Chris@101: // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock. Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: // Chris@16: // History: Chris@16: // XZ wrote the original of this file as part of the Google Chris@16: // Summer of Code 2006. JM modified it slightly to fit into the Chris@16: // Boost.Math conceptual framework better. Chris@101: // Updated 2015 to use Carlson's latest methods. Chris@16: Chris@16: #ifndef BOOST_MATH_ELLINT_RD_HPP Chris@16: #define BOOST_MATH_ELLINT_RD_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@101: #include Chris@101: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Carlson's elliptic integral of the second kind Chris@16: // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt Chris@16: // Carlson, Numerische Mathematik, vol 33, 1 (1979) Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@16: T ellint_rd_imp(T x, T y, T z, const Policy& pol) Chris@16: { Chris@101: BOOST_MATH_STD_USING Chris@101: using std::swap; Chris@16: Chris@101: static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"; Chris@16: Chris@101: if(x < 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument x must be >= 0, but got %1%", x, pol); Chris@101: } Chris@101: if(y < 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument y must be >= 0, but got %1%", y, pol); Chris@101: } Chris@101: if(z <= 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "Argument z must be > 0, but got %1%", z, pol); Chris@101: } Chris@101: if(x + y == 0) Chris@101: { Chris@101: return policies::raise_domain_error(function, Chris@101: "At most one argument can be zero, but got, x + y = %1%", x + y, pol); Chris@101: } Chris@101: // Chris@101: // Special cases from http://dlmf.nist.gov/19.20#iv Chris@101: // Chris@101: using std::swap; Chris@101: if(x == z) Chris@101: swap(x, y); Chris@101: if(y == z) Chris@101: { Chris@101: if(x == y) Chris@101: { Chris@101: return 1 / (x * sqrt(x)); Chris@101: } Chris@101: else if(x == 0) Chris@101: { Chris@101: return 3 * constants::pi() / (4 * y * sqrt(y)); Chris@101: } Chris@101: else Chris@101: { Chris@101: if((std::min)(x, y) / (std::max)(x, y) > 1.3) Chris@101: return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x)); Chris@101: // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y) Chris@101: } Chris@101: } Chris@101: if(x == y) Chris@101: { Chris@101: if((std::min)(x, z) / (std::max)(x, z) > 1.3) Chris@101: return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x); Chris@101: // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y) Chris@101: } Chris@101: if(y == 0) Chris@101: swap(x, y); Chris@101: if(x == 0) Chris@101: { Chris@101: // Chris@101: // Special handling for common case, from Chris@101: // Numerical Computation of Real or Complex Elliptic Integrals, eq.47 Chris@101: // Chris@101: T xn = sqrt(y); Chris@101: T yn = sqrt(z); Chris@101: T x0 = xn; Chris@101: T y0 = yn; Chris@101: T sum = 0; Chris@101: T sum_pow = 0.25f; Chris@16: Chris@101: while(fabs(xn - yn) >= 2.7 * tools::root_epsilon() * fabs(xn)) Chris@101: { Chris@101: T t = sqrt(xn * yn); Chris@101: xn = (xn + yn) / 2; Chris@101: yn = t; Chris@101: sum_pow *= 2; Chris@101: sum += sum_pow * boost::math::pow<2>(xn - yn); Chris@101: } Chris@101: T RF = constants::pi() / (xn + yn); Chris@101: // Chris@101: // This following calculation suffers from serious cancellation when y ~ z Chris@101: // unless we combine terms. We have: Chris@101: // Chris@101: // ( ((x0 + y0)/2)^2 - z ) / (z(y-z)) Chris@101: // Chris@101: // Substituting y = x0^2 and z = y0^2 and simplifying we get the following: Chris@101: // Chris@101: T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0)); Chris@101: // Chris@101: // Since we've moved the demoninator from eq.47 inside the expression, we Chris@101: // need to also scale "sum" by the same value: Chris@101: // Chris@101: pt -= sum / (z * (y - z)); Chris@101: return pt * RF * 3; Chris@101: } Chris@16: Chris@101: T xn = x; Chris@101: T yn = y; Chris@101: T zn = z; Chris@101: T An = (x + y + 3 * z) / 5; Chris@101: T A0 = An; Chris@101: // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude: Chris@101: T Q = pow(tools::epsilon() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f; Chris@101: T lambda, rx, ry, rz; Chris@101: unsigned k = 0; Chris@101: T fn = 1; Chris@101: T RD_sum = 0; Chris@16: Chris@101: for(; k < policies::get_max_series_iterations(); ++k) Chris@101: { Chris@101: rx = sqrt(xn); Chris@101: ry = sqrt(yn); Chris@101: rz = sqrt(zn); Chris@101: lambda = rx * ry + rx * rz + ry * rz; Chris@101: RD_sum += fn / (rz * (zn + lambda)); Chris@101: An = (An + lambda) / 4; Chris@101: xn = (xn + lambda) / 4; Chris@101: yn = (yn + lambda) / 4; Chris@101: zn = (zn + lambda) / 4; Chris@101: fn /= 4; Chris@101: Q /= 4; Chris@101: if(Q < An) Chris@101: break; Chris@101: } Chris@16: Chris@101: policies::check_series_iterations(function, k, pol); Chris@16: Chris@101: T X = fn * (A0 - x) / An; Chris@101: T Y = fn * (A0 - y) / An; Chris@101: T Z = -(X + Y) / 3; Chris@101: T E2 = X * Y - 6 * Z * Z; Chris@101: T E3 = (3 * X * Y - 8 * Z * Z) * Z; Chris@101: T E4 = 3 * (X * Y - Z * Z) * Z * Z; Chris@101: T E5 = X * Y * Z * Z * Z; Chris@16: Chris@101: T result = fn * pow(An, T(-3) / 2) * Chris@101: (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16 Chris@101: + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68); Chris@101: result += 3 * RD_sum; Chris@101: Chris@101: return result; Chris@16: } Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: ellint_rd(T1 x, T2 y, T3 z, const Policy& pol) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: return policies::checked_narrowing_cast( Chris@16: detail::ellint_rd_imp( Chris@16: static_cast(x), Chris@16: static_cast(y), Chris@16: static_cast(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type Chris@16: ellint_rd(T1 x, T2 y, T3 z) Chris@16: { Chris@16: return ellint_rd(x, y, z, policies::policy<>()); Chris@16: } Chris@16: Chris@16: }} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_ELLINT_RD_HPP Chris@16: