Mercurial > hg > trimatlab
view private/mc_global_info.m @ 18:062d46712995 tip
Moved mc_global_info1 back to public folder
author | samer |
---|---|
date | Mon, 02 Apr 2012 21:50:43 +0100 |
parents | 0e0f2805ef9c |
children |
line wrap: on
line source
function [Info,ergodic]=mc_global_info(T,pz) % mc_global_info - Three global information measures about stationary MC % % mc_global_info :: [[N,N]] ~'transmat' -> [[3]]. % % mc_global_info :: % [[N,N]] ~'transmat', % [[N]] ~'stationary distribution if already known' % -> [[3]],bool. % % The three measures in order are % Entropy rate H(X|Z) % Redundancy I(X,Z) % Predictive information rate I(X,Y|Z) % All in NATS, not bits. n=size(T,1); if nargin<2, pz=mc_fixpt(T,0.001); end ergodic=(size(pz,2)==1); if ergodic && all(isfinite(pz)) TlogT=T.*slog(T); HXZ=-sum(TlogT,1)*pz; pxz=T; % p(x|z) pyxz=repmat(T,[1,1,n]).*repmat(shiftdim(T,-1),[n,1,1]); % p(y,x|z) pyz=sum(pyxz,2); % p(y|z) pyz(pyz==0)=realmin; pxyz=permute(pyxz./repmat(pyz,[1,n,1]),[2,1,3]); % p(x|y,z) HXYz=-shiftdim(sum(sum(permute(pyxz,[2,1,3]).*slog(pxyz),1),2),2); % H(X|Y,z) IXYZ=(-HXYz' - sum(pxz.*slog(pxz)))*pz; IXZ=max(0,(sum(TlogT)-slog(pz)')*pz); Info=[HXZ;IXZ;IXYZ]; if any(~isreal(Info)) disp('unreal information'); ergodic=0; elseif any(Info<0) if any(Info<-eps) disp('negative information'); disp(pz'); disp(Info'); ergodic=0; else Info=max(0,Info); end end else Info=[0;0;0]; end function y=slog(x) % slog - safe log, x<=0 => slog(x)=0 % % slog :: real -> real. x(x<=0)=1; y=log(x);