node> KeyNodeCompare; public: typedef container_detail::iterator_from_iiterator<iiterator, false> iterator; typedef container_detail::iterator_from_iiterator<iiterator, true > const_iterator; typedef boost::container::reverse_iterator<iterator> reverse_iterator; typedef boost::container::reverse_iterator<const_iterator> const_reverse_iterator; tree() : AllocHolder() {} explicit tree(const key_compare& comp, const allocator_type& a = allocator_type()) : AllocHolder(ValComp(comp), a) {} explicit tree(const allocator_type& a) : AllocHolder(a) {} template <class InputIterator> tree(bool unique_insertion, InputIterator first, InputIterator last, const key_compare& comp, const allocator_type& a #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < container_detail::is_input_iterator<InputIterator>::value || container_detail::is_same<alloc_version, version_1>::value >::type * = 0 #endif ) : AllocHolder(value_compare(comp), a) { //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor const const_iterator end_it(this->cend()); if(unique_insertion){ for ( ; first != last; ++first){ this->insert_unique(end_it, *first); } } else{ for ( ; first != last; ++first){ this->insert_equal(end_it, *first); } } } template <class InputIterator> tree(bool unique_insertion, InputIterator first, InputIterator last, const key_compare& comp, const allocator_type& a #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !(container_detail::is_input_iterator<InputIterator>::value || container_detail::is_same<alloc_version, version_1>::value) >::type * = 0 #endif ) : AllocHolder(value_compare(comp), a) { if(unique_insertion){ //Use cend() as hint to achieve linear time for //ordered ranges as required by the standard //for the constructor const const_iterator end_it(this->cend()); for ( ; first != last; ++first){ this->insert_unique(end_it, *first); } } else{ //Optimized allocation and construction this->allocate_many_and_construct ( first, boost::container::iterator_distance(first, last) , insert_equal_end_hint_functor<Node, Icont>(this->icont())); } } template <class InputIterator> tree( ordered_range_t, InputIterator first, InputIterator last , const key_compare& comp = key_compare(), const allocator_type& a = allocator_type() #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < container_detail::is_input_iterator<InputIterator>::value || container_detail::is_same<alloc_version, version_1>::value >::type * = 0 #endif ) : AllocHolder(value_compare(comp), a) { for ( ; first != last; ++first){ this->push_back_impl(*first); } } template <class InputIterator> tree( ordered_range_t, InputIterator first, InputIterator last , const key_compare& comp = key_compare(), const allocator_type& a = allocator_type() #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !(container_detail::is_input_iterator<InputIterator>::value || container_detail::is_same<alloc_version, version_1>::value) >::type * = 0 #endif ) : AllocHolder(value_compare(comp), a) { //Optimized allocation and construction this->allocate_many_and_construct ( first, boost::container::iterator_distance(first, last) , container_detail::push_back_functor<Node, Icont>(this->icont())); } tree(const tree& x) : AllocHolder(x.value_comp(), x) { this->icont().clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); } tree(BOOST_RV_REF(tree) x) : AllocHolder(BOOST_MOVE_BASE(AllocHolder, x), x.value_comp()) {} tree(const tree& x, const allocator_type &a) : AllocHolder(x.value_comp(), a) { this->icont().clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); } tree(BOOST_RV_REF(tree) x, const allocator_type &a) : AllocHolder(x.value_comp(), a) { if(this->node_alloc() == x.node_alloc()){ this->icont().swap(x.icont()); } else{ this->icont().clone_from (x.icont(), typename AllocHolder::move_cloner(*this), Destroyer(this->node_alloc())); } } ~tree() {} //AllocHolder clears the tree tree& operator=(BOOST_COPY_ASSIGN_REF(tree) x) { if (&x != this){ NodeAlloc &this_alloc = this->get_stored_allocator(); const NodeAlloc &x_alloc = x.get_stored_allocator(); container_detail::bool_<allocator_traits<NodeAlloc>:: propagate_on_container_copy_assignment::value> flag; if(flag && this_alloc != x_alloc){ this->clear(); } this->AllocHolder::copy_assign_alloc(x); //Transfer all the nodes to a temporary tree //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_tree(::boost::move(this->icont())); //Now recreate the source tree reusing nodes stored by other_tree this->icont().clone_from (x.icont() , RecyclingCloner<AllocHolder, false>(*this, other_tree) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them NodePtr p; while((p = other_tree.unlink_leftmost_without_rebalance())){ AllocHolder::destroy_node(p); } } return *this; } tree& operator=(BOOST_RV_REF(tree) x) BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value && boost::container::container_detail::is_nothrow_move_assignable<Compare>::value ) { BOOST_ASSERT(this != &x); NodeAlloc &this_alloc = this->node_alloc(); NodeAlloc &x_alloc = x.node_alloc(); const bool propagate_alloc = allocator_traits<NodeAlloc>:: propagate_on_container_move_assignment::value; const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal; //Resources can be transferred if both allocators are //going to be equal after this function (either propagated or already equal) if(propagate_alloc || allocators_equal){ //Destroy this->clear(); //Move allocator if needed this->AllocHolder::move_assign_alloc(x); //Obtain resources this->icont() = boost::move(x.icont()); } //Else do a one by one move else{ //Transfer all the nodes to a temporary tree //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_tree(::boost::move(this->icont())); //Now recreate the source tree reusing nodes stored by other_tree this->icont().clone_from (x.icont() , RecyclingCloner<AllocHolder, true>(*this, other_tree) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them NodePtr p; while((p = other_tree.unlink_leftmost_without_rebalance())){ AllocHolder::destroy_node(p); } } return *this; } public: // accessors: value_compare value_comp() const { return this->icont().value_comp().predicate(); } key_compare key_comp() const { return this->icont().value_comp().predicate().key_comp(); } allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } iterator begin() { return iterator(this->icont().begin()); } const_iterator begin() const { return this->cbegin(); } iterator end() { return iterator(this->icont().end()); } const_iterator end() const { return this->cend(); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return this->crbegin(); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return this->crend(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return const_iterator(this->non_const_icont().begin()); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return const_iterator(this->non_const_icont().end()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); } bool empty() const { return !this->size(); } size_type size() const { return this->icont().size(); } size_type max_size() const { return AllocHolder::max_size(); } void swap(ThisType& x) BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value && boost::container::container_detail::is_nothrow_swappable<Compare>::value ) { AllocHolder::swap(x); } public: typedef typename Icont::insert_commit_data insert_commit_data; // insert/erase std::pair<iterator,bool> insert_unique_check (const key_type& key, insert_commit_data &data) { std::pair<iiterator, bool> ret = this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data); return std::pair<iterator, bool>(iterator(ret.first), ret.second); } std::pair<iterator,bool> insert_unique_check (const_iterator hint, const key_type& key, insert_commit_data &data) { std::pair<iiterator, bool> ret = this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data); return std::pair<iterator, bool>(iterator(ret.first), ret.second); } iterator insert_unique_commit(const value_type& v, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(v); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_unique_commit(*tmp, data)); destroy_deallocator.release(); return ret; } template<class MovableConvertible> iterator insert_unique_commit (BOOST_FWD_REF(MovableConvertible) v, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(boost::forward<MovableConvertible>(v)); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_unique_commit(*tmp, data)); destroy_deallocator.release(); return ret; } std::pair<iterator,bool> insert_unique(const value_type& v) { insert_commit_data data; std::pair<iterator,bool> ret = this->insert_unique_check(KeyOfValue()(v), data); if(ret.second){ ret.first = this->insert_unique_commit(v, data); } return ret; } template<class MovableConvertible> std::pair<iterator,bool> insert_unique(BOOST_FWD_REF(MovableConvertible) v) { insert_commit_data data; std::pair<iterator,bool> ret = this->insert_unique_check(KeyOfValue()(v), data); if(ret.second){ ret.first = this->insert_unique_commit(boost::forward<MovableConvertible>(v), data); } return ret; } private: template<class MovableConvertible> void push_back_impl(BOOST_FWD_REF(MovableConvertible) v) { NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v))); //push_back has no-throw guarantee so avoid any deallocator/destroyer this->icont().push_back(*tmp); } std::pair<iterator, bool> emplace_unique_impl(NodePtr p) { value_type &v = p->get_data(); insert_commit_data data; scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(p, this->node_alloc()); std::pair<iterator,bool> ret = this->insert_unique_check(KeyOfValue()(v), data); if(!ret.second){ return ret; } //No throw insertion part, release rollback destroy_deallocator.release(); return std::pair<iterator,bool> ( iterator(iiterator(this->icont().insert_unique_commit(*p, data))) , true ); } iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p) { value_type &v = p->get_data(); insert_commit_data data; std::pair<iterator,bool> ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second){ Destroyer(this->node_alloc())(p); return ret.first; } return iterator(iiterator(this->icont().insert_unique_commit(*p, data))); } public: #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> std::pair<iterator, bool> emplace_unique(BOOST_FWD_REF(Args)... args) { return this->emplace_unique_impl(AllocHolder::create_node(boost::forward<Args>(args)...)); } template <class... Args> iterator emplace_hint_unique(const_iterator hint, BOOST_FWD_REF(Args)... args) { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::forward<Args>(args)...)); } template <class... Args> iterator emplace_equal(BOOST_FWD_REF(Args)... args) { NodePtr tmp(AllocHolder::create_node(boost::forward<Args>(args)...)); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(this->icont().end(), *tmp)); destroy_deallocator.release(); return ret; } template <class... Args> iterator emplace_hint_equal(const_iterator hint, BOOST_FWD_REF(Args)... args) { NodePtr tmp(AllocHolder::create_node(boost::forward<Args>(args)...)); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(hint.get(), *tmp)); destroy_deallocator.release(); return ret; } #else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_CONTAINER_TREE_EMPLACE_CODE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ std::pair<iterator, bool> emplace_unique(BOOST_MOVE_UREF##N)\ { return this->emplace_unique_impl(AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_unique(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_equal(BOOST_MOVE_UREF##N)\ {\ NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\ scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());\ iterator ret(this->icont().insert_equal(this->icont().end(), *tmp));\ destroy_deallocator.release();\ return ret;\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \ iterator emplace_hint_equal(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\ scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());\ iterator ret(this->icont().insert_equal(hint.get(), *tmp));\ destroy_deallocator.release();\ return ret;\ }\ // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_TREE_EMPLACE_CODE) #undef BOOST_CONTAINER_TREE_EMPLACE_CODE #endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) iterator insert_unique(const_iterator hint, const value_type& v) { insert_commit_data data; std::pair<iterator,bool> ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second) return ret.first; return this->insert_unique_commit(v, data); } template<class MovableConvertible> iterator insert_unique(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v) { insert_commit_data data; std::pair<iterator,bool> ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second) return ret.first; return this->insert_unique_commit(boost::forward<MovableConvertible>(v), data); } template <class InputIterator> void insert_unique(InputIterator first, InputIterator last) { for( ; first != last; ++first) this->insert_unique(*first); } iterator insert_equal(const value_type& v) { NodePtr tmp(AllocHolder::create_node(v)); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(this->icont().end(), *tmp)); destroy_deallocator.release(); return ret; } template<class MovableConvertible> iterator insert_equal(BOOST_FWD_REF(MovableConvertible) v) { NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v))); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(this->icont().end(), *tmp)); destroy_deallocator.release(); return ret; } iterator insert_equal(const_iterator hint, const value_type& v) { NodePtr tmp(AllocHolder::create_node(v)); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(hint.get(), *tmp)); destroy_deallocator.release(); return ret; } template<class MovableConvertible> iterator insert_equal(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v) { NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v))); scoped_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc()); iterator ret(this->icont().insert_equal(hint.get(), *tmp)); destroy_deallocator.release(); return ret; } template <class InputIterator> void insert_equal(InputIterator first, InputIterator last) { for( ; first != last; ++first) this->insert_equal(*first); } iterator erase(const_iterator position) { return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); } size_type erase(const key_type& k) { return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); } iterator erase(const_iterator first, const_iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } void clear() { AllocHolder::clear(alloc_version()); } // search operations. Const and non-const overloads even if no iterator is returned // so splay implementations can to their rebalancing when searching in non-const versions iterator find(const key_type& k) { return iterator(this->icont().find(k, KeyNodeCompare(value_comp()))); } const_iterator find(const key_type& k) const { return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp()))); } size_type count(const key_type& k) const { return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); } iterator lower_bound(const key_type& k) { return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp()))); } const_iterator lower_bound(const key_type& k) const { return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp()))); } iterator upper_bound(const key_type& k) { return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp()))); } const_iterator upper_bound(const key_type& k) const { return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp()))); } std::pair<iterator,iterator> equal_range(const key_type& k) { std::pair<iiterator, iiterator> ret = this->icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second)); } std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const { std::pair<iiterator, iiterator> ret = this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair<const_iterator,const_iterator> (const_iterator(ret.first), const_iterator(ret.second)); } std::pair<iterator,iterator> lower_bound_range(const key_type& k) { std::pair<iiterator, iiterator> ret = this->icont().lower_bound_range(k, KeyNodeCompare(value_comp())); return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second)); } std::pair<const_iterator, const_iterator> lower_bound_range(const key_type& k) const { std::pair<iiterator, iiterator> ret = this->non_const_icont().lower_bound_range(k, KeyNodeCompare(value_comp())); return std::pair<const_iterator,const_iterator> (const_iterator(ret.first), const_iterator(ret.second)); } void rebalance() { intrusive_tree_proxy_t::rebalance(this->icont()); } friend bool operator==(const tree& x, const tree& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } friend bool operator<(const tree& x, const tree& y) { return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } friend bool operator!=(const tree& x, const tree& y) { return !(x == y); } friend bool operator>(const tree& x, const tree& y) { return y < x; } friend bool operator<=(const tree& x, const tree& y) { return !(y < x); } friend bool operator>=(const tree& x, const tree& y) { return !(x < y); } friend void swap(tree& x, tree& y) { x.swap(y); } }; } //namespace container_detail { } //namespace container { template <class T> struct has_trivial_destructor_after_move; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class Key, class T, class KeyOfValue, class Compare, class Allocator, class Options> struct has_trivial_destructor_after_move < ::boost::container::container_detail::tree <Key, T, KeyOfValue, Compare, Allocator, Options> > { typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; static const bool value = ::boost::has_trivial_destructor_after_move<Allocator>::value && ::boost::has_trivial_destructor_after_move<pointer>::value && ::boost::has_trivial_destructor_after_move<Compare>::value; }; } //namespace boost { #include <boost/container/detail/config_end.hpp> #endif //BOOST_CONTAINER_TREE_HPP