Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/random/tests/test_random.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/random/tests/test_random.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,707 @@ +from __future__ import division, absolute_import, print_function + +import numpy as np +from numpy.testing import ( + TestCase, run_module_suite, assert_, assert_raises, assert_equal, + assert_warns) +from numpy import random +from numpy.compat import asbytes +import sys + +class TestSeed(TestCase): + def test_scalar(self): + s = np.random.RandomState(0) + assert_equal(s.randint(1000), 684) + s = np.random.RandomState(4294967295) + assert_equal(s.randint(1000), 419) + + def test_array(self): + s = np.random.RandomState(range(10)) + assert_equal(s.randint(1000), 468) + s = np.random.RandomState(np.arange(10)) + assert_equal(s.randint(1000), 468) + s = np.random.RandomState([0]) + assert_equal(s.randint(1000), 973) + s = np.random.RandomState([4294967295]) + assert_equal(s.randint(1000), 265) + + def test_invalid_scalar(self): + # seed must be a unsigned 32 bit integers + assert_raises(TypeError, np.random.RandomState, -0.5) + assert_raises(ValueError, np.random.RandomState, -1) + + def test_invalid_array(self): + # seed must be a unsigned 32 bit integers + assert_raises(TypeError, np.random.RandomState, [-0.5]) + assert_raises(ValueError, np.random.RandomState, [-1]) + assert_raises(ValueError, np.random.RandomState, [4294967296]) + assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296]) + assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296]) + +class TestBinomial(TestCase): + def test_n_zero(self): + # Tests the corner case of n == 0 for the binomial distribution. + # binomial(0, p) should be zero for any p in [0, 1]. + # This test addresses issue #3480. + zeros = np.zeros(2, dtype='int') + for p in [0, .5, 1]: + assert_(random.binomial(0, p) == 0) + np.testing.assert_array_equal(random.binomial(zeros, p), zeros) + + def test_p_is_nan(self): + # Issue #4571. + assert_raises(ValueError, random.binomial, 1, np.nan) + + +class TestMultinomial(TestCase): + def test_basic(self): + random.multinomial(100, [0.2, 0.8]) + + def test_zero_probability(self): + random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) + + def test_int_negative_interval(self): + assert_(-5 <= random.randint(-5, -1) < -1) + x = random.randint(-5, -1, 5) + assert_(np.all(-5 <= x)) + assert_(np.all(x < -1)) + + def test_size(self): + # gh-3173 + p = [0.5, 0.5] + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) + assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) + assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, + (2, 2, 2)) + + assert_raises(TypeError, np.random.multinomial, 1, p, + np.float(1)) + + +class TestSetState(TestCase): + def setUp(self): + self.seed = 1234567890 + self.prng = random.RandomState(self.seed) + self.state = self.prng.get_state() + + def test_basic(self): + old = self.prng.tomaxint(16) + self.prng.set_state(self.state) + new = self.prng.tomaxint(16) + assert_(np.all(old == new)) + + def test_gaussian_reset(self): + # Make sure the cached every-other-Gaussian is reset. + old = self.prng.standard_normal(size=3) + self.prng.set_state(self.state) + new = self.prng.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_gaussian_reset_in_media_res(self): + # When the state is saved with a cached Gaussian, make sure the + # cached Gaussian is restored. + + self.prng.standard_normal() + state = self.prng.get_state() + old = self.prng.standard_normal(size=3) + self.prng.set_state(state) + new = self.prng.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_backwards_compatibility(self): + # Make sure we can accept old state tuples that do not have the + # cached Gaussian value. + old_state = self.state[:-2] + x1 = self.prng.standard_normal(size=16) + self.prng.set_state(old_state) + x2 = self.prng.standard_normal(size=16) + self.prng.set_state(self.state) + x3 = self.prng.standard_normal(size=16) + assert_(np.all(x1 == x2)) + assert_(np.all(x1 == x3)) + + def test_negative_binomial(self): + # Ensure that the negative binomial results take floating point + # arguments without truncation. + self.prng.negative_binomial(0.5, 0.5) + +class TestRandomDist(TestCase): + # Make sure the random distrobution return the correct value for a + # given seed + + def setUp(self): + self.seed = 1234567890 + + def test_rand(self): + np.random.seed(self.seed) + actual = np.random.rand(3, 2) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_randn(self): + np.random.seed(self.seed) + actual = np.random.randn(3, 2) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_randint(self): + np.random.seed(self.seed) + actual = np.random.randint(-99, 99, size=(3, 2)) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + np.testing.assert_array_equal(actual, desired) + + def test_random_integers(self): + np.random.seed(self.seed) + actual = np.random.random_integers(-99, 99, size=(3, 2)) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + np.testing.assert_array_equal(actual, desired) + + def test_random_sample(self): + np.random.seed(self.seed) + actual = np.random.random_sample((3, 2)) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_choice_uniform_replace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 4) + desired = np.array([2, 3, 2, 3]) + np.testing.assert_array_equal(actual, desired) + + def test_choice_nonuniform_replace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) + desired = np.array([1, 1, 2, 2]) + np.testing.assert_array_equal(actual, desired) + + def test_choice_uniform_noreplace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 3, replace=False) + desired = np.array([0, 1, 3]) + np.testing.assert_array_equal(actual, desired) + + def test_choice_nonuniform_noreplace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 3, replace=False, + p=[0.1, 0.3, 0.5, 0.1]) + desired = np.array([2, 3, 1]) + np.testing.assert_array_equal(actual, desired) + + def test_choice_noninteger(self): + np.random.seed(self.seed) + actual = np.random.choice(['a', 'b', 'c', 'd'], 4) + desired = np.array(['c', 'd', 'c', 'd']) + np.testing.assert_array_equal(actual, desired) + + def test_choice_exceptions(self): + sample = np.random.choice + assert_raises(ValueError, sample, -1, 3) + assert_raises(ValueError, sample, 3., 3) + assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) + assert_raises(ValueError, sample, [], 3) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False, + p=[1, 0, 0]) + + def test_choice_return_shape(self): + p = [0.1, 0.9] + # Check scalar + assert_(np.isscalar(np.random.choice(2, replace=True))) + assert_(np.isscalar(np.random.choice(2, replace=False))) + assert_(np.isscalar(np.random.choice(2, replace=True, p=p))) + assert_(np.isscalar(np.random.choice(2, replace=False, p=p))) + assert_(np.isscalar(np.random.choice([1, 2], replace=True))) + assert_(np.random.choice([None], replace=True) is None) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(np.random.choice(arr, replace=True) is a) + + # Check 0-d array + s = tuple() + assert_(not np.isscalar(np.random.choice(2, s, replace=True))) + assert_(not np.isscalar(np.random.choice(2, s, replace=False))) + assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p))) + assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p))) + assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True))) + assert_(np.random.choice([None], s, replace=True).ndim == 0) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(np.random.choice(arr, s, replace=True).item() is a) + + # Check multi dimensional array + s = (2, 3) + p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] + assert_(np.random.choice(6, s, replace=True).shape, s) + assert_(np.random.choice(6, s, replace=False).shape, s) + assert_(np.random.choice(6, s, replace=True, p=p).shape, s) + assert_(np.random.choice(6, s, replace=False, p=p).shape, s) + assert_(np.random.choice(np.arange(6), s, replace=True).shape, s) + + def test_bytes(self): + np.random.seed(self.seed) + actual = np.random.bytes(10) + desired = asbytes('\x82Ui\x9e\xff\x97+Wf\xa5') + np.testing.assert_equal(actual, desired) + + def test_shuffle(self): + # Test lists, arrays, and multidimensional versions of both: + for conv in [lambda x: x, + np.asarray, + lambda x: [(i, i) for i in x], + lambda x: np.asarray([(i, i) for i in x])]: + np.random.seed(self.seed) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) + np.random.shuffle(alist) + actual = alist + desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) + np.testing.assert_array_equal(actual, desired) + + def test_shuffle_flexible(self): + # gh-4270 + arr = [(0, 1), (2, 3)] + dt = np.dtype([('a', np.int32, 1), ('b', np.int32, 1)]) + nparr = np.array(arr, dtype=dt) + a, b = nparr[0].copy(), nparr[1].copy() + for i in range(50): + np.random.shuffle(nparr) + assert_(a in nparr) + assert_(b in nparr) + + def test_shuffle_masked(self): + # gh-3263 + a = np.ma.masked_values(np.reshape(range(20), (5,4)) % 3 - 1, -1) + b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) + ma = np.ma.count_masked(a) + mb = np.ma.count_masked(b) + for i in range(50): + np.random.shuffle(a) + self.assertEqual(ma, np.ma.count_masked(a)) + np.random.shuffle(b) + self.assertEqual(mb, np.ma.count_masked(b)) + + def test_beta(self): + np.random.seed(self.seed) + actual = np.random.beta(.1, .9, size=(3, 2)) + desired = np.array( + [[1.45341850513746058e-02, 5.31297615662868145e-04], + [1.85366619058432324e-06, 4.19214516800110563e-03], + [1.58405155108498093e-04, 1.26252891949397652e-04]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_binomial(self): + np.random.seed(self.seed) + actual = np.random.binomial(100.123, .456, size=(3, 2)) + desired = np.array([[37, 43], + [42, 48], + [46, 45]]) + np.testing.assert_array_equal(actual, desired) + + def test_chisquare(self): + np.random.seed(self.seed) + actual = np.random.chisquare(50, size=(3, 2)) + desired = np.array([[63.87858175501090585, 68.68407748911370447], + [65.77116116901505904, 47.09686762438974483], + [72.3828403199695174, 74.18408615260374006]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=13) + + def test_dirichlet(self): + np.random.seed(self.seed) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = np.random.mtrand.dirichlet(alpha, size=(3, 2)) + desired = np.array([[[0.54539444573611562, 0.45460555426388438], + [0.62345816822039413, 0.37654183177960598]], + [[0.55206000085785778, 0.44793999914214233], + [0.58964023305154301, 0.41035976694845688]], + [[0.59266909280647828, 0.40733090719352177], + [0.56974431743975207, 0.43025568256024799]]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_dirichlet_size(self): + # gh-3173 + p = np.array([51.72840233779265162, 39.74494232180943953]) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) + assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) + assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) + + assert_raises(TypeError, np.random.dirichlet, p, np.float(1)) + + def test_exponential(self): + np.random.seed(self.seed) + actual = np.random.exponential(1.1234, size=(3, 2)) + desired = np.array([[1.08342649775011624, 1.00607889924557314], + [2.46628830085216721, 2.49668106809923884], + [0.68717433461363442, 1.69175666993575979]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_f(self): + np.random.seed(self.seed) + actual = np.random.f(12, 77, size=(3, 2)) + desired = np.array([[1.21975394418575878, 1.75135759791559775], + [1.44803115017146489, 1.22108959480396262], + [1.02176975757740629, 1.34431827623300415]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_gamma(self): + np.random.seed(self.seed) + actual = np.random.gamma(5, 3, size=(3, 2)) + desired = np.array([[24.60509188649287182, 28.54993563207210627], + [26.13476110204064184, 12.56988482927716078], + [31.71863275789960568, 33.30143302795922011]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_geometric(self): + np.random.seed(self.seed) + actual = np.random.geometric(.123456789, size=(3, 2)) + desired = np.array([[8, 7], + [17, 17], + [5, 12]]) + np.testing.assert_array_equal(actual, desired) + + def test_gumbel(self): + np.random.seed(self.seed) + actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.19591898743416816, 0.34405539668096674], + [-1.4492522252274278, -1.47374816298446865], + [1.10651090478803416, -0.69535848626236174]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_hypergeometric(self): + np.random.seed(self.seed) + actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) + desired = np.array([[10, 10], + [10, 10], + [9, 9]]) + np.testing.assert_array_equal(actual, desired) + + # Test nbad = 0 + actual = np.random.hypergeometric(5, 0, 3, size=4) + desired = np.array([3, 3, 3, 3]) + np.testing.assert_array_equal(actual, desired) + + actual = np.random.hypergeometric(15, 0, 12, size=4) + desired = np.array([12, 12, 12, 12]) + np.testing.assert_array_equal(actual, desired) + + # Test ngood = 0 + actual = np.random.hypergeometric(0, 5, 3, size=4) + desired = np.array([0, 0, 0, 0]) + np.testing.assert_array_equal(actual, desired) + + actual = np.random.hypergeometric(0, 15, 12, size=4) + desired = np.array([0, 0, 0, 0]) + np.testing.assert_array_equal(actual, desired) + + def test_laplace(self): + np.random.seed(self.seed) + actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.66599721112760157, 0.52829452552221945], + [3.12791959514407125, 3.18202813572992005], + [-0.05391065675859356, 1.74901336242837324]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_logistic(self): + np.random.seed(self.seed) + actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[1.09232835305011444, 0.8648196662399954], + [4.27818590694950185, 4.33897006346929714], + [-0.21682183359214885, 2.63373365386060332]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_lognormal(self): + np.random.seed(self.seed) + actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) + desired = np.array([[16.50698631688883822, 36.54846706092654784], + [22.67886599981281748, 0.71617561058995771], + [65.72798501792723869, 86.84341601437161273]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=13) + + def test_logseries(self): + np.random.seed(self.seed) + actual = np.random.logseries(p=.923456789, size=(3, 2)) + desired = np.array([[2, 2], + [6, 17], + [3, 6]]) + np.testing.assert_array_equal(actual, desired) + + def test_multinomial(self): + np.random.seed(self.seed) + actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) + desired = np.array([[[4, 3, 5, 4, 2, 2], + [5, 2, 8, 2, 2, 1]], + [[3, 4, 3, 6, 0, 4], + [2, 1, 4, 3, 6, 4]], + [[4, 4, 2, 5, 2, 3], + [4, 3, 4, 2, 3, 4]]]) + np.testing.assert_array_equal(actual, desired) + + def test_multivariate_normal(self): + np.random.seed(self.seed) + mean = (.123456789, 10) + # Hmm... not even symmetric. + cov = [[1, 0], [1, 0]] + size = (3, 2) + actual = np.random.multivariate_normal(mean, cov, size) + desired = np.array([[[-1.47027513018564449, 10.], + [-1.65915081534845532, 10.]], + [[-2.29186329304599745, 10.], + [-1.77505606019580053, 10.]], + [[-0.54970369430044119, 10.], + [0.29768848031692957, 10.]]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + # Check for default size, was raising deprecation warning + actual = np.random.multivariate_normal(mean, cov) + desired = np.array([-0.79441224511977482, 10.]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + # Check that non positive-semidefinite covariance raises warning + mean = [0, 0] + cov = [[1, 1 + 1e-10], [1 + 1e-10, 1]] + assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov) + + def test_negative_binomial(self): + np.random.seed(self.seed) + actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2)) + desired = np.array([[848, 841], + [892, 611], + [779, 647]]) + np.testing.assert_array_equal(actual, desired) + + def test_noncentral_chisquare(self): + np.random.seed(self.seed) + actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) + desired = np.array([[23.91905354498517511, 13.35324692733826346], + [31.22452661329736401, 16.60047399466177254], + [5.03461598262724586, 17.94973089023519464]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f(self): + np.random.seed(self.seed) + actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1, + size=(3, 2)) + desired = np.array([[1.40598099674926669, 0.34207973179285761], + [3.57715069265772545, 7.92632662577829805], + [0.43741599463544162, 1.1774208752428319]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + np.random.seed(self.seed) + actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[2.80378370443726244, 3.59863924443872163], + [3.121433477601256, -0.33382987590723379], + [4.18552478636557357, 4.46410668111310471]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_pareto(self): + np.random.seed(self.seed) + actual = np.random.pareto(a=.123456789, size=(3, 2)) + desired = np.array( + [[2.46852460439034849e+03, 1.41286880810518346e+03], + [5.28287797029485181e+07, 6.57720981047328785e+07], + [1.40840323350391515e+02, 1.98390255135251704e+05]]) + # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this + # matrix differs by 24 nulps. Discussion: + # http://mail.scipy.org/pipermail/numpy-discussion/2012-September/063801.html + # Consensus is that this is probably some gcc quirk that affects + # rounding but not in any important way, so we just use a looser + # tolerance on this test: + np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) + + def test_poisson(self): + np.random.seed(self.seed) + actual = np.random.poisson(lam=.123456789, size=(3, 2)) + desired = np.array([[0, 0], + [1, 0], + [0, 0]]) + np.testing.assert_array_equal(actual, desired) + + def test_poisson_exceptions(self): + lambig = np.iinfo('l').max + lamneg = -1 + assert_raises(ValueError, np.random.poisson, lamneg) + assert_raises(ValueError, np.random.poisson, [lamneg]*10) + assert_raises(ValueError, np.random.poisson, lambig) + assert_raises(ValueError, np.random.poisson, [lambig]*10) + + def test_power(self): + np.random.seed(self.seed) + actual = np.random.power(a=.123456789, size=(3, 2)) + desired = np.array([[0.02048932883240791, 0.01424192241128213], + [0.38446073748535298, 0.39499689943484395], + [0.00177699707563439, 0.13115505880863756]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_rayleigh(self): + np.random.seed(self.seed) + actual = np.random.rayleigh(scale=10, size=(3, 2)) + desired = np.array([[13.8882496494248393, 13.383318339044731], + [20.95413364294492098, 21.08285015800712614], + [11.06066537006854311, 17.35468505778271009]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_cauchy(self): + np.random.seed(self.seed) + actual = np.random.standard_cauchy(size=(3, 2)) + desired = np.array([[0.77127660196445336, -6.55601161955910605], + [0.93582023391158309, -2.07479293013759447], + [-4.74601644297011926, 0.18338989290760804]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_exponential(self): + np.random.seed(self.seed) + actual = np.random.standard_exponential(size=(3, 2)) + desired = np.array([[0.96441739162374596, 0.89556604882105506], + [2.1953785836319808, 2.22243285392490542], + [0.6116915921431676, 1.50592546727413201]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_gamma(self): + np.random.seed(self.seed) + actual = np.random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[5.50841531318455058, 6.62953470301903103], + [5.93988484943779227, 2.31044849402133989], + [7.54838614231317084, 8.012756093271868]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_normal(self): + np.random.seed(self.seed) + actual = np.random.standard_normal(size=(3, 2)) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_t(self): + np.random.seed(self.seed) + actual = np.random.standard_t(df=10, size=(3, 2)) + desired = np.array([[0.97140611862659965, -0.08830486548450577], + [1.36311143689505321, -0.55317463909867071], + [-0.18473749069684214, 0.61181537341755321]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_triangular(self): + np.random.seed(self.seed) + actual = np.random.triangular(left=5.12, mode=10.23, right=20.34, + size=(3, 2)) + desired = np.array([[12.68117178949215784, 12.4129206149193152], + [16.20131377335158263, 16.25692138747600524], + [11.20400690911820263, 14.4978144835829923]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_uniform(self): + np.random.seed(self.seed) + actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2)) + desired = np.array([[6.99097932346268003, 6.73801597444323974], + [9.50364421400426274, 9.53130618907631089], + [5.48995325769805476, 8.47493103280052118]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises(self): + np.random.seed(self.seed) + actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) + desired = np.array([[2.28567572673902042, 2.89163838442285037], + [0.38198375564286025, 2.57638023113890746], + [1.19153771588353052, 1.83509849681825354]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises_small(self): + # check infinite loop, gh-4720 + np.random.seed(self.seed) + r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6) + np.testing.assert_(np.isfinite(r).all()) + + def test_wald(self): + np.random.seed(self.seed) + actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2)) + desired = np.array([[3.82935265715889983, 5.13125249184285526], + [0.35045403618358717, 1.50832396872003538], + [0.24124319895843183, 0.22031101461955038]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=14) + + def test_weibull(self): + np.random.seed(self.seed) + actual = np.random.weibull(a=1.23, size=(3, 2)) + desired = np.array([[0.97097342648766727, 0.91422896443565516], + [1.89517770034962929, 1.91414357960479564], + [0.67057783752390987, 1.39494046635066793]]) + np.testing.assert_array_almost_equal(actual, desired, decimal=15) + + def test_zipf(self): + np.random.seed(self.seed) + actual = np.random.zipf(a=1.23, size=(3, 2)) + desired = np.array([[66, 29], + [1, 1], + [3, 13]]) + np.testing.assert_array_equal(actual, desired) + + +class TestThread(object): + # make sure each state produces the same sequence even in threads + def setUp(self): + self.seeds = range(4) + + def check_function(self, function, sz): + from threading import Thread + + out1 = np.empty((len(self.seeds),) + sz) + out2 = np.empty((len(self.seeds),) + sz) + + # threaded generation + t = [Thread(target=function, args=(np.random.RandomState(s), o)) + for s, o in zip(self.seeds, out1)] + [x.start() for x in t] + [x.join() for x in t] + + # the same serial + for s, o in zip(self.seeds, out2): + function(np.random.RandomState(s), o) + + # these platforms change x87 fpu precision mode in threads + if (np.intp().dtype.itemsize == 4 and + (sys.platform == "win32" or + sys.platform.startswith("gnukfreebsd"))): + np.testing.assert_array_almost_equal(out1, out2) + else: + np.testing.assert_array_equal(out1, out2) + + def test_normal(self): + def gen_random(state, out): + out[...] = state.normal(size=10000) + self.check_function(gen_random, sz=(10000,)) + + def test_exp(self): + def gen_random(state, out): + out[...] = state.exponential(scale=np.ones((100, 1000))) + self.check_function(gen_random, sz=(100, 1000)) + + def test_multinomial(self): + def gen_random(state, out): + out[...] = state.multinomial(10, [1/6.]*6, size=10000) + self.check_function(gen_random, sz=(10000,6)) + + +if __name__ == "__main__": + run_module_suite()