Chris@16: // boost\math\special_functions\negative_binomial.hpp Chris@16: Chris@16: // Copyright Paul A. Bristow 2007. Chris@16: // Copyright John Maddock 2007. Chris@16: Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. Chris@16: // (See accompanying file LICENSE_1_0.txt Chris@16: // or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: // http://en.wikipedia.org/wiki/negative_binomial_distribution Chris@16: // http://mathworld.wolfram.com/NegativeBinomialDistribution.html Chris@16: // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html Chris@16: Chris@16: // The negative binomial distribution NegativeBinomialDistribution[n, p] Chris@16: // is the distribution of the number (k) of failures that occur in a sequence of trials before Chris@16: // r successes have occurred, where the probability of success in each trial is p. Chris@16: Chris@16: // In a sequence of Bernoulli trials or events Chris@16: // (independent, yes or no, succeed or fail) with success_fraction probability p, Chris@16: // negative_binomial is the probability that k or fewer failures Chris@16: // preceed the r th trial's success. Chris@16: // random variable k is the number of failures (NOT the probability). Chris@16: Chris@16: // Negative_binomial distribution is a discrete probability distribution. Chris@16: // But note that the negative binomial distribution Chris@16: // (like others including the binomial, Poisson & Bernoulli) Chris@16: // is strictly defined as a discrete function: only integral values of k are envisaged. Chris@16: // However because of the method of calculation using a continuous gamma function, Chris@16: // it is convenient to treat it as if a continous function, Chris@16: // and permit non-integral values of k. Chris@16: Chris@16: // However, by default the policy is to use discrete_quantile_policy. Chris@16: Chris@16: // To enforce the strict mathematical model, users should use conversion Chris@16: // on k outside this function to ensure that k is integral. Chris@16: Chris@16: // MATHCAD cumulative negative binomial pnbinom(k, n, p) Chris@16: Chris@16: // Implementation note: much greater speed, and perhaps greater accuracy, Chris@16: // might be achieved for extreme values by using a normal approximation. Chris@16: // This is NOT been tested or implemented. Chris@16: Chris@16: #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP Chris@16: #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP Chris@16: Chris@16: #include Chris@16: #include // for ibeta(a, b, x) == Ix(a, b). Chris@16: #include // complement. Chris@16: #include // error checks domain_error & logic_error. Chris@16: #include // isnan. Chris@16: #include // for root finding. Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include // using std::numeric_limits; Chris@16: #include Chris@16: Chris@16: #if defined (BOOST_MSVC) Chris@16: # pragma warning(push) Chris@16: // This believed not now necessary, so commented out. Chris@16: //# pragma warning(disable: 4702) // unreachable code. Chris@16: // in domain_error_imp in error_handling. Chris@16: #endif Chris@16: Chris@16: namespace boost Chris@16: { Chris@16: namespace math Chris@16: { Chris@16: namespace negative_binomial_detail Chris@16: { Chris@16: // Common error checking routines for negative binomial distribution functions: Chris@16: template Chris@16: inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) Chris@16: { Chris@16: if( !(boost::math::isfinite)(r) || (r <= 0) ) Chris@16: { Chris@16: *result = policies::raise_domain_error( Chris@16: function, Chris@16: "Number of successes argument is %1%, but must be > 0 !", r, pol); Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } Chris@16: template Chris@16: inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) Chris@16: { Chris@16: if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) Chris@16: { Chris@16: *result = policies::raise_domain_error( Chris@16: function, Chris@16: "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } Chris@16: template Chris@16: inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) Chris@16: { Chris@16: return check_success_fraction(function, p, result, pol) Chris@16: && check_successes(function, r, result, pol); Chris@16: } Chris@16: template Chris@16: inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) Chris@16: { Chris@16: if(check_dist(function, r, p, result, pol) == false) Chris@16: { Chris@16: return false; Chris@16: } Chris@16: if( !(boost::math::isfinite)(k) || (k < 0) ) Chris@16: { // Check k failures. Chris@16: *result = policies::raise_domain_error( Chris@16: function, Chris@16: "Number of failures argument is %1%, but must be >= 0 !", k, pol); Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } // Check_dist_and_k Chris@16: Chris@16: template Chris@16: inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) Chris@16: { Chris@16: if(check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) Chris@16: { Chris@16: return false; Chris@16: } Chris@16: return true; Chris@16: } // check_dist_and_prob Chris@16: } // namespace negative_binomial_detail Chris@16: Chris@16: template > Chris@16: class negative_binomial_distribution Chris@16: { Chris@16: public: Chris@16: typedef RealType value_type; Chris@16: typedef Policy policy_type; Chris@16: Chris@16: negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) Chris@16: { // Constructor. Chris@16: RealType result; Chris@16: negative_binomial_detail::check_dist( Chris@16: "negative_binomial_distribution<%1%>::negative_binomial_distribution", Chris@16: m_r, // Check successes r > 0. Chris@16: m_p, // Check success_fraction 0 <= p <= 1. Chris@16: &result, Policy()); Chris@16: } // negative_binomial_distribution constructor. Chris@16: Chris@16: // Private data getter class member functions. Chris@16: RealType success_fraction() const Chris@16: { // Probability of success as fraction in range 0 to 1. Chris@16: return m_p; Chris@16: } Chris@16: RealType successes() const Chris@16: { // Total number of successes r. Chris@16: return m_r; Chris@16: } Chris@16: Chris@16: static RealType find_lower_bound_on_p( Chris@16: RealType trials, Chris@16: RealType successes, Chris@16: RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. Chris@16: { Chris@16: static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; Chris@16: RealType result = 0; // of error checks. Chris@16: RealType failures = trials - successes; Chris@16: if(false == detail::check_probability(function, alpha, &result, Policy()) Chris@16: && negative_binomial_detail::check_dist_and_k( Chris@16: function, successes, RealType(0), failures, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: // Use complement ibeta_inv function for lower bound. Chris@16: // This is adapted from the corresponding binomial formula Chris@16: // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm Chris@16: // This is a Clopper-Pearson interval, and may be overly conservative, Chris@16: // see also "A Simple Improved Inferential Method for Some Chris@16: // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY Chris@16: // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf Chris@16: // Chris@16: return ibeta_inv(successes, failures + 1, alpha, static_cast(0), Policy()); Chris@16: } // find_lower_bound_on_p Chris@16: Chris@16: static RealType find_upper_bound_on_p( Chris@16: RealType trials, Chris@16: RealType successes, Chris@16: RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. Chris@16: { Chris@16: static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; Chris@16: RealType result = 0; // of error checks. Chris@16: RealType failures = trials - successes; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, successes, RealType(0), failures, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: if(failures == 0) Chris@16: return 1; Chris@16: // Use complement ibetac_inv function for upper bound. Chris@16: // Note adjusted failures value: *not* failures+1 as usual. Chris@16: // This is adapted from the corresponding binomial formula Chris@16: // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm Chris@16: // This is a Clopper-Pearson interval, and may be overly conservative, Chris@16: // see also "A Simple Improved Inferential Method for Some Chris@16: // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY Chris@16: // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf Chris@16: // Chris@16: return ibetac_inv(successes, failures, alpha, static_cast(0), Policy()); Chris@16: } // find_upper_bound_on_p Chris@16: Chris@16: // Estimate number of trials : Chris@16: // "How many trials do I need to be P% sure of seeing k or fewer failures?" Chris@16: Chris@16: static RealType find_minimum_number_of_trials( Chris@16: RealType k, // number of failures (k >= 0). Chris@16: RealType p, // success fraction 0 <= p <= 1. Chris@16: RealType alpha) // risk level threshold 0 <= alpha <= 1. Chris@16: { Chris@16: static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; Chris@16: // Error checks: Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, RealType(1), p, k, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { return result; } Chris@16: Chris@16: result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k Chris@16: return result + k; Chris@16: } // RealType find_number_of_failures Chris@16: Chris@16: static RealType find_maximum_number_of_trials( Chris@16: RealType k, // number of failures (k >= 0). Chris@16: RealType p, // success fraction 0 <= p <= 1. Chris@16: RealType alpha) // risk level threshold 0 <= alpha <= 1. Chris@16: { Chris@16: static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; Chris@16: // Error checks: Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, RealType(1), p, k, &result, Policy()) Chris@16: && detail::check_probability(function, alpha, &result, Policy())) Chris@16: { return result; } Chris@16: Chris@16: result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k Chris@16: return result + k; Chris@16: } // RealType find_number_of_trials complemented Chris@16: Chris@16: private: Chris@16: RealType m_r; // successes. Chris@16: RealType m_p; // success_fraction Chris@16: }; // template class negative_binomial_distribution Chris@16: Chris@16: typedef negative_binomial_distribution negative_binomial; // Reserved name of type double. Chris@16: Chris@16: template Chris@16: inline const std::pair range(const negative_binomial_distribution& /* dist */) Chris@16: { // Range of permissible values for random variable k. Chris@16: using boost::math::tools::max_value; Chris@16: return std::pair(static_cast(0), max_value()); // max_integer? Chris@16: } Chris@16: Chris@16: template Chris@16: inline const std::pair support(const negative_binomial_distribution& /* dist */) Chris@16: { // Range of supported values for random variable k. Chris@16: // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. Chris@16: using boost::math::tools::max_value; Chris@16: return std::pair(static_cast(0), max_value()); // max_integer? Chris@16: } Chris@16: Chris@16: template Chris@16: inline RealType mean(const negative_binomial_distribution& dist) Chris@16: { // Mean of Negative Binomial distribution = r(1-p)/p. Chris@16: return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); Chris@16: } // mean Chris@16: Chris@16: //template Chris@16: //inline RealType median(const negative_binomial_distribution& dist) Chris@16: //{ // Median of negative_binomial_distribution is not defined. Chris@16: // return policies::raise_domain_error(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits::quiet_NaN()); Chris@16: //} // median Chris@16: // Now implemented via quantile(half) in derived accessors. Chris@16: Chris@16: template Chris@16: inline RealType mode(const negative_binomial_distribution& dist) Chris@16: { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p] Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); Chris@16: } // mode Chris@16: Chris@16: template Chris@16: inline RealType skewness(const negative_binomial_distribution& dist) Chris@16: { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p)) Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: Chris@16: return (2 - p) / Chris@16: sqrt(r * (1 - p)); Chris@16: } // skewness Chris@16: Chris@16: template Chris@16: inline RealType kurtosis(const negative_binomial_distribution& dist) Chris@16: { // kurtosis of Negative Binomial distribution Chris@16: // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3 Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: return 3 + (6 / r) + ((p * p) / (r * (1 - p))); Chris@16: } // kurtosis Chris@16: Chris@16: template Chris@16: inline RealType kurtosis_excess(const negative_binomial_distribution& dist) Chris@16: { // kurtosis excess of Negative Binomial distribution Chris@16: // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: return (6 - p * (6-p)) / (r * (1-p)); Chris@16: } // kurtosis_excess Chris@16: Chris@16: template Chris@16: inline RealType variance(const negative_binomial_distribution& dist) Chris@16: { // Variance of Binomial distribution = r (1-p) / p^2. Chris@16: return dist.successes() * (1 - dist.success_fraction()) Chris@16: / (dist.success_fraction() * dist.success_fraction()); Chris@16: } // variance Chris@16: Chris@16: // RealType standard_deviation(const negative_binomial_distribution& dist) Chris@16: // standard_deviation provided by derived accessors. Chris@16: // RealType hazard(const negative_binomial_distribution& dist) Chris@16: // hazard of Negative Binomial distribution provided by derived accessors. Chris@16: // RealType chf(const negative_binomial_distribution& dist) Chris@16: // chf of Negative Binomial distribution provided by derived accessors. Chris@16: Chris@16: template Chris@16: inline RealType pdf(const negative_binomial_distribution& dist, const RealType& k) Chris@16: { // Probability Density/Mass Function. Chris@16: BOOST_FPU_EXCEPTION_GUARD Chris@16: Chris@16: static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; Chris@16: Chris@16: RealType r = dist.successes(); Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, Chris@16: r, Chris@16: dist.success_fraction(), Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: result = (p/(r + k)) * ibeta_derivative(r, static_cast(k+1), p, Policy()); Chris@16: // Equivalent to: Chris@16: // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k); Chris@16: return result; Chris@16: } // negative_binomial_pdf Chris@16: Chris@16: template Chris@16: inline RealType cdf(const negative_binomial_distribution& dist, const RealType& k) Chris@16: { // Cumulative Distribution Function of Negative Binomial. Chris@16: static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; Chris@16: using boost::math::ibeta; // Regularized incomplete beta function. Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // If necessary, it has already been promoted from an integral type. Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: // Error check: Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, Chris@16: r, Chris@16: dist.success_fraction(), Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: RealType probability = ibeta(r, static_cast(k+1), p, Policy()); Chris@16: // Ip(r, k+1) = ibeta(r, k+1, p) Chris@16: return probability; Chris@16: } // cdf Cumulative Distribution Function Negative Binomial. Chris@16: Chris@16: template Chris@16: inline RealType cdf(const complemented2_type, RealType>& c) Chris@16: { // Complemented Cumulative Distribution Function Negative Binomial. Chris@16: Chris@16: static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; Chris@16: using boost::math::ibetac; // Regularized incomplete beta function complement. Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // If necessary, it has already been promoted from an integral type. Chris@16: RealType const& k = c.param; Chris@16: negative_binomial_distribution const& dist = c.dist; Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: // Error check: Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_k( Chris@16: function, Chris@16: r, Chris@16: p, Chris@16: k, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: // Calculate cdf negative binomial using the incomplete beta function. Chris@16: // Use of ibeta here prevents cancellation errors in calculating Chris@16: // 1-p if p is very small, perhaps smaller than machine epsilon. Chris@16: // Ip(k+1, r) = ibetac(r, k+1, p) Chris@16: // constrain_probability here? Chris@16: RealType probability = ibetac(r, static_cast(k+1), p, Policy()); Chris@16: // Numerical errors might cause probability to be slightly outside the range < 0 or > 1. Chris@16: // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits. Chris@16: return probability; Chris@16: } // cdf Cumulative Distribution Function Negative Binomial. Chris@16: Chris@16: template Chris@16: inline RealType quantile(const negative_binomial_distribution& dist, const RealType& P) Chris@16: { // Quantile, percentile/100 or Percent Point Negative Binomial function. Chris@16: // Return the number of expected failures k for a given probability p. Chris@16: Chris@16: // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability. Chris@16: // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability. Chris@16: // k argument may be integral, signed, or unsigned, or floating point. Chris@16: // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y Chris@16: static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: // Check dist and P. Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_prob Chris@16: (function, r, p, P, &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Special cases. Chris@16: if (P == 1) Chris@16: { // Would need +infinity failures for total confidence. Chris@16: result = policies::raise_overflow_error( Chris@16: function, Chris@16: "Probability argument is 1, which implies infinite failures !", Policy()); Chris@16: return result; Chris@16: // usually means return +std::numeric_limits::infinity(); Chris@16: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@16: } Chris@16: if (P == 0) Chris@16: { // No failures are expected if P = 0. Chris@16: return 0; // Total trials will be just dist.successes. Chris@16: } Chris@16: if (P <= pow(dist.success_fraction(), dist.successes())) Chris@16: { // p <= pdf(dist, 0) == cdf(dist, 0) Chris@16: return 0; Chris@16: } Chris@101: if(p == 0) Chris@101: { // Would need +infinity failures for total confidence. Chris@101: result = policies::raise_overflow_error( Chris@101: function, Chris@101: "Success fraction is 0, which implies infinite failures !", Policy()); Chris@101: return result; Chris@101: // usually means return +std::numeric_limits::infinity(); Chris@101: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@101: } Chris@16: /* Chris@16: // Calculate quantile of negative_binomial using the inverse incomplete beta function. Chris@16: using boost::math::ibeta_invb; Chris@16: return ibeta_invb(r, p, P, Policy()) - 1; // Chris@16: */ Chris@16: RealType guess = 0; Chris@16: RealType factor = 5; Chris@16: if(r * r * r * P * p > 0.005) Chris@16: guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy()); Chris@16: Chris@16: if(guess < 10) Chris@16: { Chris@16: // Chris@16: // Cornish-Fisher Negative binomial approximation not accurate in this area: Chris@16: // Chris@16: guess = (std::min)(RealType(r * 2), RealType(10)); Chris@16: } Chris@16: else Chris@16: factor = (1-P < sqrt(tools::epsilon())) ? 2 : (guess < 20 ? 1.2f : 1.1f); Chris@16: BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); Chris@16: // Chris@16: // Max iterations permitted: Chris@16: // Chris@16: boost::uintmax_t max_iter = policies::get_max_root_iterations(); Chris@16: typedef typename Policy::discrete_quantile_type discrete_type; Chris@16: return detail::inverse_discrete_quantile( Chris@16: dist, Chris@16: P, Chris@16: false, Chris@16: guess, Chris@16: factor, Chris@16: RealType(1), Chris@16: discrete_type(), Chris@16: max_iter); Chris@16: } // RealType quantile(const negative_binomial_distribution dist, p) Chris@16: Chris@16: template Chris@16: inline RealType quantile(const complemented2_type, RealType>& c) Chris@16: { // Quantile or Percent Point Binomial function. Chris@16: // Return the number of expected failures k for a given Chris@16: // complement of the probability Q = 1 - P. Chris@16: static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; Chris@16: BOOST_MATH_STD_USING Chris@16: Chris@16: // Error checks: Chris@16: RealType Q = c.param; Chris@16: const negative_binomial_distribution& dist = c.dist; Chris@16: RealType p = dist.success_fraction(); Chris@16: RealType r = dist.successes(); Chris@16: RealType result = 0; Chris@16: if(false == negative_binomial_detail::check_dist_and_prob( Chris@16: function, Chris@16: r, Chris@16: p, Chris@16: Q, Chris@16: &result, Policy())) Chris@16: { Chris@16: return result; Chris@16: } Chris@16: Chris@16: // Special cases: Chris@16: // Chris@16: if(Q == 1) Chris@16: { // There may actually be no answer to this question, Chris@16: // since the probability of zero failures may be non-zero, Chris@16: return 0; // but zero is the best we can do: Chris@16: } Chris@16: if(Q == 0) Chris@16: { // Probability 1 - Q == 1 so infinite failures to achieve certainty. Chris@16: // Would need +infinity failures for total confidence. Chris@16: result = policies::raise_overflow_error( Chris@16: function, Chris@16: "Probability argument complement is 0, which implies infinite failures !", Policy()); Chris@16: return result; Chris@16: // usually means return +std::numeric_limits::infinity(); Chris@16: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@16: } Chris@101: if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) Chris@101: { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) Chris@101: return 0; // Chris@101: } Chris@101: if(p == 0) Chris@101: { // Success fraction is 0 so infinite failures to achieve certainty. Chris@101: // Would need +infinity failures for total confidence. Chris@101: result = policies::raise_overflow_error( Chris@101: function, Chris@101: "Success fraction is 0, which implies infinite failures !", Policy()); Chris@101: return result; Chris@101: // usually means return +std::numeric_limits::infinity(); Chris@101: // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR Chris@101: } Chris@16: //return ibetac_invb(r, p, Q, Policy()) -1; Chris@16: RealType guess = 0; Chris@16: RealType factor = 5; Chris@16: if(r * r * r * (1-Q) * p > 0.005) Chris@16: guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy()); Chris@16: Chris@16: if(guess < 10) Chris@16: { Chris@16: // Chris@16: // Cornish-Fisher Negative binomial approximation not accurate in this area: Chris@16: // Chris@16: guess = (std::min)(RealType(r * 2), RealType(10)); Chris@16: } Chris@16: else Chris@16: factor = (Q < sqrt(tools::epsilon())) ? 2 : (guess < 20 ? 1.2f : 1.1f); Chris@16: BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); Chris@16: // Chris@16: // Max iterations permitted: Chris@16: // Chris@16: boost::uintmax_t max_iter = policies::get_max_root_iterations(); Chris@16: typedef typename Policy::discrete_quantile_type discrete_type; Chris@16: return detail::inverse_discrete_quantile( Chris@16: dist, Chris@16: Q, Chris@16: true, Chris@16: guess, Chris@16: factor, Chris@16: RealType(1), Chris@16: discrete_type(), Chris@16: max_iter); Chris@16: } // quantile complement Chris@16: Chris@16: } // namespace math Chris@16: } // namespace boost Chris@16: Chris@16: // This include must be at the end, *after* the accessors Chris@16: // for this distribution have been defined, in order to Chris@16: // keep compilers that support two-phase lookup happy. Chris@16: #include Chris@16: Chris@16: #if defined (BOOST_MSVC) Chris@16: # pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP