Mercurial > hg > syncopation-dataset
changeset 16:f33394acc539
unversioning orig files
author | csong |
---|---|
date | Fri, 03 Apr 2015 17:27:31 +0100 |
parents | 4fb9c00e4ef0 |
children | a5a26d2cff40 |
files | Syncopation models/basic_functions.py.orig Syncopation models/music_objects.py.orig Syncopation models/syncopation.py.orig |
diffstat | 3 files changed, 0 insertions(+), 392 deletions(-) [+] |
line wrap: on
line diff
--- a/Syncopation models/basic_functions.py.orig Fri Apr 03 17:26:36 2015 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,182 +0,0 @@ -# This python file is a collection of basic functions that are used in the syncopation models. - -import math - -# The concatenation function is used to concatenate two sequences. -def concatenate(seq1,seq2): - return seq1+seq2 - -# The repetition function is to concatenate a sequence to itself for 'times' number of times. -def repeat(seq,times): - new_seq = list(seq) - if times >= 1: - for i in range(times-1): - new_seq = concatenate(new_seq,seq) - else: - #print 'Error: repetition times needs to be no less than 1.' - new_seq = [] - return new_seq - -# The subdivision function is to equally subdivide a sequence into 'divisor' number of segments. -def subdivide(seq,divisor): - subSeq = [] - if len(seq) % divisor != 0: - print 'Error: rhythmic sequence cannot be equally subdivided.' - else: - n = len(seq) / divisor - start , end = 0, n - for i in range(divisor): - subSeq.append(seq[start : end]) - start = end - end = end + n - return subSeq - - -# The ceiling function is to round each number inside a sequence up to its nearest integer. -def ceiling(seq): - seq_ceil = [] - for s in seq: - seq_ceil.append(int(math.ceil(s))) - return seq_ceil - -# The find_divisor function returns a list of all possible divisors for a length of sequence. -def find_divisor(number): - divisors = [1] - for i in range(2,number+1): - if number%i ==0: - divisors.append(i) - return divisors - -# The find_divisor function returns a list of all possible divisors for a length of sequence. -def find_prime_factors(number): - prime_factors = find_divisor(number) - - def is_prime(num): - if num < 2: - return False - if num == 2: - return True - else: - for div in range(2,num): - if num % div == 0: - return False - return True - - for i in range(len(prime_factors)-1,0,-1): - if is_prime(prime_factors[i]) == False: - del prime_factors[i] - - return prime_factors - -# The min_timeSpan function searches for the shortest possible time-span representation for a sequence. -def get_min_timeSpan(seq): - min_ts = [1] - for d in find_divisor(len(seq)): - segments = subdivide(seq,d) - if len(segments)!=0: - del min_ts[:] - for s in segments: - min_ts.append(s[0]) - if sum(min_ts) == sum(seq): - break - return min_ts - -# get_note_indices returns all the indices of all the notes in this sequence -def get_note_indices(seq): - note_indices = [] - - for index in range(len(seq)): - if seq[index] != 0: - note_indices.append(index) - - return note_indices - -# The get_H returns a sequence of metrical weight for a certain metrical level (horizontal), -# given the sequence of metrical weights in a hierarchy (vertical) and a sequence of subdivisions. -def get_H(weight_seq,subdivision_seq, level): - H = [] - #print len(weight_seq), len(subdivision_seq), level - if (level <= len(subdivision_seq)-1) & (level <= len(weight_seq)-1): - if level == 0: - H = repeat([weight_seq[0]],subdivision_seq[0]) - else: - H_pre = get_H(weight_seq,subdivision_seq,level-1) - for h in H_pre: - H = concatenate(H, concatenate([h], repeat([weight_seq[level]],subdivision_seq[level]-1))) - else: - print 'Error: a subdivision factor or metrical weight is not defined for the request metrical level.' - return H - -# The get_subdivision_seq function returns the subdivision sequence of several common time-signatures defined by GTTM, -# or ask for the top three level of subdivision_seq manually set by the user. -def get_subdivision_seq(timesig, L_max): - subdivision_seq = [] - - if timesig == '2/4' or timesig == '4/4': - subdivision_seq = [1,2,2] - elif timesig == '3/4' or timesig == '3/8': - subdivision_seq = [1,3,2] - elif timesig == '6/8': - subdivision_seq = [1,2,3] - elif timesig == '9/8': - subdivision_seq = [1,3,3] - elif timesig == '12/8': - subdivision_seq = [1,4,3] - elif timesig == '5/4' or timesig == '5/8': - subdivision_seq = [1,5,2] - elif timesig == '7/4' or timesig == '7/8': - subdivision_seq = [1,7,2] - elif timesig == '11/4' or timesig == '11/8': - subdivision_seq = [1,11,2] - else: - print 'Time-signature',timesig,'is undefined. Please indicate subdivision sequence for this requested time-signature, e.g. [1,2,2] for 4/4 meter.' - for i in range(3): - s = int(input('Enter the subdivision factor at metrical level '+str(i)+':')) - subdivision_seq.append(s) - - if L_max > 2: - subdivision_seq = subdivision_seq + [2]*(L_max-2) - else: - subdivision_seq = subdivision_seq[0:L_max+1] - - return subdivision_seq - - -def get_rhythm_category(velocitySequence, subdivisionSequence): - ''' - The get_rhythm_category function is used to detect rhythm category: monorhythm or polyrhythm. - For monorhythms, all prime factors of the length of minimum time-span representation of this sequence are - elements of its subdivision_seq, otherwise it is polyrhythm; - e.g. prime_factors of polyrhythm 100100101010 in 4/4 is [2,3] but subdivision_seq = [1,2,2] for 4/4 - ''' - rhythmCategory = 'mono' - for f in find_prime_factors(len(get_min_timeSpan(velocitySequence))): - if not (f in subdivisionSequence): - rhythmCategory = 'poly' - break - return rhythmCategory - -def string_to_sequence(inputString): - return map(int, inputString.split(',')) - - - # The split_by_bar function seperates the score representation of rhythm by bar lines, - # resulting in a list representingbar-by-bar rhythm sequence, - # e.g. rhythm = ['|',[ts1,td1,v1], [ts2,td2,v2], '|',[ts3,td3,v3],'|'...] - # rhythm_bybar = [ [ [ts1,td1,v1], [ts2,td2,v2] ], [ [ts3,td3,v3] ], [...]] -# def split_by_bar(rhythm): -# rhythm_bybar = [] -# bar_index = [] -# for index in range(len(rhythm)): -# if rhythm[index] == '|': - -# return rhythm_bybar - -# def yseq_to_vseq(yseq): -# vseq = [] - -# return vseq - - -# # testing -# print find_prime_factors(10) \ No newline at end of file
--- a/Syncopation models/music_objects.py.orig Fri Apr 03 17:26:36 2015 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,107 +0,0 @@ - -from basic_functions import ceiling, string_to_sequence - -import parameter_setter -import rhythm_parser - -class Note(): - def __init__(self, argstring): - intlist = string_to_sequence(argstring) - self.startTime = intlist[0] - self.duration = intlist[1] - self.velocity = intlist[2] - - # toString() - -# NoteSequence is a list of Note -class NoteSequence(list): - def __init__(self, noteSequenceString=None): - if noteSequenceString!=None: - self.string_to_note_sequence(noteSequenceString) - - def string_to_note_sequence(self, noteSequenceString): - noteSequenceString = rhythm_parser.discardSpaces(noteSequenceString) - # try: - # Turning "(1,2,3),(4,5,6),(7,8,9)" into ["1,2,3","4,5,6,","7,8,9"] - listStrings = noteSequenceString[1:-1].split("),(") - for localString in listStrings: - self.append(Note(localString)) - - # toString() - - -#print NoteSequence("(1,2,3),(4,5,6),(7,8,9)") -class VelocitySequence(list): - def __init__(self, noteSequenceString=None): - if noteSequenceString!=None: - self.string_to_note_sequence(noteSequenceString) - - def string_to_note_sequence(self,inputString): - self.extend(string_to_sequence(inputString)) - - -class BarList(list): - def append(self,bar): - if(len(self)>0): - bar.set_previous_bar(self[-1]) - self[-1].set_next_bar(bar) - super(BarList, self).append(bar) - - - - - -class Bar: - - def __init__(self, rhythmSequence, timeSignature, ticksPerQuarter=None, qpmTempo=None, nextBar=None, prevBar=None): - if isinstance(rhythmSequence, NoteSequence): - self.noteSequence = rhythmSequence - self.velocitySequence = None - elif isinstance(rhythmSequence, VelocitySequence): - self.velocitySequence = rhythmSequence - self.noteSequence = None - - self.tpq = ticksPerQuarter - self.qpm = qpmTempo - self.timeSignature = timeSignature - self.nextBar = nextBar - self.prevBar = prevBar - - def get_note_sequence(self): - #if self.noteSequence==None: - # self.noteSequence = velocity_sequence_to_notes(self.velocitySequence) - return self.noteSequence - - def get_velocity_sequence(self): - if self.velocitySequence==None: - self.velocitySequence = note_sequence_to_velocities(self.velocitySequence) - return self.velocitySequence - - def get_binary_sequence(self): - return ceiling(self.get_velocity_sequence()) - - def get_next_bar(self): - return self.nextBar - - def get_previous_bar(self): - return self.prevBar - - def set_next_bar(self, bar): - self.nextBar = bar - - def set_previous_bar(self, bar): - self.prevBar = bar - - def get_subdivision_sequence(self): - return ParameterSetter.get_subdivision_seq(self.timeSignature) - - def get_beat_level(self): - return ParameterSetter.get_beat_level(self.timeSignature) - - def get_time_signature(self): - return self.timeSignature - - def get_t_span(self): - # return the length of a bar in time units - return None # NEED TO IMPLEMENT -
--- a/Syncopation models/syncopation.py.orig Fri Apr 03 17:26:36 2015 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,103 +0,0 @@ -''' -Author: Chunyang Song -Institution: Centre for Digital Music, Queen Mary University of London - -''' - - -def sync_perbar_permodel(seq, model, timesig = None, subdivision_seq = None, weight_seq = None, L_max = 5, prebar_seq = None, postbar_seq = None, strong_beat_level = None): - syncopation = None - - if seq == None or model == None: - print 'Error: please indicate rhythm sequence and syncopation model.' - - elif timesig == None and subdivision_seq == None: - print 'Error: please indicate either time signature or subdivision sequence.' - - else: - while subdivision_seq == None: - from basic_functions import get_subdivision_seq - subdivision_seq = get_subdivision_seq(timesig, L_max) - - # The get_rhythm_category function is used to detect rhythm category: monorhythm or polyrhythm. - # For monorhythms, all prime factors of the length of minimum time-span representation of this sequence are - # elements of its subdivision_seq, otherwise it is polyrhythm; - # e.g. prime_factors of polyrhythm 100100101010 in 4/4 is [2,3] but subdivision_seq = [1,2,2] for 4/4 - def get_rhythm_category(): - rhythm_category = 'mono' - from basic_functions import get_min_timeSpan, find_prime_factors - for f in find_prime_factors(len(get_min_timeSpan(seq))): - if not (f in subdivision_seq): - rhythm_category = 'poly' - break - return rhythm_category - - rhythm_category = get_rhythm_category() - - if model == 'LHL': - import LHL - if weight_seq == None: - weight_seq = range(0,-L_max,-1) - syncopation = LHL.get_syncopation(seq, subdivision_seq, weight_seq, prebar_seq, rhythm_category) - elif model == 'PRS': - import PRS - syncopation = PRS.get_syncopation(seq, subdivision_seq, postbar_seq, rhythm_category) - elif model == 'TMC': - import TMC - if weight_seq == None: - weight_seq = range(L_max+1,0,-1) - syncopation = TMC.get_syncopation(seq, subdivision_seq, weight_seq, L_max, rhythm_category) - elif model == 'SG': - import SG - if weight_seq == None: - weight_seq = range(L_max+1) - syncopation = SG.get_syncopation(seq, subdivision_seq, weight_seq, L_max, rhythm_category) - elif model == 'KTH': - import KTH - syncopation = KTH.get_syncopation(seq, timesig, postbar_seq) - elif model == 'TOB': - import TOB - syncopation = TOB.get_syncopation(seq) - elif model == 'WNBD': - import WNBD - if strong_beat_level == None: - if timesig == '4/4': - strong_beat_level = 2 - else: - strong_beat_level = 1 - syncopation = WNBD.get_syncopation(seq, subdivision_seq, strong_beat_level, postbar_seq) - - else: - print 'Error: undefined syncopation model.' - - return syncopation - -# def syncopation_all(rhythm, model, timesig, subdivision_seq = None, weight_seq = None, L_max = 5, strong_beat_level = None): -# syncopation = 0 -# # Chope rhythm into seq -# # ... - -# for (seq_perbar in seq): -# sync_perbar = syncopation_perbar(seq_perbar,model, timesig, subdivision_seq, weight_seq, L_max, strong_beat_level) -# if sync_perbar != None: -# syncopation = syncopation + sync_perbar - -# return syncopation - - -### TESTING -# clave = [1,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0] -# bf = [0,0,0,1,0,0,0,0,0,0,1,0] -# rhythm = [0,1,0,1,0,1,0,1] -# classic1 = [1,0,1,1]*3 + [1,0,0,0] -# classic2 = [1,0,0,1]*3 + [1,0,0,0] -# shiko = [1,0,1,1,0,1,1,0] -# rumba = [1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0] -# soukous = [1,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0] -# gahu = [1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0] -# bossanova = [1,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0] - -# classic12 = [1,0,0,1,1,1,1,0,0,1,1,1] -# soli = [1,0,1,0,1,0,1,0,1,1,0,1] - -# print sync_perbar(seq = clave, model = 'WNBD', timesig = '4/4')