comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/random/tests/test_random.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
comparison
equal deleted inserted replaced
86:413a9d26189e 87:2a2c65a20a8b
1 from __future__ import division, absolute_import, print_function
2
3 import numpy as np
4 from numpy.testing import (
5 TestCase, run_module_suite, assert_, assert_raises, assert_equal,
6 assert_warns)
7 from numpy import random
8 from numpy.compat import asbytes
9 import sys
10
11 class TestSeed(TestCase):
12 def test_scalar(self):
13 s = np.random.RandomState(0)
14 assert_equal(s.randint(1000), 684)
15 s = np.random.RandomState(4294967295)
16 assert_equal(s.randint(1000), 419)
17
18 def test_array(self):
19 s = np.random.RandomState(range(10))
20 assert_equal(s.randint(1000), 468)
21 s = np.random.RandomState(np.arange(10))
22 assert_equal(s.randint(1000), 468)
23 s = np.random.RandomState([0])
24 assert_equal(s.randint(1000), 973)
25 s = np.random.RandomState([4294967295])
26 assert_equal(s.randint(1000), 265)
27
28 def test_invalid_scalar(self):
29 # seed must be a unsigned 32 bit integers
30 assert_raises(TypeError, np.random.RandomState, -0.5)
31 assert_raises(ValueError, np.random.RandomState, -1)
32
33 def test_invalid_array(self):
34 # seed must be a unsigned 32 bit integers
35 assert_raises(TypeError, np.random.RandomState, [-0.5])
36 assert_raises(ValueError, np.random.RandomState, [-1])
37 assert_raises(ValueError, np.random.RandomState, [4294967296])
38 assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
39 assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
40
41 class TestBinomial(TestCase):
42 def test_n_zero(self):
43 # Tests the corner case of n == 0 for the binomial distribution.
44 # binomial(0, p) should be zero for any p in [0, 1].
45 # This test addresses issue #3480.
46 zeros = np.zeros(2, dtype='int')
47 for p in [0, .5, 1]:
48 assert_(random.binomial(0, p) == 0)
49 np.testing.assert_array_equal(random.binomial(zeros, p), zeros)
50
51 def test_p_is_nan(self):
52 # Issue #4571.
53 assert_raises(ValueError, random.binomial, 1, np.nan)
54
55
56 class TestMultinomial(TestCase):
57 def test_basic(self):
58 random.multinomial(100, [0.2, 0.8])
59
60 def test_zero_probability(self):
61 random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
62
63 def test_int_negative_interval(self):
64 assert_(-5 <= random.randint(-5, -1) < -1)
65 x = random.randint(-5, -1, 5)
66 assert_(np.all(-5 <= x))
67 assert_(np.all(x < -1))
68
69 def test_size(self):
70 # gh-3173
71 p = [0.5, 0.5]
72 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
73 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
74 assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
75 assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
76 assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
77 assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
78 (2, 2, 2))
79
80 assert_raises(TypeError, np.random.multinomial, 1, p,
81 np.float(1))
82
83
84 class TestSetState(TestCase):
85 def setUp(self):
86 self.seed = 1234567890
87 self.prng = random.RandomState(self.seed)
88 self.state = self.prng.get_state()
89
90 def test_basic(self):
91 old = self.prng.tomaxint(16)
92 self.prng.set_state(self.state)
93 new = self.prng.tomaxint(16)
94 assert_(np.all(old == new))
95
96 def test_gaussian_reset(self):
97 # Make sure the cached every-other-Gaussian is reset.
98 old = self.prng.standard_normal(size=3)
99 self.prng.set_state(self.state)
100 new = self.prng.standard_normal(size=3)
101 assert_(np.all(old == new))
102
103 def test_gaussian_reset_in_media_res(self):
104 # When the state is saved with a cached Gaussian, make sure the
105 # cached Gaussian is restored.
106
107 self.prng.standard_normal()
108 state = self.prng.get_state()
109 old = self.prng.standard_normal(size=3)
110 self.prng.set_state(state)
111 new = self.prng.standard_normal(size=3)
112 assert_(np.all(old == new))
113
114 def test_backwards_compatibility(self):
115 # Make sure we can accept old state tuples that do not have the
116 # cached Gaussian value.
117 old_state = self.state[:-2]
118 x1 = self.prng.standard_normal(size=16)
119 self.prng.set_state(old_state)
120 x2 = self.prng.standard_normal(size=16)
121 self.prng.set_state(self.state)
122 x3 = self.prng.standard_normal(size=16)
123 assert_(np.all(x1 == x2))
124 assert_(np.all(x1 == x3))
125
126 def test_negative_binomial(self):
127 # Ensure that the negative binomial results take floating point
128 # arguments without truncation.
129 self.prng.negative_binomial(0.5, 0.5)
130
131 class TestRandomDist(TestCase):
132 # Make sure the random distrobution return the correct value for a
133 # given seed
134
135 def setUp(self):
136 self.seed = 1234567890
137
138 def test_rand(self):
139 np.random.seed(self.seed)
140 actual = np.random.rand(3, 2)
141 desired = np.array([[0.61879477158567997, 0.59162362775974664],
142 [0.88868358904449662, 0.89165480011560816],
143 [0.4575674820298663, 0.7781880808593471]])
144 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
145
146 def test_randn(self):
147 np.random.seed(self.seed)
148 actual = np.random.randn(3, 2)
149 desired = np.array([[1.34016345771863121, 1.73759122771936081],
150 [1.498988344300628, -0.2286433324536169],
151 [2.031033998682787, 2.17032494605655257]])
152 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
153
154 def test_randint(self):
155 np.random.seed(self.seed)
156 actual = np.random.randint(-99, 99, size=(3, 2))
157 desired = np.array([[31, 3],
158 [-52, 41],
159 [-48, -66]])
160 np.testing.assert_array_equal(actual, desired)
161
162 def test_random_integers(self):
163 np.random.seed(self.seed)
164 actual = np.random.random_integers(-99, 99, size=(3, 2))
165 desired = np.array([[31, 3],
166 [-52, 41],
167 [-48, -66]])
168 np.testing.assert_array_equal(actual, desired)
169
170 def test_random_sample(self):
171 np.random.seed(self.seed)
172 actual = np.random.random_sample((3, 2))
173 desired = np.array([[0.61879477158567997, 0.59162362775974664],
174 [0.88868358904449662, 0.89165480011560816],
175 [0.4575674820298663, 0.7781880808593471]])
176 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
177
178 def test_choice_uniform_replace(self):
179 np.random.seed(self.seed)
180 actual = np.random.choice(4, 4)
181 desired = np.array([2, 3, 2, 3])
182 np.testing.assert_array_equal(actual, desired)
183
184 def test_choice_nonuniform_replace(self):
185 np.random.seed(self.seed)
186 actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
187 desired = np.array([1, 1, 2, 2])
188 np.testing.assert_array_equal(actual, desired)
189
190 def test_choice_uniform_noreplace(self):
191 np.random.seed(self.seed)
192 actual = np.random.choice(4, 3, replace=False)
193 desired = np.array([0, 1, 3])
194 np.testing.assert_array_equal(actual, desired)
195
196 def test_choice_nonuniform_noreplace(self):
197 np.random.seed(self.seed)
198 actual = np.random.choice(4, 3, replace=False,
199 p=[0.1, 0.3, 0.5, 0.1])
200 desired = np.array([2, 3, 1])
201 np.testing.assert_array_equal(actual, desired)
202
203 def test_choice_noninteger(self):
204 np.random.seed(self.seed)
205 actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
206 desired = np.array(['c', 'd', 'c', 'd'])
207 np.testing.assert_array_equal(actual, desired)
208
209 def test_choice_exceptions(self):
210 sample = np.random.choice
211 assert_raises(ValueError, sample, -1, 3)
212 assert_raises(ValueError, sample, 3., 3)
213 assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
214 assert_raises(ValueError, sample, [], 3)
215 assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
216 p=[[0.25, 0.25], [0.25, 0.25]])
217 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
218 assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
219 assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
220 assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
221 assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False,
222 p=[1, 0, 0])
223
224 def test_choice_return_shape(self):
225 p = [0.1, 0.9]
226 # Check scalar
227 assert_(np.isscalar(np.random.choice(2, replace=True)))
228 assert_(np.isscalar(np.random.choice(2, replace=False)))
229 assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
230 assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
231 assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
232 assert_(np.random.choice([None], replace=True) is None)
233 a = np.array([1, 2])
234 arr = np.empty(1, dtype=object)
235 arr[0] = a
236 assert_(np.random.choice(arr, replace=True) is a)
237
238 # Check 0-d array
239 s = tuple()
240 assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
241 assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
242 assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
243 assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
244 assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
245 assert_(np.random.choice([None], s, replace=True).ndim == 0)
246 a = np.array([1, 2])
247 arr = np.empty(1, dtype=object)
248 arr[0] = a
249 assert_(np.random.choice(arr, s, replace=True).item() is a)
250
251 # Check multi dimensional array
252 s = (2, 3)
253 p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
254 assert_(np.random.choice(6, s, replace=True).shape, s)
255 assert_(np.random.choice(6, s, replace=False).shape, s)
256 assert_(np.random.choice(6, s, replace=True, p=p).shape, s)
257 assert_(np.random.choice(6, s, replace=False, p=p).shape, s)
258 assert_(np.random.choice(np.arange(6), s, replace=True).shape, s)
259
260 def test_bytes(self):
261 np.random.seed(self.seed)
262 actual = np.random.bytes(10)
263 desired = asbytes('\x82Ui\x9e\xff\x97+Wf\xa5')
264 np.testing.assert_equal(actual, desired)
265
266 def test_shuffle(self):
267 # Test lists, arrays, and multidimensional versions of both:
268 for conv in [lambda x: x,
269 np.asarray,
270 lambda x: [(i, i) for i in x],
271 lambda x: np.asarray([(i, i) for i in x])]:
272 np.random.seed(self.seed)
273 alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
274 np.random.shuffle(alist)
275 actual = alist
276 desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
277 np.testing.assert_array_equal(actual, desired)
278
279 def test_shuffle_flexible(self):
280 # gh-4270
281 arr = [(0, 1), (2, 3)]
282 dt = np.dtype([('a', np.int32, 1), ('b', np.int32, 1)])
283 nparr = np.array(arr, dtype=dt)
284 a, b = nparr[0].copy(), nparr[1].copy()
285 for i in range(50):
286 np.random.shuffle(nparr)
287 assert_(a in nparr)
288 assert_(b in nparr)
289
290 def test_shuffle_masked(self):
291 # gh-3263
292 a = np.ma.masked_values(np.reshape(range(20), (5,4)) % 3 - 1, -1)
293 b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
294 ma = np.ma.count_masked(a)
295 mb = np.ma.count_masked(b)
296 for i in range(50):
297 np.random.shuffle(a)
298 self.assertEqual(ma, np.ma.count_masked(a))
299 np.random.shuffle(b)
300 self.assertEqual(mb, np.ma.count_masked(b))
301
302 def test_beta(self):
303 np.random.seed(self.seed)
304 actual = np.random.beta(.1, .9, size=(3, 2))
305 desired = np.array(
306 [[1.45341850513746058e-02, 5.31297615662868145e-04],
307 [1.85366619058432324e-06, 4.19214516800110563e-03],
308 [1.58405155108498093e-04, 1.26252891949397652e-04]])
309 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
310
311 def test_binomial(self):
312 np.random.seed(self.seed)
313 actual = np.random.binomial(100.123, .456, size=(3, 2))
314 desired = np.array([[37, 43],
315 [42, 48],
316 [46, 45]])
317 np.testing.assert_array_equal(actual, desired)
318
319 def test_chisquare(self):
320 np.random.seed(self.seed)
321 actual = np.random.chisquare(50, size=(3, 2))
322 desired = np.array([[63.87858175501090585, 68.68407748911370447],
323 [65.77116116901505904, 47.09686762438974483],
324 [72.3828403199695174, 74.18408615260374006]])
325 np.testing.assert_array_almost_equal(actual, desired, decimal=13)
326
327 def test_dirichlet(self):
328 np.random.seed(self.seed)
329 alpha = np.array([51.72840233779265162, 39.74494232180943953])
330 actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
331 desired = np.array([[[0.54539444573611562, 0.45460555426388438],
332 [0.62345816822039413, 0.37654183177960598]],
333 [[0.55206000085785778, 0.44793999914214233],
334 [0.58964023305154301, 0.41035976694845688]],
335 [[0.59266909280647828, 0.40733090719352177],
336 [0.56974431743975207, 0.43025568256024799]]])
337 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
338
339 def test_dirichlet_size(self):
340 # gh-3173
341 p = np.array([51.72840233779265162, 39.74494232180943953])
342 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
343 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
344 assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
345 assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
346 assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
347 assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
348
349 assert_raises(TypeError, np.random.dirichlet, p, np.float(1))
350
351 def test_exponential(self):
352 np.random.seed(self.seed)
353 actual = np.random.exponential(1.1234, size=(3, 2))
354 desired = np.array([[1.08342649775011624, 1.00607889924557314],
355 [2.46628830085216721, 2.49668106809923884],
356 [0.68717433461363442, 1.69175666993575979]])
357 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
358
359 def test_f(self):
360 np.random.seed(self.seed)
361 actual = np.random.f(12, 77, size=(3, 2))
362 desired = np.array([[1.21975394418575878, 1.75135759791559775],
363 [1.44803115017146489, 1.22108959480396262],
364 [1.02176975757740629, 1.34431827623300415]])
365 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
366
367 def test_gamma(self):
368 np.random.seed(self.seed)
369 actual = np.random.gamma(5, 3, size=(3, 2))
370 desired = np.array([[24.60509188649287182, 28.54993563207210627],
371 [26.13476110204064184, 12.56988482927716078],
372 [31.71863275789960568, 33.30143302795922011]])
373 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
374
375 def test_geometric(self):
376 np.random.seed(self.seed)
377 actual = np.random.geometric(.123456789, size=(3, 2))
378 desired = np.array([[8, 7],
379 [17, 17],
380 [5, 12]])
381 np.testing.assert_array_equal(actual, desired)
382
383 def test_gumbel(self):
384 np.random.seed(self.seed)
385 actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
386 desired = np.array([[0.19591898743416816, 0.34405539668096674],
387 [-1.4492522252274278, -1.47374816298446865],
388 [1.10651090478803416, -0.69535848626236174]])
389 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
390
391 def test_hypergeometric(self):
392 np.random.seed(self.seed)
393 actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
394 desired = np.array([[10, 10],
395 [10, 10],
396 [9, 9]])
397 np.testing.assert_array_equal(actual, desired)
398
399 # Test nbad = 0
400 actual = np.random.hypergeometric(5, 0, 3, size=4)
401 desired = np.array([3, 3, 3, 3])
402 np.testing.assert_array_equal(actual, desired)
403
404 actual = np.random.hypergeometric(15, 0, 12, size=4)
405 desired = np.array([12, 12, 12, 12])
406 np.testing.assert_array_equal(actual, desired)
407
408 # Test ngood = 0
409 actual = np.random.hypergeometric(0, 5, 3, size=4)
410 desired = np.array([0, 0, 0, 0])
411 np.testing.assert_array_equal(actual, desired)
412
413 actual = np.random.hypergeometric(0, 15, 12, size=4)
414 desired = np.array([0, 0, 0, 0])
415 np.testing.assert_array_equal(actual, desired)
416
417 def test_laplace(self):
418 np.random.seed(self.seed)
419 actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
420 desired = np.array([[0.66599721112760157, 0.52829452552221945],
421 [3.12791959514407125, 3.18202813572992005],
422 [-0.05391065675859356, 1.74901336242837324]])
423 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
424
425 def test_logistic(self):
426 np.random.seed(self.seed)
427 actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
428 desired = np.array([[1.09232835305011444, 0.8648196662399954],
429 [4.27818590694950185, 4.33897006346929714],
430 [-0.21682183359214885, 2.63373365386060332]])
431 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
432
433 def test_lognormal(self):
434 np.random.seed(self.seed)
435 actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
436 desired = np.array([[16.50698631688883822, 36.54846706092654784],
437 [22.67886599981281748, 0.71617561058995771],
438 [65.72798501792723869, 86.84341601437161273]])
439 np.testing.assert_array_almost_equal(actual, desired, decimal=13)
440
441 def test_logseries(self):
442 np.random.seed(self.seed)
443 actual = np.random.logseries(p=.923456789, size=(3, 2))
444 desired = np.array([[2, 2],
445 [6, 17],
446 [3, 6]])
447 np.testing.assert_array_equal(actual, desired)
448
449 def test_multinomial(self):
450 np.random.seed(self.seed)
451 actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
452 desired = np.array([[[4, 3, 5, 4, 2, 2],
453 [5, 2, 8, 2, 2, 1]],
454 [[3, 4, 3, 6, 0, 4],
455 [2, 1, 4, 3, 6, 4]],
456 [[4, 4, 2, 5, 2, 3],
457 [4, 3, 4, 2, 3, 4]]])
458 np.testing.assert_array_equal(actual, desired)
459
460 def test_multivariate_normal(self):
461 np.random.seed(self.seed)
462 mean = (.123456789, 10)
463 # Hmm... not even symmetric.
464 cov = [[1, 0], [1, 0]]
465 size = (3, 2)
466 actual = np.random.multivariate_normal(mean, cov, size)
467 desired = np.array([[[-1.47027513018564449, 10.],
468 [-1.65915081534845532, 10.]],
469 [[-2.29186329304599745, 10.],
470 [-1.77505606019580053, 10.]],
471 [[-0.54970369430044119, 10.],
472 [0.29768848031692957, 10.]]])
473 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
474
475 # Check for default size, was raising deprecation warning
476 actual = np.random.multivariate_normal(mean, cov)
477 desired = np.array([-0.79441224511977482, 10.])
478 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
479
480 # Check that non positive-semidefinite covariance raises warning
481 mean = [0, 0]
482 cov = [[1, 1 + 1e-10], [1 + 1e-10, 1]]
483 assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
484
485 def test_negative_binomial(self):
486 np.random.seed(self.seed)
487 actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
488 desired = np.array([[848, 841],
489 [892, 611],
490 [779, 647]])
491 np.testing.assert_array_equal(actual, desired)
492
493 def test_noncentral_chisquare(self):
494 np.random.seed(self.seed)
495 actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
496 desired = np.array([[23.91905354498517511, 13.35324692733826346],
497 [31.22452661329736401, 16.60047399466177254],
498 [5.03461598262724586, 17.94973089023519464]])
499 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
500
501 def test_noncentral_f(self):
502 np.random.seed(self.seed)
503 actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
504 size=(3, 2))
505 desired = np.array([[1.40598099674926669, 0.34207973179285761],
506 [3.57715069265772545, 7.92632662577829805],
507 [0.43741599463544162, 1.1774208752428319]])
508 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
509
510 def test_normal(self):
511 np.random.seed(self.seed)
512 actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
513 desired = np.array([[2.80378370443726244, 3.59863924443872163],
514 [3.121433477601256, -0.33382987590723379],
515 [4.18552478636557357, 4.46410668111310471]])
516 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
517
518 def test_pareto(self):
519 np.random.seed(self.seed)
520 actual = np.random.pareto(a=.123456789, size=(3, 2))
521 desired = np.array(
522 [[2.46852460439034849e+03, 1.41286880810518346e+03],
523 [5.28287797029485181e+07, 6.57720981047328785e+07],
524 [1.40840323350391515e+02, 1.98390255135251704e+05]])
525 # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
526 # matrix differs by 24 nulps. Discussion:
527 # http://mail.scipy.org/pipermail/numpy-discussion/2012-September/063801.html
528 # Consensus is that this is probably some gcc quirk that affects
529 # rounding but not in any important way, so we just use a looser
530 # tolerance on this test:
531 np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
532
533 def test_poisson(self):
534 np.random.seed(self.seed)
535 actual = np.random.poisson(lam=.123456789, size=(3, 2))
536 desired = np.array([[0, 0],
537 [1, 0],
538 [0, 0]])
539 np.testing.assert_array_equal(actual, desired)
540
541 def test_poisson_exceptions(self):
542 lambig = np.iinfo('l').max
543 lamneg = -1
544 assert_raises(ValueError, np.random.poisson, lamneg)
545 assert_raises(ValueError, np.random.poisson, [lamneg]*10)
546 assert_raises(ValueError, np.random.poisson, lambig)
547 assert_raises(ValueError, np.random.poisson, [lambig]*10)
548
549 def test_power(self):
550 np.random.seed(self.seed)
551 actual = np.random.power(a=.123456789, size=(3, 2))
552 desired = np.array([[0.02048932883240791, 0.01424192241128213],
553 [0.38446073748535298, 0.39499689943484395],
554 [0.00177699707563439, 0.13115505880863756]])
555 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
556
557 def test_rayleigh(self):
558 np.random.seed(self.seed)
559 actual = np.random.rayleigh(scale=10, size=(3, 2))
560 desired = np.array([[13.8882496494248393, 13.383318339044731],
561 [20.95413364294492098, 21.08285015800712614],
562 [11.06066537006854311, 17.35468505778271009]])
563 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
564
565 def test_standard_cauchy(self):
566 np.random.seed(self.seed)
567 actual = np.random.standard_cauchy(size=(3, 2))
568 desired = np.array([[0.77127660196445336, -6.55601161955910605],
569 [0.93582023391158309, -2.07479293013759447],
570 [-4.74601644297011926, 0.18338989290760804]])
571 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
572
573 def test_standard_exponential(self):
574 np.random.seed(self.seed)
575 actual = np.random.standard_exponential(size=(3, 2))
576 desired = np.array([[0.96441739162374596, 0.89556604882105506],
577 [2.1953785836319808, 2.22243285392490542],
578 [0.6116915921431676, 1.50592546727413201]])
579 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
580
581 def test_standard_gamma(self):
582 np.random.seed(self.seed)
583 actual = np.random.standard_gamma(shape=3, size=(3, 2))
584 desired = np.array([[5.50841531318455058, 6.62953470301903103],
585 [5.93988484943779227, 2.31044849402133989],
586 [7.54838614231317084, 8.012756093271868]])
587 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
588
589 def test_standard_normal(self):
590 np.random.seed(self.seed)
591 actual = np.random.standard_normal(size=(3, 2))
592 desired = np.array([[1.34016345771863121, 1.73759122771936081],
593 [1.498988344300628, -0.2286433324536169],
594 [2.031033998682787, 2.17032494605655257]])
595 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
596
597 def test_standard_t(self):
598 np.random.seed(self.seed)
599 actual = np.random.standard_t(df=10, size=(3, 2))
600 desired = np.array([[0.97140611862659965, -0.08830486548450577],
601 [1.36311143689505321, -0.55317463909867071],
602 [-0.18473749069684214, 0.61181537341755321]])
603 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
604
605 def test_triangular(self):
606 np.random.seed(self.seed)
607 actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
608 size=(3, 2))
609 desired = np.array([[12.68117178949215784, 12.4129206149193152],
610 [16.20131377335158263, 16.25692138747600524],
611 [11.20400690911820263, 14.4978144835829923]])
612 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
613
614 def test_uniform(self):
615 np.random.seed(self.seed)
616 actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
617 desired = np.array([[6.99097932346268003, 6.73801597444323974],
618 [9.50364421400426274, 9.53130618907631089],
619 [5.48995325769805476, 8.47493103280052118]])
620 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
621
622 def test_vonmises(self):
623 np.random.seed(self.seed)
624 actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
625 desired = np.array([[2.28567572673902042, 2.89163838442285037],
626 [0.38198375564286025, 2.57638023113890746],
627 [1.19153771588353052, 1.83509849681825354]])
628 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
629
630 def test_vonmises_small(self):
631 # check infinite loop, gh-4720
632 np.random.seed(self.seed)
633 r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
634 np.testing.assert_(np.isfinite(r).all())
635
636 def test_wald(self):
637 np.random.seed(self.seed)
638 actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
639 desired = np.array([[3.82935265715889983, 5.13125249184285526],
640 [0.35045403618358717, 1.50832396872003538],
641 [0.24124319895843183, 0.22031101461955038]])
642 np.testing.assert_array_almost_equal(actual, desired, decimal=14)
643
644 def test_weibull(self):
645 np.random.seed(self.seed)
646 actual = np.random.weibull(a=1.23, size=(3, 2))
647 desired = np.array([[0.97097342648766727, 0.91422896443565516],
648 [1.89517770034962929, 1.91414357960479564],
649 [0.67057783752390987, 1.39494046635066793]])
650 np.testing.assert_array_almost_equal(actual, desired, decimal=15)
651
652 def test_zipf(self):
653 np.random.seed(self.seed)
654 actual = np.random.zipf(a=1.23, size=(3, 2))
655 desired = np.array([[66, 29],
656 [1, 1],
657 [3, 13]])
658 np.testing.assert_array_equal(actual, desired)
659
660
661 class TestThread(object):
662 # make sure each state produces the same sequence even in threads
663 def setUp(self):
664 self.seeds = range(4)
665
666 def check_function(self, function, sz):
667 from threading import Thread
668
669 out1 = np.empty((len(self.seeds),) + sz)
670 out2 = np.empty((len(self.seeds),) + sz)
671
672 # threaded generation
673 t = [Thread(target=function, args=(np.random.RandomState(s), o))
674 for s, o in zip(self.seeds, out1)]
675 [x.start() for x in t]
676 [x.join() for x in t]
677
678 # the same serial
679 for s, o in zip(self.seeds, out2):
680 function(np.random.RandomState(s), o)
681
682 # these platforms change x87 fpu precision mode in threads
683 if (np.intp().dtype.itemsize == 4 and
684 (sys.platform == "win32" or
685 sys.platform.startswith("gnukfreebsd"))):
686 np.testing.assert_array_almost_equal(out1, out2)
687 else:
688 np.testing.assert_array_equal(out1, out2)
689
690 def test_normal(self):
691 def gen_random(state, out):
692 out[...] = state.normal(size=10000)
693 self.check_function(gen_random, sz=(10000,))
694
695 def test_exp(self):
696 def gen_random(state, out):
697 out[...] = state.exponential(scale=np.ones((100, 1000)))
698 self.check_function(gen_random, sz=(100, 1000))
699
700 def test_multinomial(self):
701 def gen_random(state, out):
702 out[...] = state.multinomial(10, [1/6.]*6, size=10000)
703 self.check_function(gen_random, sz=(10000,6))
704
705
706 if __name__ == "__main__":
707 run_module_suite()