Chris@16: // Copyright (c) 2006 Xiaogang Zhang Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_BESSEL_JN_HPP Chris@16: #define BOOST_MATH_BESSEL_JN_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Bessel function of the first kind of integer order Chris@16: // J_n(z) is the minimal solution Chris@16: // n < abs(z), forward recurrence stable and usable Chris@16: // n >= abs(z), forward recurrence unstable, use Miller's algorithm Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@16: T bessel_jn(int n, T x, const Policy& pol) Chris@16: { Chris@16: T value(0), factor, current, prev, next; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: // Chris@16: // Reflection has to come first: Chris@16: // Chris@16: if (n < 0) Chris@16: { Chris@16: factor = (n & 0x1) ? -1 : 1; // J_{-n}(z) = (-1)^n J_n(z) Chris@16: n = -n; Chris@16: } Chris@16: else Chris@16: { Chris@16: factor = 1; Chris@16: } Chris@16: if(x < 0) Chris@16: { Chris@16: factor *= (n & 0x1) ? -1 : 1; // J_{n}(-z) = (-1)^n J_n(z) Chris@16: x = -x; Chris@16: } Chris@16: // Chris@16: // Special cases: Chris@16: // Chris@16: if (n == 0) Chris@16: { Chris@16: return factor * bessel_j0(x); Chris@16: } Chris@16: if (n == 1) Chris@16: { Chris@16: return factor * bessel_j1(x); Chris@16: } Chris@16: Chris@16: if (x == 0) // n >= 2 Chris@16: { Chris@16: return static_cast(0); Chris@16: } Chris@16: Chris@16: if(asymptotic_bessel_large_x_limit(T(n), x)) Chris@16: return factor * asymptotic_bessel_j_large_x_2(n, x); Chris@16: Chris@16: BOOST_ASSERT(n > 1); Chris@16: T scale = 1; Chris@16: if (n < abs(x)) // forward recurrence Chris@16: { Chris@16: prev = bessel_j0(x); Chris@16: current = bessel_j1(x); Chris@16: policies::check_series_iterations("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol); Chris@16: for (int k = 1; k < n; k++) Chris@16: { Chris@16: T fact = 2 * k / x; Chris@16: // Chris@16: // rescale if we would overflow or underflow: Chris@16: // Chris@16: if((fabs(fact) > 1) && ((tools::max_value() - fabs(prev)) / fabs(fact) < fabs(current))) Chris@16: { Chris@16: scale /= current; Chris@16: prev /= current; Chris@16: current = 1; Chris@16: } Chris@16: value = fact * current - prev; Chris@16: prev = current; Chris@16: current = value; Chris@16: } Chris@16: } Chris@16: else if((x < 1) || (n > x * x / 4) || (x < 5)) Chris@16: { Chris@16: return factor * bessel_j_small_z_series(T(n), x, pol); Chris@16: } Chris@16: else // backward recurrence Chris@16: { Chris@16: T fn; int s; // fn = J_(n+1) / J_n Chris@16: // |x| <= n, fast convergence for continued fraction CF1 Chris@16: boost::math::detail::CF1_jy(static_cast(n), x, &fn, &s, pol); Chris@16: prev = fn; Chris@16: current = 1; Chris@16: // Check recursion won't go on too far: Chris@16: policies::check_series_iterations("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol); Chris@16: for (int k = n; k > 0; k--) Chris@16: { Chris@16: T fact = 2 * k / x; Chris@16: if((fabs(fact) > 1) && ((tools::max_value() - fabs(prev)) / fabs(fact) < fabs(current))) Chris@16: { Chris@16: prev /= current; Chris@16: scale /= current; Chris@16: current = 1; Chris@16: } Chris@16: next = fact * current - prev; Chris@16: prev = current; Chris@16: current = next; Chris@16: } Chris@16: value = bessel_j0(x) / current; // normalization Chris@16: scale = 1 / scale; Chris@16: } Chris@16: value *= factor; Chris@16: Chris@16: if(tools::max_value() * scale < fabs(value)) Chris@16: return policies::raise_overflow_error("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol); Chris@16: Chris@16: return value / scale; Chris@16: } Chris@16: Chris@16: }}} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_BESSEL_JN_HPP Chris@16: