Chris@16
|
1 // Boost.Range library concept checks
|
Chris@16
|
2 //
|
Chris@16
|
3 // Copyright Neil Groves 2009. Use, modification and distribution
|
Chris@16
|
4 // are subject to the Boost Software License, Version 1.0. (See
|
Chris@16
|
5 // accompanying file LICENSE_1_0.txt or copy at
|
Chris@16
|
6 // http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
7 //
|
Chris@16
|
8 // Copyright Daniel Walker 2006. Use, modification and distribution
|
Chris@16
|
9 // are subject to the Boost Software License, Version 1.0. (See
|
Chris@16
|
10 // accompanying file LICENSE_1_0.txt or copy at
|
Chris@16
|
11 // http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
12 //
|
Chris@16
|
13 // For more information, see http://www.boost.org/libs/range/
|
Chris@16
|
14 //
|
Chris@16
|
15
|
Chris@16
|
16 #ifndef BOOST_RANGE_CONCEPTS_HPP
|
Chris@16
|
17 #define BOOST_RANGE_CONCEPTS_HPP
|
Chris@16
|
18
|
Chris@16
|
19 #include <boost/concept_check.hpp>
|
Chris@16
|
20 #include <boost/iterator/iterator_concepts.hpp>
|
Chris@16
|
21 #include <boost/range/begin.hpp>
|
Chris@16
|
22 #include <boost/range/end.hpp>
|
Chris@16
|
23 #include <boost/range/iterator.hpp>
|
Chris@16
|
24 #include <boost/range/value_type.hpp>
|
Chris@16
|
25 #include <boost/range/detail/misc_concept.hpp>
|
Chris@101
|
26 #include <boost/type_traits/remove_reference.hpp>
|
Chris@16
|
27
|
Chris@16
|
28 /*!
|
Chris@16
|
29 * \file
|
Chris@16
|
30 * \brief Concept checks for the Boost Range library.
|
Chris@16
|
31 *
|
Chris@16
|
32 * The structures in this file may be used in conjunction with the
|
Chris@16
|
33 * Boost Concept Check library to insure that the type of a function
|
Chris@16
|
34 * parameter is compatible with a range concept. If not, a meaningful
|
Chris@16
|
35 * compile time error is generated. Checks are provided for the range
|
Chris@16
|
36 * concepts related to iterator traversal categories. For example, the
|
Chris@16
|
37 * following line checks that the type T models the ForwardRange
|
Chris@16
|
38 * concept.
|
Chris@16
|
39 *
|
Chris@16
|
40 * \code
|
Chris@16
|
41 * BOOST_CONCEPT_ASSERT((ForwardRangeConcept<T>));
|
Chris@16
|
42 * \endcode
|
Chris@16
|
43 *
|
Chris@16
|
44 * A different concept check is required to ensure writeable value
|
Chris@16
|
45 * access. For example to check for a ForwardRange that can be written
|
Chris@16
|
46 * to, the following code is required.
|
Chris@16
|
47 *
|
Chris@16
|
48 * \code
|
Chris@16
|
49 * BOOST_CONCEPT_ASSERT((WriteableForwardRangeConcept<T>));
|
Chris@16
|
50 * \endcode
|
Chris@16
|
51 *
|
Chris@16
|
52 * \see http://www.boost.org/libs/range/doc/range.html for details
|
Chris@16
|
53 * about range concepts.
|
Chris@16
|
54 * \see http://www.boost.org/libs/iterator/doc/iterator_concepts.html
|
Chris@16
|
55 * for details about iterator concepts.
|
Chris@16
|
56 * \see http://www.boost.org/libs/concept_check/concept_check.htm for
|
Chris@16
|
57 * details about concept checks.
|
Chris@16
|
58 */
|
Chris@16
|
59
|
Chris@16
|
60 namespace boost {
|
Chris@16
|
61
|
Chris@16
|
62 namespace range_detail {
|
Chris@16
|
63
|
Chris@16
|
64 #ifndef BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
65
|
Chris@16
|
66 // List broken compiler versions here:
|
Chris@101
|
67 #ifndef __clang__
|
Chris@16
|
68 #ifdef __GNUC__
|
Chris@16
|
69 // GNUC 4.2 has strange issues correctly detecting compliance with the Concepts
|
Chris@16
|
70 // hence the least disruptive approach is to turn-off the concept checking for
|
Chris@16
|
71 // this version of the compiler.
|
Chris@16
|
72 #if __GNUC__ == 4 && __GNUC_MINOR__ == 2
|
Chris@16
|
73 #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
|
Chris@16
|
74 #endif
|
Chris@16
|
75 #endif
|
Chris@16
|
76
|
Chris@101
|
77 #ifdef __GCCXML__
|
Chris@101
|
78 // GCC XML, unsurprisingly, has the same issues
|
Chris@101
|
79 #if __GCCXML_GNUC__ == 4 && __GCCXML_GNUC_MINOR__ == 2
|
Chris@101
|
80 #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
|
Chris@101
|
81 #endif
|
Chris@101
|
82 #endif
|
Chris@101
|
83 #endif
|
Chris@101
|
84
|
Chris@16
|
85 #ifdef __BORLANDC__
|
Chris@16
|
86 #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
|
Chris@16
|
87 #endif
|
Chris@16
|
88
|
Chris@16
|
89 #ifdef __PATHCC__
|
Chris@16
|
90 #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 0
|
Chris@16
|
91 #endif
|
Chris@16
|
92
|
Chris@16
|
93 // Default to using the concept asserts unless we have defined it off
|
Chris@16
|
94 // during the search for black listed compilers.
|
Chris@16
|
95 #ifndef BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
96 #define BOOST_RANGE_ENABLE_CONCEPT_ASSERT 1
|
Chris@16
|
97 #endif
|
Chris@16
|
98
|
Chris@16
|
99 #endif
|
Chris@16
|
100
|
Chris@16
|
101 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
102 #define BOOST_RANGE_CONCEPT_ASSERT( x ) BOOST_CONCEPT_ASSERT( x )
|
Chris@16
|
103 #else
|
Chris@16
|
104 #define BOOST_RANGE_CONCEPT_ASSERT( x )
|
Chris@16
|
105 #endif
|
Chris@16
|
106
|
Chris@16
|
107 // Rationale for the inclusion of redefined iterator concept
|
Chris@16
|
108 // classes:
|
Chris@16
|
109 //
|
Chris@16
|
110 // The Range algorithms often do not require that the iterators are
|
Chris@16
|
111 // Assignable or default constructable, but the correct standard
|
Chris@16
|
112 // conformant iterators do require the iterators to be a model of the
|
Chris@16
|
113 // Assignable concept.
|
Chris@16
|
114 // Iterators that contains a functor that is not assignable therefore
|
Chris@16
|
115 // are not correct models of the standard iterator concepts,
|
Chris@16
|
116 // despite being adequate for most algorithms. An example of this
|
Chris@16
|
117 // use case is the combination of the boost::adaptors::filtered
|
Chris@16
|
118 // class with a boost::lambda::bind generated functor.
|
Chris@16
|
119 // Ultimately modeling the range concepts using composition
|
Chris@16
|
120 // with the Boost.Iterator concepts would render the library
|
Chris@16
|
121 // incompatible with many common Boost.Lambda expressions.
|
Chris@16
|
122 template<class Iterator>
|
Chris@16
|
123 struct IncrementableIteratorConcept : CopyConstructible<Iterator>
|
Chris@16
|
124 {
|
Chris@16
|
125 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
126 typedef BOOST_DEDUCED_TYPENAME iterator_traversal<Iterator>::type traversal_category;
|
Chris@16
|
127
|
Chris@16
|
128 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@16
|
129 Convertible<
|
Chris@16
|
130 traversal_category,
|
Chris@16
|
131 incrementable_traversal_tag
|
Chris@16
|
132 >));
|
Chris@16
|
133
|
Chris@16
|
134 BOOST_CONCEPT_USAGE(IncrementableIteratorConcept)
|
Chris@16
|
135 {
|
Chris@16
|
136 ++i;
|
Chris@16
|
137 (void)i++;
|
Chris@16
|
138 }
|
Chris@16
|
139 private:
|
Chris@16
|
140 Iterator i;
|
Chris@16
|
141 #endif
|
Chris@16
|
142 };
|
Chris@16
|
143
|
Chris@16
|
144 template<class Iterator>
|
Chris@16
|
145 struct SinglePassIteratorConcept
|
Chris@16
|
146 : IncrementableIteratorConcept<Iterator>
|
Chris@16
|
147 , EqualityComparable<Iterator>
|
Chris@16
|
148 {
|
Chris@16
|
149 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
150 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@16
|
151 Convertible<
|
Chris@16
|
152 BOOST_DEDUCED_TYPENAME SinglePassIteratorConcept::traversal_category,
|
Chris@16
|
153 single_pass_traversal_tag
|
Chris@16
|
154 >));
|
Chris@16
|
155
|
Chris@16
|
156 BOOST_CONCEPT_USAGE(SinglePassIteratorConcept)
|
Chris@16
|
157 {
|
Chris@16
|
158 Iterator i2(++i);
|
Chris@16
|
159 boost::ignore_unused_variable_warning(i2);
|
Chris@16
|
160
|
Chris@16
|
161 // deliberately we are loose with the postfix version for the single pass
|
Chris@16
|
162 // iterator due to the commonly poor adherence to the specification means that
|
Chris@16
|
163 // many algorithms would be unusable, whereas actually without the check they
|
Chris@16
|
164 // work
|
Chris@16
|
165 (void)(i++);
|
Chris@16
|
166
|
Chris@16
|
167 BOOST_DEDUCED_TYPENAME boost::detail::iterator_traits<Iterator>::reference r1(*i);
|
Chris@16
|
168 boost::ignore_unused_variable_warning(r1);
|
Chris@16
|
169
|
Chris@16
|
170 BOOST_DEDUCED_TYPENAME boost::detail::iterator_traits<Iterator>::reference r2(*(++i));
|
Chris@16
|
171 boost::ignore_unused_variable_warning(r2);
|
Chris@16
|
172 }
|
Chris@16
|
173 private:
|
Chris@16
|
174 Iterator i;
|
Chris@16
|
175 #endif
|
Chris@16
|
176 };
|
Chris@16
|
177
|
Chris@16
|
178 template<class Iterator>
|
Chris@16
|
179 struct ForwardIteratorConcept
|
Chris@16
|
180 : SinglePassIteratorConcept<Iterator>
|
Chris@16
|
181 , DefaultConstructible<Iterator>
|
Chris@16
|
182 {
|
Chris@16
|
183 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
184 typedef BOOST_DEDUCED_TYPENAME boost::detail::iterator_traits<Iterator>::difference_type difference_type;
|
Chris@16
|
185
|
Chris@16
|
186 BOOST_MPL_ASSERT((is_integral<difference_type>));
|
Chris@16
|
187 BOOST_MPL_ASSERT_RELATION(std::numeric_limits<difference_type>::is_signed, ==, true);
|
Chris@16
|
188
|
Chris@16
|
189 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@16
|
190 Convertible<
|
Chris@16
|
191 BOOST_DEDUCED_TYPENAME ForwardIteratorConcept::traversal_category,
|
Chris@16
|
192 forward_traversal_tag
|
Chris@16
|
193 >));
|
Chris@16
|
194
|
Chris@16
|
195 BOOST_CONCEPT_USAGE(ForwardIteratorConcept)
|
Chris@16
|
196 {
|
Chris@16
|
197 // See the above note in the SinglePassIteratorConcept about the handling of the
|
Chris@16
|
198 // postfix increment. Since with forward and better iterators there is no need
|
Chris@16
|
199 // for a proxy, we can sensibly require that the dereference result
|
Chris@16
|
200 // is convertible to reference.
|
Chris@16
|
201 Iterator i2(i++);
|
Chris@16
|
202 boost::ignore_unused_variable_warning(i2);
|
Chris@16
|
203 BOOST_DEDUCED_TYPENAME boost::detail::iterator_traits<Iterator>::reference r(*(i++));
|
Chris@16
|
204 boost::ignore_unused_variable_warning(r);
|
Chris@16
|
205 }
|
Chris@16
|
206 private:
|
Chris@16
|
207 Iterator i;
|
Chris@16
|
208 #endif
|
Chris@16
|
209 };
|
Chris@16
|
210
|
Chris@16
|
211 template<class Iterator>
|
Chris@16
|
212 struct BidirectionalIteratorConcept
|
Chris@16
|
213 : ForwardIteratorConcept<Iterator>
|
Chris@16
|
214 {
|
Chris@16
|
215 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
216 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@16
|
217 Convertible<
|
Chris@16
|
218 BOOST_DEDUCED_TYPENAME BidirectionalIteratorConcept::traversal_category,
|
Chris@16
|
219 bidirectional_traversal_tag
|
Chris@16
|
220 >));
|
Chris@16
|
221
|
Chris@16
|
222 BOOST_CONCEPT_USAGE(BidirectionalIteratorConcept)
|
Chris@16
|
223 {
|
Chris@16
|
224 --i;
|
Chris@16
|
225 (void)i--;
|
Chris@16
|
226 }
|
Chris@16
|
227 private:
|
Chris@16
|
228 Iterator i;
|
Chris@16
|
229 #endif
|
Chris@16
|
230 };
|
Chris@16
|
231
|
Chris@16
|
232 template<class Iterator>
|
Chris@16
|
233 struct RandomAccessIteratorConcept
|
Chris@16
|
234 : BidirectionalIteratorConcept<Iterator>
|
Chris@16
|
235 {
|
Chris@16
|
236 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
237 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@16
|
238 Convertible<
|
Chris@16
|
239 BOOST_DEDUCED_TYPENAME RandomAccessIteratorConcept::traversal_category,
|
Chris@16
|
240 random_access_traversal_tag
|
Chris@16
|
241 >));
|
Chris@16
|
242
|
Chris@16
|
243 BOOST_CONCEPT_USAGE(RandomAccessIteratorConcept)
|
Chris@16
|
244 {
|
Chris@16
|
245 i += n;
|
Chris@16
|
246 i = i + n;
|
Chris@16
|
247 i = n + i;
|
Chris@16
|
248 i -= n;
|
Chris@16
|
249 i = i - n;
|
Chris@16
|
250 n = i - j;
|
Chris@16
|
251 }
|
Chris@16
|
252 private:
|
Chris@16
|
253 BOOST_DEDUCED_TYPENAME RandomAccessIteratorConcept::difference_type n;
|
Chris@16
|
254 Iterator i;
|
Chris@16
|
255 Iterator j;
|
Chris@16
|
256 #endif
|
Chris@16
|
257 };
|
Chris@16
|
258
|
Chris@16
|
259 } // namespace range_detail
|
Chris@16
|
260
|
Chris@16
|
261 //! Check if a type T models the SinglePassRange range concept.
|
Chris@16
|
262 template<class T>
|
Chris@16
|
263 struct SinglePassRangeConcept
|
Chris@16
|
264 {
|
Chris@16
|
265 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@101
|
266 // A few compilers don't like the rvalue reference T types so just
|
Chris@101
|
267 // remove it.
|
Chris@101
|
268 typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type Rng;
|
Chris@16
|
269
|
Chris@101
|
270 typedef BOOST_DEDUCED_TYPENAME range_iterator<
|
Chris@101
|
271 Rng const
|
Chris@101
|
272 >::type const_iterator;
|
Chris@16
|
273
|
Chris@101
|
274 typedef BOOST_DEDUCED_TYPENAME range_iterator<Rng>::type iterator;
|
Chris@101
|
275
|
Chris@101
|
276 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@101
|
277 range_detail::SinglePassIteratorConcept<iterator>));
|
Chris@101
|
278
|
Chris@101
|
279 BOOST_RANGE_CONCEPT_ASSERT((
|
Chris@101
|
280 range_detail::SinglePassIteratorConcept<const_iterator>));
|
Chris@101
|
281
|
Chris@101
|
282 BOOST_CONCEPT_USAGE(SinglePassRangeConcept)
|
Chris@101
|
283 {
|
Chris@16
|
284 // This has been modified from assigning to this->i
|
Chris@16
|
285 // (where i was a member variable) to improve
|
Chris@16
|
286 // compatibility with Boost.Lambda
|
Chris@16
|
287 iterator i1 = boost::begin(*m_range);
|
Chris@16
|
288 iterator i2 = boost::end(*m_range);
|
Chris@16
|
289
|
Chris@101
|
290 boost::ignore_unused_variable_warning(i1);
|
Chris@101
|
291 boost::ignore_unused_variable_warning(i2);
|
Chris@16
|
292
|
Chris@16
|
293 const_constraints(*m_range);
|
Chris@16
|
294 }
|
Chris@16
|
295
|
Chris@16
|
296 private:
|
Chris@101
|
297 void const_constraints(const Rng& const_range)
|
Chris@16
|
298 {
|
Chris@16
|
299 const_iterator ci1 = boost::begin(const_range);
|
Chris@16
|
300 const_iterator ci2 = boost::end(const_range);
|
Chris@16
|
301
|
Chris@101
|
302 boost::ignore_unused_variable_warning(ci1);
|
Chris@101
|
303 boost::ignore_unused_variable_warning(ci2);
|
Chris@16
|
304 }
|
Chris@16
|
305
|
Chris@16
|
306 // Rationale:
|
Chris@16
|
307 // The type of m_range is T* rather than T because it allows
|
Chris@16
|
308 // T to be an abstract class. The other obvious alternative of
|
Chris@16
|
309 // T& produces a warning on some compilers.
|
Chris@101
|
310 Rng* m_range;
|
Chris@16
|
311 #endif
|
Chris@16
|
312 };
|
Chris@16
|
313
|
Chris@16
|
314 //! Check if a type T models the ForwardRange range concept.
|
Chris@16
|
315 template<class T>
|
Chris@16
|
316 struct ForwardRangeConcept : SinglePassRangeConcept<T>
|
Chris@16
|
317 {
|
Chris@16
|
318 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
319 BOOST_RANGE_CONCEPT_ASSERT((range_detail::ForwardIteratorConcept<BOOST_DEDUCED_TYPENAME ForwardRangeConcept::iterator>));
|
Chris@16
|
320 BOOST_RANGE_CONCEPT_ASSERT((range_detail::ForwardIteratorConcept<BOOST_DEDUCED_TYPENAME ForwardRangeConcept::const_iterator>));
|
Chris@16
|
321 #endif
|
Chris@16
|
322 };
|
Chris@16
|
323
|
Chris@101
|
324 template<class T>
|
Chris@16
|
325 struct WriteableRangeConcept
|
Chris@16
|
326 {
|
Chris@16
|
327 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@101
|
328 typedef BOOST_DEDUCED_TYPENAME range_iterator<T>::type iterator;
|
Chris@16
|
329
|
Chris@16
|
330 BOOST_CONCEPT_USAGE(WriteableRangeConcept)
|
Chris@16
|
331 {
|
Chris@16
|
332 *i = v;
|
Chris@16
|
333 }
|
Chris@16
|
334 private:
|
Chris@16
|
335 iterator i;
|
Chris@101
|
336 BOOST_DEDUCED_TYPENAME range_value<T>::type v;
|
Chris@16
|
337 #endif
|
Chris@16
|
338 };
|
Chris@16
|
339
|
Chris@16
|
340 //! Check if a type T models the WriteableForwardRange range concept.
|
Chris@16
|
341 template<class T>
|
Chris@16
|
342 struct WriteableForwardRangeConcept
|
Chris@16
|
343 : ForwardRangeConcept<T>
|
Chris@16
|
344 , WriteableRangeConcept<T>
|
Chris@16
|
345 {
|
Chris@16
|
346 };
|
Chris@16
|
347
|
Chris@16
|
348 //! Check if a type T models the BidirectionalRange range concept.
|
Chris@16
|
349 template<class T>
|
Chris@16
|
350 struct BidirectionalRangeConcept : ForwardRangeConcept<T>
|
Chris@16
|
351 {
|
Chris@16
|
352 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
353 BOOST_RANGE_CONCEPT_ASSERT((range_detail::BidirectionalIteratorConcept<BOOST_DEDUCED_TYPENAME BidirectionalRangeConcept::iterator>));
|
Chris@16
|
354 BOOST_RANGE_CONCEPT_ASSERT((range_detail::BidirectionalIteratorConcept<BOOST_DEDUCED_TYPENAME BidirectionalRangeConcept::const_iterator>));
|
Chris@16
|
355 #endif
|
Chris@16
|
356 };
|
Chris@16
|
357
|
Chris@16
|
358 //! Check if a type T models the WriteableBidirectionalRange range concept.
|
Chris@16
|
359 template<class T>
|
Chris@16
|
360 struct WriteableBidirectionalRangeConcept
|
Chris@16
|
361 : BidirectionalRangeConcept<T>
|
Chris@16
|
362 , WriteableRangeConcept<T>
|
Chris@16
|
363 {
|
Chris@16
|
364 };
|
Chris@16
|
365
|
Chris@16
|
366 //! Check if a type T models the RandomAccessRange range concept.
|
Chris@16
|
367 template<class T>
|
Chris@16
|
368 struct RandomAccessRangeConcept : BidirectionalRangeConcept<T>
|
Chris@16
|
369 {
|
Chris@16
|
370 #if BOOST_RANGE_ENABLE_CONCEPT_ASSERT
|
Chris@16
|
371 BOOST_RANGE_CONCEPT_ASSERT((range_detail::RandomAccessIteratorConcept<BOOST_DEDUCED_TYPENAME RandomAccessRangeConcept::iterator>));
|
Chris@16
|
372 BOOST_RANGE_CONCEPT_ASSERT((range_detail::RandomAccessIteratorConcept<BOOST_DEDUCED_TYPENAME RandomAccessRangeConcept::const_iterator>));
|
Chris@16
|
373 #endif
|
Chris@16
|
374 };
|
Chris@16
|
375
|
Chris@16
|
376 //! Check if a type T models the WriteableRandomAccessRange range concept.
|
Chris@16
|
377 template<class T>
|
Chris@16
|
378 struct WriteableRandomAccessRangeConcept
|
Chris@16
|
379 : RandomAccessRangeConcept<T>
|
Chris@16
|
380 , WriteableRangeConcept<T>
|
Chris@16
|
381 {
|
Chris@16
|
382 };
|
Chris@16
|
383
|
Chris@16
|
384 } // namespace boost
|
Chris@16
|
385
|
Chris@16
|
386 #endif // BOOST_RANGE_CONCEPTS_HPP
|