annotate DEPENDENCIES/generic/include/boost/math/bindings/mpfr.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright John Maddock 2008.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5 //
Chris@16 6 // Wrapper that works with mpfr_class defined in gmpfrxx.h
Chris@16 7 // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
Chris@16 8 // Also requires the gmp and mpfr libraries.
Chris@16 9 //
Chris@16 10
Chris@16 11 #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
Chris@16 12 #define BOOST_MATH_MPLFR_BINDINGS_HPP
Chris@16 13
Chris@16 14 #include <boost/config.hpp>
Chris@16 15 #include <boost/lexical_cast.hpp>
Chris@16 16
Chris@16 17 #ifdef BOOST_MSVC
Chris@16 18 //
Chris@16 19 // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers,
Chris@16 20 // disable them here, so we only see warnings from *our* code:
Chris@16 21 //
Chris@16 22 #pragma warning(push)
Chris@16 23 #pragma warning(disable: 4127 4800 4512)
Chris@16 24 #endif
Chris@16 25
Chris@16 26 #include <gmpfrxx.h>
Chris@16 27
Chris@16 28 #ifdef BOOST_MSVC
Chris@16 29 #pragma warning(pop)
Chris@16 30 #endif
Chris@16 31
Chris@16 32 #include <boost/math/tools/precision.hpp>
Chris@16 33 #include <boost/math/tools/real_cast.hpp>
Chris@16 34 #include <boost/math/policies/policy.hpp>
Chris@16 35 #include <boost/math/distributions/fwd.hpp>
Chris@16 36 #include <boost/math/special_functions/math_fwd.hpp>
Chris@16 37 #include <boost/math/bindings/detail/big_digamma.hpp>
Chris@16 38 #include <boost/math/bindings/detail/big_lanczos.hpp>
Chris@101 39 #include <boost/math/tools/big_constant.hpp>
Chris@16 40
Chris@16 41 inline mpfr_class fabs(const mpfr_class& v)
Chris@16 42 {
Chris@16 43 return abs(v);
Chris@16 44 }
Chris@16 45 template <class T, class U>
Chris@16 46 inline mpfr_class fabs(const __gmp_expr<T,U>& v)
Chris@16 47 {
Chris@16 48 return abs(static_cast<mpfr_class>(v));
Chris@16 49 }
Chris@16 50
Chris@16 51 inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
Chris@16 52 {
Chris@16 53 mpfr_class result;
Chris@16 54 mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
Chris@16 55 return result;
Chris@16 56 }
Chris@16 57 /*
Chris@16 58 template <class T, class U, class V, class W>
Chris@16 59 inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
Chris@16 60 {
Chris@16 61 return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
Chris@16 62 }
Chris@16 63 */
Chris@16 64 inline mpfr_class ldexp(const mpfr_class& v, int e)
Chris@16 65 {
Chris@16 66 //int e = mpfr_get_exp(*v.__get_mp());
Chris@16 67 mpfr_class result(v);
Chris@16 68 mpfr_set_exp(result.__get_mp(), e);
Chris@16 69 return result;
Chris@16 70 }
Chris@16 71 template <class T, class U>
Chris@16 72 inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
Chris@16 73 {
Chris@16 74 return ldexp(static_cast<mpfr_class>(v), e);
Chris@16 75 }
Chris@16 76
Chris@16 77 inline mpfr_class frexp(const mpfr_class& v, int* expon)
Chris@16 78 {
Chris@16 79 int e = mpfr_get_exp(v.__get_mp());
Chris@16 80 mpfr_class result(v);
Chris@16 81 mpfr_set_exp(result.__get_mp(), 0);
Chris@16 82 *expon = e;
Chris@16 83 return result;
Chris@16 84 }
Chris@16 85 template <class T, class U>
Chris@16 86 inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
Chris@16 87 {
Chris@16 88 return frexp(static_cast<mpfr_class>(v), expon);
Chris@16 89 }
Chris@16 90
Chris@16 91 inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
Chris@16 92 {
Chris@16 93 mpfr_class n;
Chris@16 94 if(v1 < 0)
Chris@16 95 n = ceil(v1 / v2);
Chris@16 96 else
Chris@16 97 n = floor(v1 / v2);
Chris@16 98 return v1 - n * v2;
Chris@16 99 }
Chris@16 100 template <class T, class U, class V, class W>
Chris@16 101 inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
Chris@16 102 {
Chris@16 103 return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
Chris@16 104 }
Chris@16 105
Chris@16 106 template <class Policy>
Chris@16 107 inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
Chris@16 108 {
Chris@16 109 *ipart = lltrunc(v, pol);
Chris@16 110 return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
Chris@16 111 }
Chris@16 112 template <class T, class U, class Policy>
Chris@16 113 inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
Chris@16 114 {
Chris@16 115 return modf(static_cast<mpfr_class>(v), ipart, pol);
Chris@16 116 }
Chris@16 117
Chris@16 118 template <class Policy>
Chris@16 119 inline int iround(mpfr_class const& x, const Policy&)
Chris@16 120 {
Chris@16 121 return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 122 }
Chris@16 123 template <class T, class U, class Policy>
Chris@16 124 inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 125 {
Chris@16 126 return iround(static_cast<mpfr_class>(x), pol);
Chris@16 127 }
Chris@16 128
Chris@16 129 template <class Policy>
Chris@16 130 inline long lround(mpfr_class const& x, const Policy&)
Chris@16 131 {
Chris@16 132 return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 133 }
Chris@16 134 template <class T, class U, class Policy>
Chris@16 135 inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 136 {
Chris@16 137 return lround(static_cast<mpfr_class>(x), pol);
Chris@16 138 }
Chris@16 139
Chris@16 140 template <class Policy>
Chris@16 141 inline long long llround(mpfr_class const& x, const Policy&)
Chris@16 142 {
Chris@16 143 return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 144 }
Chris@16 145 template <class T, class U, class Policy>
Chris@16 146 inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 147 {
Chris@16 148 return llround(static_cast<mpfr_class>(x), pol);
Chris@16 149 }
Chris@16 150
Chris@16 151 template <class Policy>
Chris@16 152 inline int itrunc(mpfr_class const& x, const Policy&)
Chris@16 153 {
Chris@16 154 return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 155 }
Chris@16 156 template <class T, class U, class Policy>
Chris@16 157 inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 158 {
Chris@16 159 return itrunc(static_cast<mpfr_class>(x), pol);
Chris@16 160 }
Chris@16 161
Chris@16 162 template <class Policy>
Chris@16 163 inline long ltrunc(mpfr_class const& x, const Policy&)
Chris@16 164 {
Chris@16 165 return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 166 }
Chris@16 167 template <class T, class U, class Policy>
Chris@16 168 inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 169 {
Chris@16 170 return ltrunc(static_cast<mpfr_class>(x), pol);
Chris@16 171 }
Chris@16 172
Chris@16 173 template <class Policy>
Chris@16 174 inline long long lltrunc(mpfr_class const& x, const Policy&)
Chris@16 175 {
Chris@16 176 return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
Chris@16 177 }
Chris@16 178 template <class T, class U, class Policy>
Chris@16 179 inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
Chris@16 180 {
Chris@16 181 return lltrunc(static_cast<mpfr_class>(x), pol);
Chris@16 182 }
Chris@16 183
Chris@101 184 namespace boost{
Chris@101 185
Chris@101 186 #ifdef BOOST_MATH_USE_FLOAT128
Chris@101 187 template<> struct is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public boost::integral_constant<bool, false>{};
Chris@101 188 #endif
Chris@101 189 template<> struct is_convertible<long long, mpfr_class> : public boost::integral_constant<bool, false>{};
Chris@101 190
Chris@101 191 namespace math{
Chris@16 192
Chris@16 193 #if defined(__GNUC__) && (__GNUC__ < 4)
Chris@16 194 using ::iround;
Chris@16 195 using ::lround;
Chris@16 196 using ::llround;
Chris@16 197 using ::itrunc;
Chris@16 198 using ::ltrunc;
Chris@16 199 using ::lltrunc;
Chris@16 200 using ::modf;
Chris@16 201 #endif
Chris@16 202
Chris@16 203 namespace lanczos{
Chris@16 204
Chris@16 205 struct mpfr_lanczos
Chris@16 206 {
Chris@16 207 static mpfr_class lanczos_sum(const mpfr_class& z)
Chris@16 208 {
Chris@16 209 unsigned long p = z.get_dprec();
Chris@16 210 if(p <= 72)
Chris@16 211 return lanczos13UDT::lanczos_sum(z);
Chris@16 212 else if(p <= 120)
Chris@16 213 return lanczos22UDT::lanczos_sum(z);
Chris@16 214 else if(p <= 170)
Chris@16 215 return lanczos31UDT::lanczos_sum(z);
Chris@16 216 else //if(p <= 370) approx 100 digit precision:
Chris@16 217 return lanczos61UDT::lanczos_sum(z);
Chris@16 218 }
Chris@16 219 static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
Chris@16 220 {
Chris@16 221 unsigned long p = z.get_dprec();
Chris@16 222 if(p <= 72)
Chris@16 223 return lanczos13UDT::lanczos_sum_expG_scaled(z);
Chris@16 224 else if(p <= 120)
Chris@16 225 return lanczos22UDT::lanczos_sum_expG_scaled(z);
Chris@16 226 else if(p <= 170)
Chris@16 227 return lanczos31UDT::lanczos_sum_expG_scaled(z);
Chris@16 228 else //if(p <= 370) approx 100 digit precision:
Chris@16 229 return lanczos61UDT::lanczos_sum_expG_scaled(z);
Chris@16 230 }
Chris@16 231 static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
Chris@16 232 {
Chris@16 233 unsigned long p = z.get_dprec();
Chris@16 234 if(p <= 72)
Chris@16 235 return lanczos13UDT::lanczos_sum_near_1(z);
Chris@16 236 else if(p <= 120)
Chris@16 237 return lanczos22UDT::lanczos_sum_near_1(z);
Chris@16 238 else if(p <= 170)
Chris@16 239 return lanczos31UDT::lanczos_sum_near_1(z);
Chris@16 240 else //if(p <= 370) approx 100 digit precision:
Chris@16 241 return lanczos61UDT::lanczos_sum_near_1(z);
Chris@16 242 }
Chris@16 243 static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
Chris@16 244 {
Chris@16 245 unsigned long p = z.get_dprec();
Chris@16 246 if(p <= 72)
Chris@16 247 return lanczos13UDT::lanczos_sum_near_2(z);
Chris@16 248 else if(p <= 120)
Chris@16 249 return lanczos22UDT::lanczos_sum_near_2(z);
Chris@16 250 else if(p <= 170)
Chris@16 251 return lanczos31UDT::lanczos_sum_near_2(z);
Chris@16 252 else //if(p <= 370) approx 100 digit precision:
Chris@16 253 return lanczos61UDT::lanczos_sum_near_2(z);
Chris@16 254 }
Chris@16 255 static mpfr_class g()
Chris@16 256 {
Chris@16 257 unsigned long p = mpfr_class::get_dprec();
Chris@16 258 if(p <= 72)
Chris@16 259 return lanczos13UDT::g();
Chris@16 260 else if(p <= 120)
Chris@16 261 return lanczos22UDT::g();
Chris@16 262 else if(p <= 170)
Chris@16 263 return lanczos31UDT::g();
Chris@16 264 else //if(p <= 370) approx 100 digit precision:
Chris@16 265 return lanczos61UDT::g();
Chris@16 266 }
Chris@16 267 };
Chris@16 268
Chris@16 269 template<class Policy>
Chris@16 270 struct lanczos<mpfr_class, Policy>
Chris@16 271 {
Chris@16 272 typedef mpfr_lanczos type;
Chris@16 273 };
Chris@16 274
Chris@16 275 } // namespace lanczos
Chris@16 276
Chris@16 277 namespace constants{
Chris@16 278
Chris@16 279 template <class Real, class Policy>
Chris@16 280 struct construction_traits;
Chris@16 281
Chris@16 282 template <class Policy>
Chris@16 283 struct construction_traits<mpfr_class, Policy>
Chris@16 284 {
Chris@16 285 typedef mpl::int_<0> type;
Chris@16 286 };
Chris@16 287
Chris@16 288 }
Chris@16 289
Chris@16 290 namespace tools
Chris@16 291 {
Chris@16 292
Chris@16 293 template <class T, class U>
Chris@16 294 struct promote_arg<__gmp_expr<T,U> >
Chris@16 295 { // If T is integral type, then promote to double.
Chris@16 296 typedef mpfr_class type;
Chris@16 297 };
Chris@16 298
Chris@16 299 template<>
Chris@16 300 inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 301 {
Chris@16 302 return mpfr_class::get_dprec();
Chris@16 303 }
Chris@16 304
Chris@16 305 namespace detail{
Chris@16 306
Chris@16 307 template<class I>
Chris@16 308 void convert_to_long_result(mpfr_class const& r, I& result)
Chris@16 309 {
Chris@16 310 result = 0;
Chris@16 311 I last_result(0);
Chris@16 312 mpfr_class t(r);
Chris@16 313 double term;
Chris@16 314 do
Chris@16 315 {
Chris@16 316 term = real_cast<double>(t);
Chris@16 317 last_result = result;
Chris@16 318 result += static_cast<I>(term);
Chris@16 319 t -= term;
Chris@16 320 }while(result != last_result);
Chris@16 321 }
Chris@16 322
Chris@16 323 }
Chris@16 324
Chris@16 325 template <>
Chris@16 326 inline mpfr_class real_cast<mpfr_class, long long>(long long t)
Chris@16 327 {
Chris@16 328 mpfr_class result;
Chris@16 329 int expon = 0;
Chris@16 330 int sign = 1;
Chris@16 331 if(t < 0)
Chris@16 332 {
Chris@16 333 sign = -1;
Chris@16 334 t = -t;
Chris@16 335 }
Chris@16 336 while(t)
Chris@16 337 {
Chris@16 338 result += ldexp((double)(t & 0xffffL), expon);
Chris@16 339 expon += 32;
Chris@16 340 t >>= 32;
Chris@16 341 }
Chris@16 342 return result * sign;
Chris@16 343 }
Chris@16 344 template <>
Chris@16 345 inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
Chris@16 346 {
Chris@16 347 return t.get_ui();
Chris@16 348 }
Chris@16 349 template <>
Chris@16 350 inline int real_cast<int, mpfr_class>(mpfr_class t)
Chris@16 351 {
Chris@16 352 return t.get_si();
Chris@16 353 }
Chris@16 354 template <>
Chris@16 355 inline double real_cast<double, mpfr_class>(mpfr_class t)
Chris@16 356 {
Chris@16 357 return t.get_d();
Chris@16 358 }
Chris@16 359 template <>
Chris@16 360 inline float real_cast<float, mpfr_class>(mpfr_class t)
Chris@16 361 {
Chris@16 362 return static_cast<float>(t.get_d());
Chris@16 363 }
Chris@16 364 template <>
Chris@16 365 inline long real_cast<long, mpfr_class>(mpfr_class t)
Chris@16 366 {
Chris@16 367 long result;
Chris@16 368 detail::convert_to_long_result(t, result);
Chris@16 369 return result;
Chris@16 370 }
Chris@16 371 template <>
Chris@16 372 inline long long real_cast<long long, mpfr_class>(mpfr_class t)
Chris@16 373 {
Chris@16 374 long long result;
Chris@16 375 detail::convert_to_long_result(t, result);
Chris@16 376 return result;
Chris@16 377 }
Chris@16 378
Chris@16 379 template <>
Chris@16 380 inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 381 {
Chris@16 382 static bool has_init = false;
Chris@16 383 static mpfr_class val;
Chris@16 384 if(!has_init)
Chris@16 385 {
Chris@16 386 val = 0.5;
Chris@16 387 mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
Chris@16 388 has_init = true;
Chris@16 389 }
Chris@16 390 return val;
Chris@16 391 }
Chris@16 392
Chris@16 393 template <>
Chris@16 394 inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 395 {
Chris@16 396 static bool has_init = false;
Chris@16 397 static mpfr_class val;
Chris@16 398 if(!has_init)
Chris@16 399 {
Chris@16 400 val = 0.5;
Chris@16 401 mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
Chris@16 402 has_init = true;
Chris@16 403 }
Chris@16 404 return val;
Chris@16 405 }
Chris@16 406
Chris@16 407 template <>
Chris@16 408 inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 409 {
Chris@16 410 static bool has_init = false;
Chris@16 411 static mpfr_class val = max_value<mpfr_class>();
Chris@16 412 if(!has_init)
Chris@16 413 {
Chris@16 414 val = log(val);
Chris@16 415 has_init = true;
Chris@16 416 }
Chris@16 417 return val;
Chris@16 418 }
Chris@16 419
Chris@16 420 template <>
Chris@16 421 inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 422 {
Chris@16 423 static bool has_init = false;
Chris@16 424 static mpfr_class val = max_value<mpfr_class>();
Chris@16 425 if(!has_init)
Chris@16 426 {
Chris@16 427 val = log(val);
Chris@16 428 has_init = true;
Chris@16 429 }
Chris@16 430 return val;
Chris@16 431 }
Chris@16 432
Chris@16 433 template <>
Chris@16 434 inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
Chris@16 435 {
Chris@16 436 return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
Chris@16 437 }
Chris@16 438
Chris@16 439 } // namespace tools
Chris@16 440
Chris@16 441 namespace policies{
Chris@16 442
Chris@16 443 template <class T, class U, class Policy>
Chris@16 444 struct evaluation<__gmp_expr<T, U>, Policy>
Chris@16 445 {
Chris@16 446 typedef mpfr_class type;
Chris@16 447 };
Chris@16 448
Chris@16 449 }
Chris@16 450
Chris@16 451 template <class Policy>
Chris@16 452 inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
Chris@16 453 {
Chris@16 454 //
Chris@16 455 // This is 12 * sqrt(6) * zeta(3) / pi^3:
Chris@16 456 // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
Chris@16 457 //
Chris@16 458 return boost::lexical_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
Chris@16 459 }
Chris@16 460
Chris@16 461 template <class Policy>
Chris@16 462 inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
Chris@16 463 {
Chris@16 464 // using namespace boost::math::constants;
Chris@16 465 return boost::lexical_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
Chris@16 466 // Computed using NTL at 150 bit, about 50 decimal digits.
Chris@16 467 // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
Chris@16 468 }
Chris@16 469
Chris@16 470 template <class Policy>
Chris@16 471 inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
Chris@16 472 {
Chris@16 473 // using namespace boost::math::constants;
Chris@16 474 return boost::lexical_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
Chris@16 475 // Computed using NTL at 150 bit, about 50 decimal digits.
Chris@16 476 // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
Chris@16 477 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
Chris@16 478 }
Chris@16 479
Chris@16 480 template <class Policy>
Chris@16 481 inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
Chris@16 482 {
Chris@16 483 //using namespace boost::math::constants;
Chris@16 484 // Computed using NTL at 150 bit, about 50 decimal digits.
Chris@16 485 return boost::lexical_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
Chris@16 486 // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
Chris@16 487 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
Chris@16 488 } // kurtosis
Chris@16 489
Chris@16 490 namespace detail{
Chris@16 491
Chris@16 492 //
Chris@16 493 // Version of Digamma accurate to ~100 decimal digits.
Chris@16 494 //
Chris@16 495 template <class Policy>
Chris@16 496 mpfr_class digamma_imp(mpfr_class x, const mpl::int_<0>* , const Policy& pol)
Chris@16 497 {
Chris@16 498 //
Chris@16 499 // This handles reflection of negative arguments, and all our
Chris@16 500 // empfr_classor handling, then forwards to the T-specific approximation.
Chris@16 501 //
Chris@16 502 BOOST_MATH_STD_USING // ADL of std functions.
Chris@16 503
Chris@16 504 mpfr_class result = 0;
Chris@16 505 //
Chris@16 506 // Check for negative arguments and use reflection:
Chris@16 507 //
Chris@16 508 if(x < 0)
Chris@16 509 {
Chris@16 510 // Reflect:
Chris@16 511 x = 1 - x;
Chris@16 512 // Argument reduction for tan:
Chris@16 513 mpfr_class remainder = x - floor(x);
Chris@16 514 // Shift to negative if > 0.5:
Chris@16 515 if(remainder > 0.5)
Chris@16 516 {
Chris@16 517 remainder -= 1;
Chris@16 518 }
Chris@16 519 //
Chris@16 520 // check for evaluation at a negative pole:
Chris@16 521 //
Chris@16 522 if(remainder == 0)
Chris@16 523 {
Chris@16 524 return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
Chris@16 525 }
Chris@16 526 result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
Chris@16 527 }
Chris@16 528 result += big_digamma(x);
Chris@16 529 return result;
Chris@16 530 }
Chris@16 531 //
Chris@16 532 // Specialisations of this function provides the initial
Chris@16 533 // starting guess for Halley iteration:
Chris@16 534 //
Chris@16 535 template <class Policy>
Chris@16 536 inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::mpl::int_<64>*)
Chris@16 537 {
Chris@16 538 BOOST_MATH_STD_USING // for ADL of std names.
Chris@16 539
Chris@16 540 mpfr_class result = 0;
Chris@16 541
Chris@16 542 if(p <= 0.5)
Chris@16 543 {
Chris@16 544 //
Chris@16 545 // Evaluate inverse erf using the rational approximation:
Chris@16 546 //
Chris@16 547 // x = p(p+10)(Y+R(p))
Chris@16 548 //
Chris@16 549 // Where Y is a constant, and R(p) is optimised for a low
Chris@16 550 // absolute empfr_classor compared to |Y|.
Chris@16 551 //
Chris@16 552 // double: Max empfr_classor found: 2.001849e-18
Chris@16 553 // long double: Max empfr_classor found: 1.017064e-20
Chris@16 554 // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
Chris@16 555 //
Chris@16 556 static const float Y = 0.0891314744949340820313f;
Chris@16 557 static const mpfr_class P[] = {
Chris@16 558 -0.000508781949658280665617,
Chris@16 559 -0.00836874819741736770379,
Chris@16 560 0.0334806625409744615033,
Chris@16 561 -0.0126926147662974029034,
Chris@16 562 -0.0365637971411762664006,
Chris@16 563 0.0219878681111168899165,
Chris@16 564 0.00822687874676915743155,
Chris@16 565 -0.00538772965071242932965
Chris@16 566 };
Chris@16 567 static const mpfr_class Q[] = {
Chris@16 568 1,
Chris@16 569 -0.970005043303290640362,
Chris@16 570 -1.56574558234175846809,
Chris@16 571 1.56221558398423026363,
Chris@16 572 0.662328840472002992063,
Chris@16 573 -0.71228902341542847553,
Chris@16 574 -0.0527396382340099713954,
Chris@16 575 0.0795283687341571680018,
Chris@16 576 -0.00233393759374190016776,
Chris@16 577 0.000886216390456424707504
Chris@16 578 };
Chris@16 579 mpfr_class g = p * (p + 10);
Chris@16 580 mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
Chris@16 581 result = g * Y + g * r;
Chris@16 582 }
Chris@16 583 else if(q >= 0.25)
Chris@16 584 {
Chris@16 585 //
Chris@16 586 // Rational approximation for 0.5 > q >= 0.25
Chris@16 587 //
Chris@16 588 // x = sqrt(-2*log(q)) / (Y + R(q))
Chris@16 589 //
Chris@16 590 // Where Y is a constant, and R(q) is optimised for a low
Chris@16 591 // absolute empfr_classor compared to Y.
Chris@16 592 //
Chris@16 593 // double : Max empfr_classor found: 7.403372e-17
Chris@16 594 // long double : Max empfr_classor found: 6.084616e-20
Chris@16 595 // Maximum Deviation Found (empfr_classor term) 4.811e-20
Chris@16 596 //
Chris@16 597 static const float Y = 2.249481201171875f;
Chris@16 598 static const mpfr_class P[] = {
Chris@16 599 -0.202433508355938759655,
Chris@16 600 0.105264680699391713268,
Chris@16 601 8.37050328343119927838,
Chris@16 602 17.6447298408374015486,
Chris@16 603 -18.8510648058714251895,
Chris@16 604 -44.6382324441786960818,
Chris@16 605 17.445385985570866523,
Chris@16 606 21.1294655448340526258,
Chris@16 607 -3.67192254707729348546
Chris@16 608 };
Chris@16 609 static const mpfr_class Q[] = {
Chris@16 610 1,
Chris@16 611 6.24264124854247537712,
Chris@16 612 3.9713437953343869095,
Chris@16 613 -28.6608180499800029974,
Chris@16 614 -20.1432634680485188801,
Chris@16 615 48.5609213108739935468,
Chris@16 616 10.8268667355460159008,
Chris@16 617 -22.6436933413139721736,
Chris@16 618 1.72114765761200282724
Chris@16 619 };
Chris@16 620 mpfr_class g = sqrt(-2 * log(q));
Chris@16 621 mpfr_class xs = q - 0.25;
Chris@16 622 mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 623 result = g / (Y + r);
Chris@16 624 }
Chris@16 625 else
Chris@16 626 {
Chris@16 627 //
Chris@16 628 // For q < 0.25 we have a series of rational approximations all
Chris@16 629 // of the general form:
Chris@16 630 //
Chris@16 631 // let: x = sqrt(-log(q))
Chris@16 632 //
Chris@16 633 // Then the result is given by:
Chris@16 634 //
Chris@16 635 // x(Y+R(x-B))
Chris@16 636 //
Chris@16 637 // where Y is a constant, B is the lowest value of x for which
Chris@16 638 // the approximation is valid, and R(x-B) is optimised for a low
Chris@16 639 // absolute empfr_classor compared to Y.
Chris@16 640 //
Chris@16 641 // Note that almost all code will really go through the first
Chris@16 642 // or maybe second approximation. After than we're dealing with very
Chris@16 643 // small input values indeed: 80 and 128 bit long double's go all the
Chris@16 644 // way down to ~ 1e-5000 so the "tail" is rather long...
Chris@16 645 //
Chris@16 646 mpfr_class x = sqrt(-log(q));
Chris@16 647 if(x < 3)
Chris@16 648 {
Chris@16 649 // Max empfr_classor found: 1.089051e-20
Chris@16 650 static const float Y = 0.807220458984375f;
Chris@16 651 static const mpfr_class P[] = {
Chris@16 652 -0.131102781679951906451,
Chris@16 653 -0.163794047193317060787,
Chris@16 654 0.117030156341995252019,
Chris@16 655 0.387079738972604337464,
Chris@16 656 0.337785538912035898924,
Chris@16 657 0.142869534408157156766,
Chris@16 658 0.0290157910005329060432,
Chris@16 659 0.00214558995388805277169,
Chris@16 660 -0.679465575181126350155e-6,
Chris@16 661 0.285225331782217055858e-7,
Chris@16 662 -0.681149956853776992068e-9
Chris@16 663 };
Chris@16 664 static const mpfr_class Q[] = {
Chris@16 665 1,
Chris@16 666 3.46625407242567245975,
Chris@16 667 5.38168345707006855425,
Chris@16 668 4.77846592945843778382,
Chris@16 669 2.59301921623620271374,
Chris@16 670 0.848854343457902036425,
Chris@16 671 0.152264338295331783612,
Chris@16 672 0.01105924229346489121
Chris@16 673 };
Chris@16 674 mpfr_class xs = x - 1.125;
Chris@16 675 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 676 result = Y * x + R * x;
Chris@16 677 }
Chris@16 678 else if(x < 6)
Chris@16 679 {
Chris@16 680 // Max empfr_classor found: 8.389174e-21
Chris@16 681 static const float Y = 0.93995571136474609375f;
Chris@16 682 static const mpfr_class P[] = {
Chris@16 683 -0.0350353787183177984712,
Chris@16 684 -0.00222426529213447927281,
Chris@16 685 0.0185573306514231072324,
Chris@16 686 0.00950804701325919603619,
Chris@16 687 0.00187123492819559223345,
Chris@16 688 0.000157544617424960554631,
Chris@16 689 0.460469890584317994083e-5,
Chris@16 690 -0.230404776911882601748e-9,
Chris@16 691 0.266339227425782031962e-11
Chris@16 692 };
Chris@16 693 static const mpfr_class Q[] = {
Chris@16 694 1,
Chris@16 695 1.3653349817554063097,
Chris@16 696 0.762059164553623404043,
Chris@16 697 0.220091105764131249824,
Chris@16 698 0.0341589143670947727934,
Chris@16 699 0.00263861676657015992959,
Chris@16 700 0.764675292302794483503e-4
Chris@16 701 };
Chris@16 702 mpfr_class xs = x - 3;
Chris@16 703 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 704 result = Y * x + R * x;
Chris@16 705 }
Chris@16 706 else if(x < 18)
Chris@16 707 {
Chris@16 708 // Max empfr_classor found: 1.481312e-19
Chris@16 709 static const float Y = 0.98362827301025390625f;
Chris@16 710 static const mpfr_class P[] = {
Chris@16 711 -0.0167431005076633737133,
Chris@16 712 -0.00112951438745580278863,
Chris@16 713 0.00105628862152492910091,
Chris@16 714 0.000209386317487588078668,
Chris@16 715 0.149624783758342370182e-4,
Chris@16 716 0.449696789927706453732e-6,
Chris@16 717 0.462596163522878599135e-8,
Chris@16 718 -0.281128735628831791805e-13,
Chris@16 719 0.99055709973310326855e-16
Chris@16 720 };
Chris@16 721 static const mpfr_class Q[] = {
Chris@16 722 1,
Chris@16 723 0.591429344886417493481,
Chris@16 724 0.138151865749083321638,
Chris@16 725 0.0160746087093676504695,
Chris@16 726 0.000964011807005165528527,
Chris@16 727 0.275335474764726041141e-4,
Chris@16 728 0.282243172016108031869e-6
Chris@16 729 };
Chris@16 730 mpfr_class xs = x - 6;
Chris@16 731 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 732 result = Y * x + R * x;
Chris@16 733 }
Chris@16 734 else if(x < 44)
Chris@16 735 {
Chris@16 736 // Max empfr_classor found: 5.697761e-20
Chris@16 737 static const float Y = 0.99714565277099609375f;
Chris@16 738 static const mpfr_class P[] = {
Chris@16 739 -0.0024978212791898131227,
Chris@16 740 -0.779190719229053954292e-5,
Chris@16 741 0.254723037413027451751e-4,
Chris@16 742 0.162397777342510920873e-5,
Chris@16 743 0.396341011304801168516e-7,
Chris@16 744 0.411632831190944208473e-9,
Chris@16 745 0.145596286718675035587e-11,
Chris@16 746 -0.116765012397184275695e-17
Chris@16 747 };
Chris@16 748 static const mpfr_class Q[] = {
Chris@16 749 1,
Chris@16 750 0.207123112214422517181,
Chris@16 751 0.0169410838120975906478,
Chris@16 752 0.000690538265622684595676,
Chris@16 753 0.145007359818232637924e-4,
Chris@16 754 0.144437756628144157666e-6,
Chris@16 755 0.509761276599778486139e-9
Chris@16 756 };
Chris@16 757 mpfr_class xs = x - 18;
Chris@16 758 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 759 result = Y * x + R * x;
Chris@16 760 }
Chris@16 761 else
Chris@16 762 {
Chris@16 763 // Max empfr_classor found: 1.279746e-20
Chris@16 764 static const float Y = 0.99941349029541015625f;
Chris@16 765 static const mpfr_class P[] = {
Chris@16 766 -0.000539042911019078575891,
Chris@16 767 -0.28398759004727721098e-6,
Chris@16 768 0.899465114892291446442e-6,
Chris@16 769 0.229345859265920864296e-7,
Chris@16 770 0.225561444863500149219e-9,
Chris@16 771 0.947846627503022684216e-12,
Chris@16 772 0.135880130108924861008e-14,
Chris@16 773 -0.348890393399948882918e-21
Chris@16 774 };
Chris@16 775 static const mpfr_class Q[] = {
Chris@16 776 1,
Chris@16 777 0.0845746234001899436914,
Chris@16 778 0.00282092984726264681981,
Chris@16 779 0.468292921940894236786e-4,
Chris@16 780 0.399968812193862100054e-6,
Chris@16 781 0.161809290887904476097e-8,
Chris@16 782 0.231558608310259605225e-11
Chris@16 783 };
Chris@16 784 mpfr_class xs = x - 44;
Chris@16 785 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
Chris@16 786 result = Y * x + R * x;
Chris@16 787 }
Chris@16 788 }
Chris@16 789 return result;
Chris@16 790 }
Chris@16 791
Chris@16 792 inline mpfr_class bessel_i0(mpfr_class x)
Chris@16 793 {
Chris@16 794 static const mpfr_class P1[] = {
Chris@16 795 boost::lexical_cast<mpfr_class>("-2.2335582639474375249e+15"),
Chris@16 796 boost::lexical_cast<mpfr_class>("-5.5050369673018427753e+14"),
Chris@16 797 boost::lexical_cast<mpfr_class>("-3.2940087627407749166e+13"),
Chris@16 798 boost::lexical_cast<mpfr_class>("-8.4925101247114157499e+11"),
Chris@16 799 boost::lexical_cast<mpfr_class>("-1.1912746104985237192e+10"),
Chris@16 800 boost::lexical_cast<mpfr_class>("-1.0313066708737980747e+08"),
Chris@16 801 boost::lexical_cast<mpfr_class>("-5.9545626019847898221e+05"),
Chris@16 802 boost::lexical_cast<mpfr_class>("-2.4125195876041896775e+03"),
Chris@16 803 boost::lexical_cast<mpfr_class>("-7.0935347449210549190e+00"),
Chris@16 804 boost::lexical_cast<mpfr_class>("-1.5453977791786851041e-02"),
Chris@16 805 boost::lexical_cast<mpfr_class>("-2.5172644670688975051e-05"),
Chris@16 806 boost::lexical_cast<mpfr_class>("-3.0517226450451067446e-08"),
Chris@16 807 boost::lexical_cast<mpfr_class>("-2.6843448573468483278e-11"),
Chris@16 808 boost::lexical_cast<mpfr_class>("-1.5982226675653184646e-14"),
Chris@16 809 boost::lexical_cast<mpfr_class>("-5.2487866627945699800e-18"),
Chris@16 810 };
Chris@16 811 static const mpfr_class Q1[] = {
Chris@16 812 boost::lexical_cast<mpfr_class>("-2.2335582639474375245e+15"),
Chris@16 813 boost::lexical_cast<mpfr_class>("7.8858692566751002988e+12"),
Chris@16 814 boost::lexical_cast<mpfr_class>("-1.2207067397808979846e+10"),
Chris@16 815 boost::lexical_cast<mpfr_class>("1.0377081058062166144e+07"),
Chris@16 816 boost::lexical_cast<mpfr_class>("-4.8527560179962773045e+03"),
Chris@16 817 boost::lexical_cast<mpfr_class>("1.0"),
Chris@16 818 };
Chris@16 819 static const mpfr_class P2[] = {
Chris@16 820 boost::lexical_cast<mpfr_class>("-2.2210262233306573296e-04"),
Chris@16 821 boost::lexical_cast<mpfr_class>("1.3067392038106924055e-02"),
Chris@16 822 boost::lexical_cast<mpfr_class>("-4.4700805721174453923e-01"),
Chris@16 823 boost::lexical_cast<mpfr_class>("5.5674518371240761397e+00"),
Chris@16 824 boost::lexical_cast<mpfr_class>("-2.3517945679239481621e+01"),
Chris@16 825 boost::lexical_cast<mpfr_class>("3.1611322818701131207e+01"),
Chris@16 826 boost::lexical_cast<mpfr_class>("-9.6090021968656180000e+00"),
Chris@16 827 };
Chris@16 828 static const mpfr_class Q2[] = {
Chris@16 829 boost::lexical_cast<mpfr_class>("-5.5194330231005480228e-04"),
Chris@16 830 boost::lexical_cast<mpfr_class>("3.2547697594819615062e-02"),
Chris@16 831 boost::lexical_cast<mpfr_class>("-1.1151759188741312645e+00"),
Chris@16 832 boost::lexical_cast<mpfr_class>("1.3982595353892851542e+01"),
Chris@16 833 boost::lexical_cast<mpfr_class>("-6.0228002066743340583e+01"),
Chris@16 834 boost::lexical_cast<mpfr_class>("8.5539563258012929600e+01"),
Chris@16 835 boost::lexical_cast<mpfr_class>("-3.1446690275135491500e+01"),
Chris@16 836 boost::lexical_cast<mpfr_class>("1.0"),
Chris@16 837 };
Chris@16 838 mpfr_class value, factor, r;
Chris@16 839
Chris@16 840 BOOST_MATH_STD_USING
Chris@16 841 using namespace boost::math::tools;
Chris@16 842
Chris@16 843 if (x < 0)
Chris@16 844 {
Chris@16 845 x = -x; // even function
Chris@16 846 }
Chris@16 847 if (x == 0)
Chris@16 848 {
Chris@16 849 return static_cast<mpfr_class>(1);
Chris@16 850 }
Chris@16 851 if (x <= 15) // x in (0, 15]
Chris@16 852 {
Chris@16 853 mpfr_class y = x * x;
Chris@16 854 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
Chris@16 855 }
Chris@16 856 else // x in (15, \infty)
Chris@16 857 {
Chris@16 858 mpfr_class y = 1 / x - mpfr_class(1) / 15;
Chris@16 859 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
Chris@16 860 factor = exp(x) / sqrt(x);
Chris@16 861 value = factor * r;
Chris@16 862 }
Chris@16 863
Chris@16 864 return value;
Chris@16 865 }
Chris@16 866
Chris@16 867 inline mpfr_class bessel_i1(mpfr_class x)
Chris@16 868 {
Chris@16 869 static const mpfr_class P1[] = {
Chris@16 870 static_cast<mpfr_class>("-1.4577180278143463643e+15"),
Chris@16 871 static_cast<mpfr_class>("-1.7732037840791591320e+14"),
Chris@16 872 static_cast<mpfr_class>("-6.9876779648010090070e+12"),
Chris@16 873 static_cast<mpfr_class>("-1.3357437682275493024e+11"),
Chris@16 874 static_cast<mpfr_class>("-1.4828267606612366099e+09"),
Chris@16 875 static_cast<mpfr_class>("-1.0588550724769347106e+07"),
Chris@16 876 static_cast<mpfr_class>("-5.1894091982308017540e+04"),
Chris@16 877 static_cast<mpfr_class>("-1.8225946631657315931e+02"),
Chris@16 878 static_cast<mpfr_class>("-4.7207090827310162436e-01"),
Chris@16 879 static_cast<mpfr_class>("-9.1746443287817501309e-04"),
Chris@16 880 static_cast<mpfr_class>("-1.3466829827635152875e-06"),
Chris@16 881 static_cast<mpfr_class>("-1.4831904935994647675e-09"),
Chris@16 882 static_cast<mpfr_class>("-1.1928788903603238754e-12"),
Chris@16 883 static_cast<mpfr_class>("-6.5245515583151902910e-16"),
Chris@16 884 static_cast<mpfr_class>("-1.9705291802535139930e-19"),
Chris@16 885 };
Chris@16 886 static const mpfr_class Q1[] = {
Chris@16 887 static_cast<mpfr_class>("-2.9154360556286927285e+15"),
Chris@16 888 static_cast<mpfr_class>("9.7887501377547640438e+12"),
Chris@16 889 static_cast<mpfr_class>("-1.4386907088588283434e+10"),
Chris@16 890 static_cast<mpfr_class>("1.1594225856856884006e+07"),
Chris@16 891 static_cast<mpfr_class>("-5.1326864679904189920e+03"),
Chris@16 892 static_cast<mpfr_class>("1.0"),
Chris@16 893 };
Chris@16 894 static const mpfr_class P2[] = {
Chris@16 895 static_cast<mpfr_class>("1.4582087408985668208e-05"),
Chris@16 896 static_cast<mpfr_class>("-8.9359825138577646443e-04"),
Chris@16 897 static_cast<mpfr_class>("2.9204895411257790122e-02"),
Chris@16 898 static_cast<mpfr_class>("-3.4198728018058047439e-01"),
Chris@16 899 static_cast<mpfr_class>("1.3960118277609544334e+00"),
Chris@16 900 static_cast<mpfr_class>("-1.9746376087200685843e+00"),
Chris@16 901 static_cast<mpfr_class>("8.5591872901933459000e-01"),
Chris@16 902 static_cast<mpfr_class>("-6.0437159056137599999e-02"),
Chris@16 903 };
Chris@16 904 static const mpfr_class Q2[] = {
Chris@16 905 static_cast<mpfr_class>("3.7510433111922824643e-05"),
Chris@16 906 static_cast<mpfr_class>("-2.2835624489492512649e-03"),
Chris@16 907 static_cast<mpfr_class>("7.4212010813186530069e-02"),
Chris@16 908 static_cast<mpfr_class>("-8.5017476463217924408e-01"),
Chris@16 909 static_cast<mpfr_class>("3.2593714889036996297e+00"),
Chris@16 910 static_cast<mpfr_class>("-3.8806586721556593450e+00"),
Chris@16 911 static_cast<mpfr_class>("1.0"),
Chris@16 912 };
Chris@16 913 mpfr_class value, factor, r, w;
Chris@16 914
Chris@16 915 BOOST_MATH_STD_USING
Chris@16 916 using namespace boost::math::tools;
Chris@16 917
Chris@16 918 w = abs(x);
Chris@16 919 if (x == 0)
Chris@16 920 {
Chris@16 921 return static_cast<mpfr_class>(0);
Chris@16 922 }
Chris@16 923 if (w <= 15) // w in (0, 15]
Chris@16 924 {
Chris@16 925 mpfr_class y = x * x;
Chris@16 926 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
Chris@16 927 factor = w;
Chris@16 928 value = factor * r;
Chris@16 929 }
Chris@16 930 else // w in (15, \infty)
Chris@16 931 {
Chris@16 932 mpfr_class y = 1 / w - mpfr_class(1) / 15;
Chris@16 933 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
Chris@16 934 factor = exp(w) / sqrt(w);
Chris@16 935 value = factor * r;
Chris@16 936 }
Chris@16 937
Chris@16 938 if (x < 0)
Chris@16 939 {
Chris@16 940 value *= -value; // odd function
Chris@16 941 }
Chris@16 942 return value;
Chris@16 943 }
Chris@16 944
Chris@16 945 } // namespace detail
Chris@16 946
Chris@16 947 }
Chris@16 948
Chris@16 949 template<> struct is_convertible<long double, mpfr_class> : public mpl::false_{};
Chris@16 950
Chris@16 951 }
Chris@16 952
Chris@16 953 #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
Chris@16 954