annotate DEPENDENCIES/generic/include/boost/math/special_functions/ellint_rd.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@101 1 // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5 //
Chris@16 6 // History:
Chris@16 7 // XZ wrote the original of this file as part of the Google
Chris@16 8 // Summer of Code 2006. JM modified it slightly to fit into the
Chris@16 9 // Boost.Math conceptual framework better.
Chris@101 10 // Updated 2015 to use Carlson's latest methods.
Chris@16 11
Chris@16 12 #ifndef BOOST_MATH_ELLINT_RD_HPP
Chris@16 13 #define BOOST_MATH_ELLINT_RD_HPP
Chris@16 14
Chris@16 15 #ifdef _MSC_VER
Chris@16 16 #pragma once
Chris@16 17 #endif
Chris@16 18
Chris@16 19 #include <boost/math/special_functions/math_fwd.hpp>
Chris@101 20 #include <boost/math/special_functions/ellint_rc.hpp>
Chris@101 21 #include <boost/math/special_functions/pow.hpp>
Chris@16 22 #include <boost/math/tools/config.hpp>
Chris@16 23 #include <boost/math/policies/error_handling.hpp>
Chris@16 24
Chris@16 25 // Carlson's elliptic integral of the second kind
Chris@16 26 // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
Chris@16 27 // Carlson, Numerische Mathematik, vol 33, 1 (1979)
Chris@16 28
Chris@16 29 namespace boost { namespace math { namespace detail{
Chris@16 30
Chris@16 31 template <typename T, typename Policy>
Chris@16 32 T ellint_rd_imp(T x, T y, T z, const Policy& pol)
Chris@16 33 {
Chris@101 34 BOOST_MATH_STD_USING
Chris@101 35 using std::swap;
Chris@16 36
Chris@101 37 static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
Chris@16 38
Chris@101 39 if(x < 0)
Chris@101 40 {
Chris@101 41 return policies::raise_domain_error<T>(function,
Chris@101 42 "Argument x must be >= 0, but got %1%", x, pol);
Chris@101 43 }
Chris@101 44 if(y < 0)
Chris@101 45 {
Chris@101 46 return policies::raise_domain_error<T>(function,
Chris@101 47 "Argument y must be >= 0, but got %1%", y, pol);
Chris@101 48 }
Chris@101 49 if(z <= 0)
Chris@101 50 {
Chris@101 51 return policies::raise_domain_error<T>(function,
Chris@101 52 "Argument z must be > 0, but got %1%", z, pol);
Chris@101 53 }
Chris@101 54 if(x + y == 0)
Chris@101 55 {
Chris@101 56 return policies::raise_domain_error<T>(function,
Chris@101 57 "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
Chris@101 58 }
Chris@101 59 //
Chris@101 60 // Special cases from http://dlmf.nist.gov/19.20#iv
Chris@101 61 //
Chris@101 62 using std::swap;
Chris@101 63 if(x == z)
Chris@101 64 swap(x, y);
Chris@101 65 if(y == z)
Chris@101 66 {
Chris@101 67 if(x == y)
Chris@101 68 {
Chris@101 69 return 1 / (x * sqrt(x));
Chris@101 70 }
Chris@101 71 else if(x == 0)
Chris@101 72 {
Chris@101 73 return 3 * constants::pi<T>() / (4 * y * sqrt(y));
Chris@101 74 }
Chris@101 75 else
Chris@101 76 {
Chris@101 77 if((std::min)(x, y) / (std::max)(x, y) > 1.3)
Chris@101 78 return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
Chris@101 79 // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
Chris@101 80 }
Chris@101 81 }
Chris@101 82 if(x == y)
Chris@101 83 {
Chris@101 84 if((std::min)(x, z) / (std::max)(x, z) > 1.3)
Chris@101 85 return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
Chris@101 86 // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
Chris@101 87 }
Chris@101 88 if(y == 0)
Chris@101 89 swap(x, y);
Chris@101 90 if(x == 0)
Chris@101 91 {
Chris@101 92 //
Chris@101 93 // Special handling for common case, from
Chris@101 94 // Numerical Computation of Real or Complex Elliptic Integrals, eq.47
Chris@101 95 //
Chris@101 96 T xn = sqrt(y);
Chris@101 97 T yn = sqrt(z);
Chris@101 98 T x0 = xn;
Chris@101 99 T y0 = yn;
Chris@101 100 T sum = 0;
Chris@101 101 T sum_pow = 0.25f;
Chris@16 102
Chris@101 103 while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
Chris@101 104 {
Chris@101 105 T t = sqrt(xn * yn);
Chris@101 106 xn = (xn + yn) / 2;
Chris@101 107 yn = t;
Chris@101 108 sum_pow *= 2;
Chris@101 109 sum += sum_pow * boost::math::pow<2>(xn - yn);
Chris@101 110 }
Chris@101 111 T RF = constants::pi<T>() / (xn + yn);
Chris@101 112 //
Chris@101 113 // This following calculation suffers from serious cancellation when y ~ z
Chris@101 114 // unless we combine terms. We have:
Chris@101 115 //
Chris@101 116 // ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
Chris@101 117 //
Chris@101 118 // Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
Chris@101 119 //
Chris@101 120 T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
Chris@101 121 //
Chris@101 122 // Since we've moved the demoninator from eq.47 inside the expression, we
Chris@101 123 // need to also scale "sum" by the same value:
Chris@101 124 //
Chris@101 125 pt -= sum / (z * (y - z));
Chris@101 126 return pt * RF * 3;
Chris@101 127 }
Chris@16 128
Chris@101 129 T xn = x;
Chris@101 130 T yn = y;
Chris@101 131 T zn = z;
Chris@101 132 T An = (x + y + 3 * z) / 5;
Chris@101 133 T A0 = An;
Chris@101 134 // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
Chris@101 135 T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
Chris@101 136 T lambda, rx, ry, rz;
Chris@101 137 unsigned k = 0;
Chris@101 138 T fn = 1;
Chris@101 139 T RD_sum = 0;
Chris@16 140
Chris@101 141 for(; k < policies::get_max_series_iterations<Policy>(); ++k)
Chris@101 142 {
Chris@101 143 rx = sqrt(xn);
Chris@101 144 ry = sqrt(yn);
Chris@101 145 rz = sqrt(zn);
Chris@101 146 lambda = rx * ry + rx * rz + ry * rz;
Chris@101 147 RD_sum += fn / (rz * (zn + lambda));
Chris@101 148 An = (An + lambda) / 4;
Chris@101 149 xn = (xn + lambda) / 4;
Chris@101 150 yn = (yn + lambda) / 4;
Chris@101 151 zn = (zn + lambda) / 4;
Chris@101 152 fn /= 4;
Chris@101 153 Q /= 4;
Chris@101 154 if(Q < An)
Chris@101 155 break;
Chris@101 156 }
Chris@16 157
Chris@101 158 policies::check_series_iterations<T, Policy>(function, k, pol);
Chris@16 159
Chris@101 160 T X = fn * (A0 - x) / An;
Chris@101 161 T Y = fn * (A0 - y) / An;
Chris@101 162 T Z = -(X + Y) / 3;
Chris@101 163 T E2 = X * Y - 6 * Z * Z;
Chris@101 164 T E3 = (3 * X * Y - 8 * Z * Z) * Z;
Chris@101 165 T E4 = 3 * (X * Y - Z * Z) * Z * Z;
Chris@101 166 T E5 = X * Y * Z * Z * Z;
Chris@16 167
Chris@101 168 T result = fn * pow(An, T(-3) / 2) *
Chris@101 169 (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
Chris@101 170 + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
Chris@101 171 result += 3 * RD_sum;
Chris@101 172
Chris@101 173 return result;
Chris@16 174 }
Chris@16 175
Chris@16 176 } // namespace detail
Chris@16 177
Chris@16 178 template <class T1, class T2, class T3, class Policy>
Chris@16 179 inline typename tools::promote_args<T1, T2, T3>::type
Chris@16 180 ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
Chris@16 181 {
Chris@16 182 typedef typename tools::promote_args<T1, T2, T3>::type result_type;
Chris@16 183 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 184 return policies::checked_narrowing_cast<result_type, Policy>(
Chris@16 185 detail::ellint_rd_imp(
Chris@16 186 static_cast<value_type>(x),
Chris@16 187 static_cast<value_type>(y),
Chris@16 188 static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
Chris@16 189 }
Chris@16 190
Chris@16 191 template <class T1, class T2, class T3>
Chris@16 192 inline typename tools::promote_args<T1, T2, T3>::type
Chris@16 193 ellint_rd(T1 x, T2 y, T3 z)
Chris@16 194 {
Chris@16 195 return ellint_rd(x, y, z, policies::policy<>());
Chris@16 196 }
Chris@16 197
Chris@16 198 }} // namespaces
Chris@16 199
Chris@16 200 #endif // BOOST_MATH_ELLINT_RD_HPP
Chris@16 201