Chris@16: // Copyright (c) 2006 Xiaogang Zhang Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_BESSEL_I1_HPP Chris@16: #define BOOST_MATH_BESSEL_I1_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Modified Bessel function of the first kind of order one Chris@16: // minimax rational approximations on intervals, see Chris@16: // Blair and Edwards, Chalk River Report AECL-4928, 1974 Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@16: T bessel_i1(T x); Chris@16: Chris@16: template Chris@16: struct bessel_i1_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(); Chris@16: } Chris@16: static void do_init() Chris@16: { Chris@16: bessel_i1(T(1)); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename bessel_i1_initializer::init bessel_i1_initializer::initializer; Chris@16: Chris@16: template Chris@16: T bessel_i1(T x) Chris@16: { Chris@16: Chris@16: bessel_i1_initializer::force_instantiate(); Chris@16: Chris@16: static const T P1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)), Chris@16: }; Chris@16: static const T Q1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: static const T P2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)), Chris@16: }; Chris@16: static const T Q2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: }; Chris@16: T value, factor, r, w; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: Chris@101: BOOST_ASSERT(x >= 0); // negative x is handled before we get here Chris@16: w = abs(x); Chris@16: if (x == 0) Chris@16: { Chris@16: return static_cast(0); Chris@16: } Chris@16: if (w <= 15) // w in (0, 15] Chris@16: { Chris@16: T y = x * x; Chris@16: r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); Chris@16: factor = w; Chris@16: value = factor * r; Chris@16: } Chris@16: else // w in (15, \infty) Chris@16: { Chris@16: T y = 1 / w - T(1) / 15; Chris@16: r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); Chris@16: factor = exp(w) / sqrt(w); Chris@16: value = factor * r; Chris@16: } Chris@16: Chris@16: return value; Chris@16: } Chris@16: Chris@16: }}} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_BESSEL_I1_HPP Chris@16: