annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/bessel_i1.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright (c) 2006 Xiaogang Zhang
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_BESSEL_I1_HPP
Chris@16 7 #define BOOST_MATH_BESSEL_I1_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/math/tools/rational.hpp>
Chris@16 14 #include <boost/math/tools/big_constant.hpp>
Chris@16 15 #include <boost/assert.hpp>
Chris@16 16
Chris@16 17 // Modified Bessel function of the first kind of order one
Chris@16 18 // minimax rational approximations on intervals, see
Chris@16 19 // Blair and Edwards, Chalk River Report AECL-4928, 1974
Chris@16 20
Chris@16 21 namespace boost { namespace math { namespace detail{
Chris@16 22
Chris@16 23 template <typename T>
Chris@16 24 T bessel_i1(T x);
Chris@16 25
Chris@16 26 template <class T>
Chris@16 27 struct bessel_i1_initializer
Chris@16 28 {
Chris@16 29 struct init
Chris@16 30 {
Chris@16 31 init()
Chris@16 32 {
Chris@16 33 do_init();
Chris@16 34 }
Chris@16 35 static void do_init()
Chris@16 36 {
Chris@16 37 bessel_i1(T(1));
Chris@16 38 }
Chris@16 39 void force_instantiate()const{}
Chris@16 40 };
Chris@16 41 static const init initializer;
Chris@16 42 static void force_instantiate()
Chris@16 43 {
Chris@16 44 initializer.force_instantiate();
Chris@16 45 }
Chris@16 46 };
Chris@16 47
Chris@16 48 template <class T>
Chris@16 49 const typename bessel_i1_initializer<T>::init bessel_i1_initializer<T>::initializer;
Chris@16 50
Chris@16 51 template <typename T>
Chris@16 52 T bessel_i1(T x)
Chris@16 53 {
Chris@16 54
Chris@16 55 bessel_i1_initializer<T>::force_instantiate();
Chris@16 56
Chris@16 57 static const T P1[] = {
Chris@16 58 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)),
Chris@16 59 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)),
Chris@16 60 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)),
Chris@16 61 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)),
Chris@16 62 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)),
Chris@16 63 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)),
Chris@16 64 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)),
Chris@16 65 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)),
Chris@16 66 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)),
Chris@16 67 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)),
Chris@16 68 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)),
Chris@16 69 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)),
Chris@16 70 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)),
Chris@16 71 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)),
Chris@16 72 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)),
Chris@16 73 };
Chris@16 74 static const T Q1[] = {
Chris@16 75 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)),
Chris@16 76 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)),
Chris@16 77 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)),
Chris@16 78 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)),
Chris@16 79 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)),
Chris@16 80 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
Chris@16 81 };
Chris@16 82 static const T P2[] = {
Chris@16 83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)),
Chris@16 84 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)),
Chris@16 85 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)),
Chris@16 86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)),
Chris@16 87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)),
Chris@16 88 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)),
Chris@16 89 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)),
Chris@16 90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)),
Chris@16 91 };
Chris@16 92 static const T Q2[] = {
Chris@16 93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)),
Chris@16 94 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)),
Chris@16 95 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)),
Chris@16 96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)),
Chris@16 97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)),
Chris@16 98 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)),
Chris@16 99 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
Chris@16 100 };
Chris@16 101 T value, factor, r, w;
Chris@16 102
Chris@16 103 BOOST_MATH_STD_USING
Chris@16 104 using namespace boost::math::tools;
Chris@16 105
Chris@101 106 BOOST_ASSERT(x >= 0); // negative x is handled before we get here
Chris@16 107 w = abs(x);
Chris@16 108 if (x == 0)
Chris@16 109 {
Chris@16 110 return static_cast<T>(0);
Chris@16 111 }
Chris@16 112 if (w <= 15) // w in (0, 15]
Chris@16 113 {
Chris@16 114 T y = x * x;
Chris@16 115 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
Chris@16 116 factor = w;
Chris@16 117 value = factor * r;
Chris@16 118 }
Chris@16 119 else // w in (15, \infty)
Chris@16 120 {
Chris@16 121 T y = 1 / w - T(1) / 15;
Chris@16 122 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
Chris@16 123 factor = exp(w) / sqrt(w);
Chris@16 124 value = factor * r;
Chris@16 125 }
Chris@16 126
Chris@16 127 return value;
Chris@16 128 }
Chris@16 129
Chris@16 130 }}} // namespaces
Chris@16 131
Chris@16 132 #endif // BOOST_MATH_BESSEL_I1_HPP
Chris@16 133