annotate DEPENDENCIES/generic/include/boost/math/distributions/negative_binomial.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // boost\math\special_functions\negative_binomial.hpp
Chris@16 2
Chris@16 3 // Copyright Paul A. Bristow 2007.
Chris@16 4 // Copyright John Maddock 2007.
Chris@16 5
Chris@16 6 // Use, modification and distribution are subject to the
Chris@16 7 // Boost Software License, Version 1.0.
Chris@16 8 // (See accompanying file LICENSE_1_0.txt
Chris@16 9 // or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 10
Chris@16 11 // http://en.wikipedia.org/wiki/negative_binomial_distribution
Chris@16 12 // http://mathworld.wolfram.com/NegativeBinomialDistribution.html
Chris@16 13 // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
Chris@16 14
Chris@16 15 // The negative binomial distribution NegativeBinomialDistribution[n, p]
Chris@16 16 // is the distribution of the number (k) of failures that occur in a sequence of trials before
Chris@16 17 // r successes have occurred, where the probability of success in each trial is p.
Chris@16 18
Chris@16 19 // In a sequence of Bernoulli trials or events
Chris@16 20 // (independent, yes or no, succeed or fail) with success_fraction probability p,
Chris@16 21 // negative_binomial is the probability that k or fewer failures
Chris@16 22 // preceed the r th trial's success.
Chris@16 23 // random variable k is the number of failures (NOT the probability).
Chris@16 24
Chris@16 25 // Negative_binomial distribution is a discrete probability distribution.
Chris@16 26 // But note that the negative binomial distribution
Chris@16 27 // (like others including the binomial, Poisson & Bernoulli)
Chris@16 28 // is strictly defined as a discrete function: only integral values of k are envisaged.
Chris@16 29 // However because of the method of calculation using a continuous gamma function,
Chris@16 30 // it is convenient to treat it as if a continous function,
Chris@16 31 // and permit non-integral values of k.
Chris@16 32
Chris@16 33 // However, by default the policy is to use discrete_quantile_policy.
Chris@16 34
Chris@16 35 // To enforce the strict mathematical model, users should use conversion
Chris@16 36 // on k outside this function to ensure that k is integral.
Chris@16 37
Chris@16 38 // MATHCAD cumulative negative binomial pnbinom(k, n, p)
Chris@16 39
Chris@16 40 // Implementation note: much greater speed, and perhaps greater accuracy,
Chris@16 41 // might be achieved for extreme values by using a normal approximation.
Chris@16 42 // This is NOT been tested or implemented.
Chris@16 43
Chris@16 44 #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
Chris@16 45 #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
Chris@16 46
Chris@16 47 #include <boost/math/distributions/fwd.hpp>
Chris@16 48 #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
Chris@16 49 #include <boost/math/distributions/complement.hpp> // complement.
Chris@16 50 #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
Chris@16 51 #include <boost/math/special_functions/fpclassify.hpp> // isnan.
Chris@16 52 #include <boost/math/tools/roots.hpp> // for root finding.
Chris@16 53 #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
Chris@16 54
Chris@16 55 #include <boost/type_traits/is_floating_point.hpp>
Chris@16 56 #include <boost/type_traits/is_integral.hpp>
Chris@16 57 #include <boost/type_traits/is_same.hpp>
Chris@16 58 #include <boost/mpl/if.hpp>
Chris@16 59
Chris@16 60 #include <limits> // using std::numeric_limits;
Chris@16 61 #include <utility>
Chris@16 62
Chris@16 63 #if defined (BOOST_MSVC)
Chris@16 64 # pragma warning(push)
Chris@16 65 // This believed not now necessary, so commented out.
Chris@16 66 //# pragma warning(disable: 4702) // unreachable code.
Chris@16 67 // in domain_error_imp in error_handling.
Chris@16 68 #endif
Chris@16 69
Chris@16 70 namespace boost
Chris@16 71 {
Chris@16 72 namespace math
Chris@16 73 {
Chris@16 74 namespace negative_binomial_detail
Chris@16 75 {
Chris@16 76 // Common error checking routines for negative binomial distribution functions:
Chris@16 77 template <class RealType, class Policy>
Chris@16 78 inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol)
Chris@16 79 {
Chris@16 80 if( !(boost::math::isfinite)(r) || (r <= 0) )
Chris@16 81 {
Chris@16 82 *result = policies::raise_domain_error<RealType>(
Chris@16 83 function,
Chris@16 84 "Number of successes argument is %1%, but must be > 0 !", r, pol);
Chris@16 85 return false;
Chris@16 86 }
Chris@16 87 return true;
Chris@16 88 }
Chris@16 89 template <class RealType, class Policy>
Chris@16 90 inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
Chris@16 91 {
Chris@16 92 if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
Chris@16 93 {
Chris@16 94 *result = policies::raise_domain_error<RealType>(
Chris@16 95 function,
Chris@16 96 "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
Chris@16 97 return false;
Chris@16 98 }
Chris@16 99 return true;
Chris@16 100 }
Chris@16 101 template <class RealType, class Policy>
Chris@16 102 inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol)
Chris@16 103 {
Chris@16 104 return check_success_fraction(function, p, result, pol)
Chris@16 105 && check_successes(function, r, result, pol);
Chris@16 106 }
Chris@16 107 template <class RealType, class Policy>
Chris@16 108 inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol)
Chris@16 109 {
Chris@16 110 if(check_dist(function, r, p, result, pol) == false)
Chris@16 111 {
Chris@16 112 return false;
Chris@16 113 }
Chris@16 114 if( !(boost::math::isfinite)(k) || (k < 0) )
Chris@16 115 { // Check k failures.
Chris@16 116 *result = policies::raise_domain_error<RealType>(
Chris@16 117 function,
Chris@16 118 "Number of failures argument is %1%, but must be >= 0 !", k, pol);
Chris@16 119 return false;
Chris@16 120 }
Chris@16 121 return true;
Chris@16 122 } // Check_dist_and_k
Chris@16 123
Chris@16 124 template <class RealType, class Policy>
Chris@16 125 inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol)
Chris@16 126 {
Chris@16 127 if(check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol) == false)
Chris@16 128 {
Chris@16 129 return false;
Chris@16 130 }
Chris@16 131 return true;
Chris@16 132 } // check_dist_and_prob
Chris@16 133 } // namespace negative_binomial_detail
Chris@16 134
Chris@16 135 template <class RealType = double, class Policy = policies::policy<> >
Chris@16 136 class negative_binomial_distribution
Chris@16 137 {
Chris@16 138 public:
Chris@16 139 typedef RealType value_type;
Chris@16 140 typedef Policy policy_type;
Chris@16 141
Chris@16 142 negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p)
Chris@16 143 { // Constructor.
Chris@16 144 RealType result;
Chris@16 145 negative_binomial_detail::check_dist(
Chris@16 146 "negative_binomial_distribution<%1%>::negative_binomial_distribution",
Chris@16 147 m_r, // Check successes r > 0.
Chris@16 148 m_p, // Check success_fraction 0 <= p <= 1.
Chris@16 149 &result, Policy());
Chris@16 150 } // negative_binomial_distribution constructor.
Chris@16 151
Chris@16 152 // Private data getter class member functions.
Chris@16 153 RealType success_fraction() const
Chris@16 154 { // Probability of success as fraction in range 0 to 1.
Chris@16 155 return m_p;
Chris@16 156 }
Chris@16 157 RealType successes() const
Chris@16 158 { // Total number of successes r.
Chris@16 159 return m_r;
Chris@16 160 }
Chris@16 161
Chris@16 162 static RealType find_lower_bound_on_p(
Chris@16 163 RealType trials,
Chris@16 164 RealType successes,
Chris@16 165 RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
Chris@16 166 {
Chris@16 167 static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p";
Chris@16 168 RealType result = 0; // of error checks.
Chris@16 169 RealType failures = trials - successes;
Chris@16 170 if(false == detail::check_probability(function, alpha, &result, Policy())
Chris@16 171 && negative_binomial_detail::check_dist_and_k(
Chris@16 172 function, successes, RealType(0), failures, &result, Policy()))
Chris@16 173 {
Chris@16 174 return result;
Chris@16 175 }
Chris@16 176 // Use complement ibeta_inv function for lower bound.
Chris@16 177 // This is adapted from the corresponding binomial formula
Chris@16 178 // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
Chris@16 179 // This is a Clopper-Pearson interval, and may be overly conservative,
Chris@16 180 // see also "A Simple Improved Inferential Method for Some
Chris@16 181 // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
Chris@16 182 // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
Chris@16 183 //
Chris@16 184 return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
Chris@16 185 } // find_lower_bound_on_p
Chris@16 186
Chris@16 187 static RealType find_upper_bound_on_p(
Chris@16 188 RealType trials,
Chris@16 189 RealType successes,
Chris@16 190 RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
Chris@16 191 {
Chris@16 192 static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p";
Chris@16 193 RealType result = 0; // of error checks.
Chris@16 194 RealType failures = trials - successes;
Chris@16 195 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 196 function, successes, RealType(0), failures, &result, Policy())
Chris@16 197 && detail::check_probability(function, alpha, &result, Policy()))
Chris@16 198 {
Chris@16 199 return result;
Chris@16 200 }
Chris@16 201 if(failures == 0)
Chris@16 202 return 1;
Chris@16 203 // Use complement ibetac_inv function for upper bound.
Chris@16 204 // Note adjusted failures value: *not* failures+1 as usual.
Chris@16 205 // This is adapted from the corresponding binomial formula
Chris@16 206 // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
Chris@16 207 // This is a Clopper-Pearson interval, and may be overly conservative,
Chris@16 208 // see also "A Simple Improved Inferential Method for Some
Chris@16 209 // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
Chris@16 210 // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
Chris@16 211 //
Chris@16 212 return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
Chris@16 213 } // find_upper_bound_on_p
Chris@16 214
Chris@16 215 // Estimate number of trials :
Chris@16 216 // "How many trials do I need to be P% sure of seeing k or fewer failures?"
Chris@16 217
Chris@16 218 static RealType find_minimum_number_of_trials(
Chris@16 219 RealType k, // number of failures (k >= 0).
Chris@16 220 RealType p, // success fraction 0 <= p <= 1.
Chris@16 221 RealType alpha) // risk level threshold 0 <= alpha <= 1.
Chris@16 222 {
Chris@16 223 static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials";
Chris@16 224 // Error checks:
Chris@16 225 RealType result = 0;
Chris@16 226 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 227 function, RealType(1), p, k, &result, Policy())
Chris@16 228 && detail::check_probability(function, alpha, &result, Policy()))
Chris@16 229 { return result; }
Chris@16 230
Chris@16 231 result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k
Chris@16 232 return result + k;
Chris@16 233 } // RealType find_number_of_failures
Chris@16 234
Chris@16 235 static RealType find_maximum_number_of_trials(
Chris@16 236 RealType k, // number of failures (k >= 0).
Chris@16 237 RealType p, // success fraction 0 <= p <= 1.
Chris@16 238 RealType alpha) // risk level threshold 0 <= alpha <= 1.
Chris@16 239 {
Chris@16 240 static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials";
Chris@16 241 // Error checks:
Chris@16 242 RealType result = 0;
Chris@16 243 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 244 function, RealType(1), p, k, &result, Policy())
Chris@16 245 && detail::check_probability(function, alpha, &result, Policy()))
Chris@16 246 { return result; }
Chris@16 247
Chris@16 248 result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k
Chris@16 249 return result + k;
Chris@16 250 } // RealType find_number_of_trials complemented
Chris@16 251
Chris@16 252 private:
Chris@16 253 RealType m_r; // successes.
Chris@16 254 RealType m_p; // success_fraction
Chris@16 255 }; // template <class RealType, class Policy> class negative_binomial_distribution
Chris@16 256
Chris@16 257 typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
Chris@16 258
Chris@16 259 template <class RealType, class Policy>
Chris@16 260 inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
Chris@16 261 { // Range of permissible values for random variable k.
Chris@16 262 using boost::math::tools::max_value;
Chris@16 263 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
Chris@16 264 }
Chris@16 265
Chris@16 266 template <class RealType, class Policy>
Chris@16 267 inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
Chris@16 268 { // Range of supported values for random variable k.
Chris@16 269 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
Chris@16 270 using boost::math::tools::max_value;
Chris@16 271 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
Chris@16 272 }
Chris@16 273
Chris@16 274 template <class RealType, class Policy>
Chris@16 275 inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 276 { // Mean of Negative Binomial distribution = r(1-p)/p.
Chris@16 277 return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction();
Chris@16 278 } // mean
Chris@16 279
Chris@16 280 //template <class RealType, class Policy>
Chris@16 281 //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 282 //{ // Median of negative_binomial_distribution is not defined.
Chris@16 283 // return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
Chris@16 284 //} // median
Chris@16 285 // Now implemented via quantile(half) in derived accessors.
Chris@16 286
Chris@16 287 template <class RealType, class Policy>
Chris@16 288 inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 289 { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
Chris@16 290 BOOST_MATH_STD_USING // ADL of std functions.
Chris@16 291 return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction());
Chris@16 292 } // mode
Chris@16 293
Chris@16 294 template <class RealType, class Policy>
Chris@16 295 inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 296 { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
Chris@16 297 BOOST_MATH_STD_USING // ADL of std functions.
Chris@16 298 RealType p = dist.success_fraction();
Chris@16 299 RealType r = dist.successes();
Chris@16 300
Chris@16 301 return (2 - p) /
Chris@16 302 sqrt(r * (1 - p));
Chris@16 303 } // skewness
Chris@16 304
Chris@16 305 template <class RealType, class Policy>
Chris@16 306 inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 307 { // kurtosis of Negative Binomial distribution
Chris@16 308 // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
Chris@16 309 RealType p = dist.success_fraction();
Chris@16 310 RealType r = dist.successes();
Chris@16 311 return 3 + (6 / r) + ((p * p) / (r * (1 - p)));
Chris@16 312 } // kurtosis
Chris@16 313
Chris@16 314 template <class RealType, class Policy>
Chris@16 315 inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 316 { // kurtosis excess of Negative Binomial distribution
Chris@16 317 // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
Chris@16 318 RealType p = dist.success_fraction();
Chris@16 319 RealType r = dist.successes();
Chris@16 320 return (6 - p * (6-p)) / (r * (1-p));
Chris@16 321 } // kurtosis_excess
Chris@16 322
Chris@16 323 template <class RealType, class Policy>
Chris@16 324 inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 325 { // Variance of Binomial distribution = r (1-p) / p^2.
Chris@16 326 return dist.successes() * (1 - dist.success_fraction())
Chris@16 327 / (dist.success_fraction() * dist.success_fraction());
Chris@16 328 } // variance
Chris@16 329
Chris@16 330 // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 331 // standard_deviation provided by derived accessors.
Chris@16 332 // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 333 // hazard of Negative Binomial distribution provided by derived accessors.
Chris@16 334 // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
Chris@16 335 // chf of Negative Binomial distribution provided by derived accessors.
Chris@16 336
Chris@16 337 template <class RealType, class Policy>
Chris@16 338 inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
Chris@16 339 { // Probability Density/Mass Function.
Chris@16 340 BOOST_FPU_EXCEPTION_GUARD
Chris@16 341
Chris@16 342 static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)";
Chris@16 343
Chris@16 344 RealType r = dist.successes();
Chris@16 345 RealType p = dist.success_fraction();
Chris@16 346 RealType result = 0;
Chris@16 347 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 348 function,
Chris@16 349 r,
Chris@16 350 dist.success_fraction(),
Chris@16 351 k,
Chris@16 352 &result, Policy()))
Chris@16 353 {
Chris@16 354 return result;
Chris@16 355 }
Chris@16 356
Chris@16 357 result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy());
Chris@16 358 // Equivalent to:
Chris@16 359 // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
Chris@16 360 return result;
Chris@16 361 } // negative_binomial_pdf
Chris@16 362
Chris@16 363 template <class RealType, class Policy>
Chris@16 364 inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
Chris@16 365 { // Cumulative Distribution Function of Negative Binomial.
Chris@16 366 static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
Chris@16 367 using boost::math::ibeta; // Regularized incomplete beta function.
Chris@16 368 // k argument may be integral, signed, or unsigned, or floating point.
Chris@16 369 // If necessary, it has already been promoted from an integral type.
Chris@16 370 RealType p = dist.success_fraction();
Chris@16 371 RealType r = dist.successes();
Chris@16 372 // Error check:
Chris@16 373 RealType result = 0;
Chris@16 374 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 375 function,
Chris@16 376 r,
Chris@16 377 dist.success_fraction(),
Chris@16 378 k,
Chris@16 379 &result, Policy()))
Chris@16 380 {
Chris@16 381 return result;
Chris@16 382 }
Chris@16 383
Chris@16 384 RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy());
Chris@16 385 // Ip(r, k+1) = ibeta(r, k+1, p)
Chris@16 386 return probability;
Chris@16 387 } // cdf Cumulative Distribution Function Negative Binomial.
Chris@16 388
Chris@16 389 template <class RealType, class Policy>
Chris@16 390 inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
Chris@16 391 { // Complemented Cumulative Distribution Function Negative Binomial.
Chris@16 392
Chris@16 393 static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
Chris@16 394 using boost::math::ibetac; // Regularized incomplete beta function complement.
Chris@16 395 // k argument may be integral, signed, or unsigned, or floating point.
Chris@16 396 // If necessary, it has already been promoted from an integral type.
Chris@16 397 RealType const& k = c.param;
Chris@16 398 negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
Chris@16 399 RealType p = dist.success_fraction();
Chris@16 400 RealType r = dist.successes();
Chris@16 401 // Error check:
Chris@16 402 RealType result = 0;
Chris@16 403 if(false == negative_binomial_detail::check_dist_and_k(
Chris@16 404 function,
Chris@16 405 r,
Chris@16 406 p,
Chris@16 407 k,
Chris@16 408 &result, Policy()))
Chris@16 409 {
Chris@16 410 return result;
Chris@16 411 }
Chris@16 412 // Calculate cdf negative binomial using the incomplete beta function.
Chris@16 413 // Use of ibeta here prevents cancellation errors in calculating
Chris@16 414 // 1-p if p is very small, perhaps smaller than machine epsilon.
Chris@16 415 // Ip(k+1, r) = ibetac(r, k+1, p)
Chris@16 416 // constrain_probability here?
Chris@16 417 RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy());
Chris@16 418 // Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
Chris@16 419 // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
Chris@16 420 return probability;
Chris@16 421 } // cdf Cumulative Distribution Function Negative Binomial.
Chris@16 422
Chris@16 423 template <class RealType, class Policy>
Chris@16 424 inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P)
Chris@16 425 { // Quantile, percentile/100 or Percent Point Negative Binomial function.
Chris@16 426 // Return the number of expected failures k for a given probability p.
Chris@16 427
Chris@16 428 // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
Chris@16 429 // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
Chris@16 430 // k argument may be integral, signed, or unsigned, or floating point.
Chris@16 431 // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
Chris@16 432 static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
Chris@16 433 BOOST_MATH_STD_USING // ADL of std functions.
Chris@16 434
Chris@16 435 RealType p = dist.success_fraction();
Chris@16 436 RealType r = dist.successes();
Chris@16 437 // Check dist and P.
Chris@16 438 RealType result = 0;
Chris@16 439 if(false == negative_binomial_detail::check_dist_and_prob
Chris@16 440 (function, r, p, P, &result, Policy()))
Chris@16 441 {
Chris@16 442 return result;
Chris@16 443 }
Chris@16 444
Chris@16 445 // Special cases.
Chris@16 446 if (P == 1)
Chris@16 447 { // Would need +infinity failures for total confidence.
Chris@16 448 result = policies::raise_overflow_error<RealType>(
Chris@16 449 function,
Chris@16 450 "Probability argument is 1, which implies infinite failures !", Policy());
Chris@16 451 return result;
Chris@16 452 // usually means return +std::numeric_limits<RealType>::infinity();
Chris@16 453 // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
Chris@16 454 }
Chris@16 455 if (P == 0)
Chris@16 456 { // No failures are expected if P = 0.
Chris@16 457 return 0; // Total trials will be just dist.successes.
Chris@16 458 }
Chris@16 459 if (P <= pow(dist.success_fraction(), dist.successes()))
Chris@16 460 { // p <= pdf(dist, 0) == cdf(dist, 0)
Chris@16 461 return 0;
Chris@16 462 }
Chris@101 463 if(p == 0)
Chris@101 464 { // Would need +infinity failures for total confidence.
Chris@101 465 result = policies::raise_overflow_error<RealType>(
Chris@101 466 function,
Chris@101 467 "Success fraction is 0, which implies infinite failures !", Policy());
Chris@101 468 return result;
Chris@101 469 // usually means return +std::numeric_limits<RealType>::infinity();
Chris@101 470 // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
Chris@101 471 }
Chris@16 472 /*
Chris@16 473 // Calculate quantile of negative_binomial using the inverse incomplete beta function.
Chris@16 474 using boost::math::ibeta_invb;
Chris@16 475 return ibeta_invb(r, p, P, Policy()) - 1; //
Chris@16 476 */
Chris@16 477 RealType guess = 0;
Chris@16 478 RealType factor = 5;
Chris@16 479 if(r * r * r * P * p > 0.005)
Chris@16 480 guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy());
Chris@16 481
Chris@16 482 if(guess < 10)
Chris@16 483 {
Chris@16 484 //
Chris@16 485 // Cornish-Fisher Negative binomial approximation not accurate in this area:
Chris@16 486 //
Chris@16 487 guess = (std::min)(RealType(r * 2), RealType(10));
Chris@16 488 }
Chris@16 489 else
Chris@16 490 factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
Chris@16 491 BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
Chris@16 492 //
Chris@16 493 // Max iterations permitted:
Chris@16 494 //
Chris@16 495 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
Chris@16 496 typedef typename Policy::discrete_quantile_type discrete_type;
Chris@16 497 return detail::inverse_discrete_quantile(
Chris@16 498 dist,
Chris@16 499 P,
Chris@16 500 false,
Chris@16 501 guess,
Chris@16 502 factor,
Chris@16 503 RealType(1),
Chris@16 504 discrete_type(),
Chris@16 505 max_iter);
Chris@16 506 } // RealType quantile(const negative_binomial_distribution dist, p)
Chris@16 507
Chris@16 508 template <class RealType, class Policy>
Chris@16 509 inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
Chris@16 510 { // Quantile or Percent Point Binomial function.
Chris@16 511 // Return the number of expected failures k for a given
Chris@16 512 // complement of the probability Q = 1 - P.
Chris@16 513 static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
Chris@16 514 BOOST_MATH_STD_USING
Chris@16 515
Chris@16 516 // Error checks:
Chris@16 517 RealType Q = c.param;
Chris@16 518 const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
Chris@16 519 RealType p = dist.success_fraction();
Chris@16 520 RealType r = dist.successes();
Chris@16 521 RealType result = 0;
Chris@16 522 if(false == negative_binomial_detail::check_dist_and_prob(
Chris@16 523 function,
Chris@16 524 r,
Chris@16 525 p,
Chris@16 526 Q,
Chris@16 527 &result, Policy()))
Chris@16 528 {
Chris@16 529 return result;
Chris@16 530 }
Chris@16 531
Chris@16 532 // Special cases:
Chris@16 533 //
Chris@16 534 if(Q == 1)
Chris@16 535 { // There may actually be no answer to this question,
Chris@16 536 // since the probability of zero failures may be non-zero,
Chris@16 537 return 0; // but zero is the best we can do:
Chris@16 538 }
Chris@16 539 if(Q == 0)
Chris@16 540 { // Probability 1 - Q == 1 so infinite failures to achieve certainty.
Chris@16 541 // Would need +infinity failures for total confidence.
Chris@16 542 result = policies::raise_overflow_error<RealType>(
Chris@16 543 function,
Chris@16 544 "Probability argument complement is 0, which implies infinite failures !", Policy());
Chris@16 545 return result;
Chris@16 546 // usually means return +std::numeric_limits<RealType>::infinity();
Chris@16 547 // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
Chris@16 548 }
Chris@101 549 if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
Chris@101 550 { // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
Chris@101 551 return 0; //
Chris@101 552 }
Chris@101 553 if(p == 0)
Chris@101 554 { // Success fraction is 0 so infinite failures to achieve certainty.
Chris@101 555 // Would need +infinity failures for total confidence.
Chris@101 556 result = policies::raise_overflow_error<RealType>(
Chris@101 557 function,
Chris@101 558 "Success fraction is 0, which implies infinite failures !", Policy());
Chris@101 559 return result;
Chris@101 560 // usually means return +std::numeric_limits<RealType>::infinity();
Chris@101 561 // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
Chris@101 562 }
Chris@16 563 //return ibetac_invb(r, p, Q, Policy()) -1;
Chris@16 564 RealType guess = 0;
Chris@16 565 RealType factor = 5;
Chris@16 566 if(r * r * r * (1-Q) * p > 0.005)
Chris@16 567 guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy());
Chris@16 568
Chris@16 569 if(guess < 10)
Chris@16 570 {
Chris@16 571 //
Chris@16 572 // Cornish-Fisher Negative binomial approximation not accurate in this area:
Chris@16 573 //
Chris@16 574 guess = (std::min)(RealType(r * 2), RealType(10));
Chris@16 575 }
Chris@16 576 else
Chris@16 577 factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
Chris@16 578 BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
Chris@16 579 //
Chris@16 580 // Max iterations permitted:
Chris@16 581 //
Chris@16 582 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
Chris@16 583 typedef typename Policy::discrete_quantile_type discrete_type;
Chris@16 584 return detail::inverse_discrete_quantile(
Chris@16 585 dist,
Chris@16 586 Q,
Chris@16 587 true,
Chris@16 588 guess,
Chris@16 589 factor,
Chris@16 590 RealType(1),
Chris@16 591 discrete_type(),
Chris@16 592 max_iter);
Chris@16 593 } // quantile complement
Chris@16 594
Chris@16 595 } // namespace math
Chris@16 596 } // namespace boost
Chris@16 597
Chris@16 598 // This include must be at the end, *after* the accessors
Chris@16 599 // for this distribution have been defined, in order to
Chris@16 600 // keep compilers that support two-phase lookup happy.
Chris@16 601 #include <boost/math/distributions/detail/derived_accessors.hpp>
Chris@16 602
Chris@16 603 #if defined (BOOST_MSVC)
Chris@16 604 # pragma warning(pop)
Chris@16 605 #endif
Chris@16 606
Chris@16 607 #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP