annotate Syncopation models/KTH.py @ 22:2dbc09ca8013

Refactored KTH, not tested yet. Added conversion functions between note sequence and velocity sequence, and tostring functions. Renamed get_min_timeSpan into velocity_sequence_to_min_timetpan, so need to refactor that.
author Chunyang Song <csong@eecs.qmul.ac.uk>
date Thu, 09 Apr 2015 23:49:16 +0100
parents b6daddeefda9
children df1e7c378ee0
rev   line source
csong@1 1 '''
csong@1 2 Author: Chunyang Song
csong@1 3 Institution: Centre for Digital Music, Queen Mary University of London
csong@1 4
csong@1 5 '''
csong@1 6
csong@22 7 from basic_functions import get_note_indices, repeat, note_sequence_to_min_timespan
csong@1 8
csong@1 9 # To find the nearest power of 2 equal to or less than the given number
csong@20 10 def round_down_power_2(number):
csong@1 11 i = 0
csong@1 12 if number > 0:
csong@1 13 while pow(2,i) > number or number >= pow(2,i+1):
csong@1 14 i = i+1
csong@1 15 power2 = pow(2,i)
csong@1 16 else:
csong@1 17 print 'Error: numbers that are less than 1 cannot be rounded down to its nearest power of two.'
csong@1 18 power2 = None
csong@1 19 return power2
csong@1 20
csong@1 21 # To find the nearest power of 2 equal to or more than the given number
csong@20 22 def round_up_power_2(number):
csong@1 23 i = 0
csong@1 24 while pow(2,i) < number:
csong@1 25 i = i + 1
csong@1 26 return pow(2,i)
csong@1 27
csong@1 28 # To examine whether start_time is 'off-beat'
csong@22 29 def start_time_offbeat_measure(startTime, c_n):
csong@22 30 measure = 0
csong@20 31 if startTime % c_n != 0:
csong@22 32 measure = 2
csong@22 33 return measure
csong@1 34
csong@1 35 # To examine whether end_time is 'off-beat'
csong@22 36 def end_time_offbeat_measure(endTime, c_n):
csong@22 37 measure = 0
csong@20 38 if endTime % c_n != 0:
csong@22 39 measure = 1
csong@22 40 return measure
csong@1 41
csong@22 42 def get_syncopation(bar, parameters = None):
csong@21 43 syncopation = None
csong@1 44
csong@21 45 # KTH only deals with simple-duple meter where the number of beats per bar is a power of two.
csong@21 46 numerator = bar.get_time_signature().get_numerator()
csong@21 47 if numerator != round_down_power_2(numerator):
csong@21 48 print 'Warning: KTH model detects non simple-duple meter so returning None.'
csong@21 49 else:
csong@21 50 # retrieve note-sequence and next bar's note-sequence
csong@21 51 noteSequence = bar.get_note_sequence()
csong@21 52 nextbarNoteSequence = None
csong@21 53 if bar.get_next_bar() != None:
csong@21 54 nextbarNoteSequence = bar.get_next_bar().get_note_sequence()
csong@1 55
csong@22 56 # convert note sequence to its minimum time-span representation so that the later calculation can be faster
csong@22 57 noteSequence = note_sequence_to_min_timespan(noteSequence)
csong@22 58
csong@22 59 # calculate syncopation note by note
csong@22 60 syncopation = 0
csong@22 61
csong@22 62 for note in noteSequence:
csong@22 63 startTime = note[0]
csong@22 64 duration = note[1]
csong@22 65 endTime = startTime + duration
csong@22 66 c_n = round_down_power_2(duration)
csong@22 67
csong@22 68 syncopation = syncopation + start_time_offbeat_measure(startTime,c_n) + end_time_offbeat_measure(endTime,c_n)
csong@21 69
csong@21 70
csong@21 71
csong@21 72
csong@21 73 # # To calculate syncopation value of the sequence in the given time-signature.
csong@21 74 # def get_syncopation(seq, timesig, postbar_seq):
csong@21 75 # syncopation = 0
csong@21 76
csong@21 77 # numerator = int(timesig.split("/")[0])
csong@21 78 # if numerator == round_down_power_2(numerator): # if is a binary time-signature
csong@21 79 # # converting to minimum time-span format
csong@21 80 # seq = get_min_timeSpan(seq)
csong@21 81 # if postbar_seq != None:
csong@21 82 # postbar_seq = get_min_timeSpan(postbar_seq)
csong@21 83
csong@21 84 # # sf is a stretching factor matching rhythm sequence and meter, as Keith defines the note duration as a multiple of 1/(2^d) beats where d is number of metrical level
csong@21 85 # sf = round_up_power_2(len(seq))
csong@1 86
csong@21 87 # # retrieve all the indices of all the notes in this sequence
csong@21 88 # note_indices = get_note_indices(seq)
csong@1 89
csong@21 90 # for i in range(len(note_indices)):
csong@21 91 # # Assuming start_time is the index of this note, end_time is the index of the following note
csong@21 92 # start_time = note_indices[i]*sf/float(len(seq))
csong@1 93
csong@21 94 # if i == len(note_indices)-1: # if this is the last note, end_time is the index of the following note in the next bar
csong@21 95 # if postbar_seq != None and postbar_seq != repeat([0],len(postbar_seq)):
csong@21 96 # next_index = get_note_indices(postbar_seq)[0]+len(seq)
csong@21 97 # end_time = next_index*sf/float(len(seq))
csong@21 98 # else: # or if the next bar is none or full rest, end_time is the end of this sequence.
csong@21 99 # end_time = sf
csong@21 100 # else:
csong@21 101 # end_time = note_indices[i+1]*sf/float(len(seq))
csong@1 102
csong@21 103 # duration = end_time - start_time
csong@21 104 # c_n = round_down_power_2(duration)
csong@21 105 # syncopation = syncopation + start(start_time,c_n) + end(end_time,c_n)
csong@21 106 # else:
csong@21 107 # print 'Error: KTH model can only deal with binary time-signature, e.g. 2/4 and 4/4. '
csong@21 108 # syncopation = None
csong@1 109
csong@21 110 # return syncopation