annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/bessel_jn.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // Copyright (c) 2006 Xiaogang Zhang
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_BESSEL_JN_HPP
Chris@16 7 #define BOOST_MATH_BESSEL_JN_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/math/special_functions/detail/bessel_j0.hpp>
Chris@16 14 #include <boost/math/special_functions/detail/bessel_j1.hpp>
Chris@16 15 #include <boost/math/special_functions/detail/bessel_jy.hpp>
Chris@16 16 #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
Chris@16 17 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
Chris@16 18
Chris@16 19 // Bessel function of the first kind of integer order
Chris@16 20 // J_n(z) is the minimal solution
Chris@16 21 // n < abs(z), forward recurrence stable and usable
Chris@16 22 // n >= abs(z), forward recurrence unstable, use Miller's algorithm
Chris@16 23
Chris@16 24 namespace boost { namespace math { namespace detail{
Chris@16 25
Chris@16 26 template <typename T, typename Policy>
Chris@16 27 T bessel_jn(int n, T x, const Policy& pol)
Chris@16 28 {
Chris@16 29 T value(0), factor, current, prev, next;
Chris@16 30
Chris@16 31 BOOST_MATH_STD_USING
Chris@16 32
Chris@16 33 //
Chris@16 34 // Reflection has to come first:
Chris@16 35 //
Chris@16 36 if (n < 0)
Chris@16 37 {
Chris@16 38 factor = (n & 0x1) ? -1 : 1; // J_{-n}(z) = (-1)^n J_n(z)
Chris@16 39 n = -n;
Chris@16 40 }
Chris@16 41 else
Chris@16 42 {
Chris@16 43 factor = 1;
Chris@16 44 }
Chris@16 45 if(x < 0)
Chris@16 46 {
Chris@16 47 factor *= (n & 0x1) ? -1 : 1; // J_{n}(-z) = (-1)^n J_n(z)
Chris@16 48 x = -x;
Chris@16 49 }
Chris@16 50 //
Chris@16 51 // Special cases:
Chris@16 52 //
Chris@16 53 if (n == 0)
Chris@16 54 {
Chris@16 55 return factor * bessel_j0(x);
Chris@16 56 }
Chris@16 57 if (n == 1)
Chris@16 58 {
Chris@16 59 return factor * bessel_j1(x);
Chris@16 60 }
Chris@16 61
Chris@16 62 if (x == 0) // n >= 2
Chris@16 63 {
Chris@16 64 return static_cast<T>(0);
Chris@16 65 }
Chris@16 66
Chris@16 67 if(asymptotic_bessel_large_x_limit(T(n), x))
Chris@16 68 return factor * asymptotic_bessel_j_large_x_2<T>(n, x);
Chris@16 69
Chris@16 70 BOOST_ASSERT(n > 1);
Chris@16 71 T scale = 1;
Chris@16 72 if (n < abs(x)) // forward recurrence
Chris@16 73 {
Chris@16 74 prev = bessel_j0(x);
Chris@16 75 current = bessel_j1(x);
Chris@16 76 policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
Chris@16 77 for (int k = 1; k < n; k++)
Chris@16 78 {
Chris@16 79 T fact = 2 * k / x;
Chris@16 80 //
Chris@16 81 // rescale if we would overflow or underflow:
Chris@16 82 //
Chris@16 83 if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
Chris@16 84 {
Chris@16 85 scale /= current;
Chris@16 86 prev /= current;
Chris@16 87 current = 1;
Chris@16 88 }
Chris@16 89 value = fact * current - prev;
Chris@16 90 prev = current;
Chris@16 91 current = value;
Chris@16 92 }
Chris@16 93 }
Chris@16 94 else if((x < 1) || (n > x * x / 4) || (x < 5))
Chris@16 95 {
Chris@16 96 return factor * bessel_j_small_z_series(T(n), x, pol);
Chris@16 97 }
Chris@16 98 else // backward recurrence
Chris@16 99 {
Chris@16 100 T fn; int s; // fn = J_(n+1) / J_n
Chris@16 101 // |x| <= n, fast convergence for continued fraction CF1
Chris@16 102 boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
Chris@16 103 prev = fn;
Chris@16 104 current = 1;
Chris@16 105 // Check recursion won't go on too far:
Chris@16 106 policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
Chris@16 107 for (int k = n; k > 0; k--)
Chris@16 108 {
Chris@16 109 T fact = 2 * k / x;
Chris@16 110 if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
Chris@16 111 {
Chris@16 112 prev /= current;
Chris@16 113 scale /= current;
Chris@16 114 current = 1;
Chris@16 115 }
Chris@16 116 next = fact * current - prev;
Chris@16 117 prev = current;
Chris@16 118 current = next;
Chris@16 119 }
Chris@16 120 value = bessel_j0(x) / current; // normalization
Chris@16 121 scale = 1 / scale;
Chris@16 122 }
Chris@16 123 value *= factor;
Chris@16 124
Chris@16 125 if(tools::max_value<T>() * scale < fabs(value))
Chris@16 126 return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
Chris@16 127
Chris@16 128 return value / scale;
Chris@16 129 }
Chris@16 130
Chris@16 131 }}} // namespaces
Chris@16 132
Chris@16 133 #endif // BOOST_MATH_BESSEL_JN_HPP
Chris@16 134