annotate data/model/test/TestFFTModel.h @ 1352:f98fde50570b 3.0-integration

Add checker README; rename plugin-checker-helper binary (back) to vamp-plugin-load-checker -- I decided it was more useful to have a distinctive name for the installed binary than it was important to show that it was plugin-agnostic
author Chris Cannam
date Mon, 09 Jan 2017 10:14:59 +0000
parents 457a1a619c5f
children 87ae75da6527
rev   line source
Chris@1086 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@1086 2
Chris@1086 3 /*
Chris@1086 4 Sonic Visualiser
Chris@1086 5 An audio file viewer and annotation editor.
Chris@1086 6 Centre for Digital Music, Queen Mary, University of London.
Chris@1086 7
Chris@1086 8 This program is free software; you can redistribute it and/or
Chris@1086 9 modify it under the terms of the GNU General Public License as
Chris@1086 10 published by the Free Software Foundation; either version 2 of the
Chris@1086 11 License, or (at your option) any later version. See the file
Chris@1086 12 COPYING included with this distribution for more information.
Chris@1086 13 */
Chris@1086 14
Chris@1086 15 #ifndef TEST_FFT_MODEL_H
Chris@1086 16 #define TEST_FFT_MODEL_H
Chris@1086 17
Chris@1086 18 #include "../FFTModel.h"
Chris@1086 19
Chris@1086 20 #include "MockWaveModel.h"
Chris@1086 21
Chris@1086 22 #include "Compares.h"
Chris@1086 23
Chris@1086 24 #include <QObject>
Chris@1086 25 #include <QtTest>
Chris@1086 26 #include <QDir>
Chris@1086 27
Chris@1086 28 #include <iostream>
Chris@1088 29 #include <complex>
Chris@1086 30
Chris@1086 31 using namespace std;
Chris@1086 32
Chris@1086 33 class TestFFTModel : public QObject
Chris@1086 34 {
Chris@1086 35 Q_OBJECT
Chris@1086 36
Chris@1088 37 private:
Chris@1088 38 void test(DenseTimeValueModel *model,
Chris@1088 39 WindowType window, int windowSize, int windowIncrement, int fftSize,
Chris@1088 40 int columnNo, vector<vector<complex<float>>> expectedValues,
Chris@1088 41 int expectedWidth) {
Chris@1088 42 for (int ch = 0; in_range_for(expectedValues, ch); ++ch) {
Chris@1091 43 FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize);
Chris@1091 44 QCOMPARE(fftm.getWidth(), expectedWidth);
Chris@1091 45 int hs1 = fftSize/2 + 1;
Chris@1091 46 QCOMPARE(fftm.getHeight(), hs1);
Chris@1091 47 vector<float> reals(hs1 + 1, 0.f);
Chris@1091 48 vector<float> imags(hs1 + 1, 0.f);
Chris@1091 49 reals[hs1] = 999.f; // overrun guards
Chris@1091 50 imags[hs1] = 999.f;
Chris@1099 51 for (int stepThrough = 0; stepThrough <= 1; ++stepThrough) {
Chris@1099 52 if (stepThrough) {
Chris@1099 53 // Read through the columns in order instead of
Chris@1099 54 // randomly accessing the one we want. This is to
Chris@1099 55 // exercise the case where the FFT model saves
Chris@1099 56 // part of each input frame and moves along by
Chris@1099 57 // only the non-overlapping distance
Chris@1099 58 for (int sc = 0; sc < columnNo; ++sc) {
Chris@1099 59 fftm.getValuesAt(sc, &reals[0], &imags[0]);
Chris@1088 60 }
Chris@1099 61 }
Chris@1088 62 fftm.getValuesAt(columnNo, &reals[0], &imags[0]);
Chris@1088 63 for (int i = 0; i < hs1; ++i) {
Chris@1088 64 float eRe = expectedValues[ch][i].real();
Chris@1088 65 float eIm = expectedValues[ch][i].imag();
Chris@1099 66 float thresh = 1e-5f;
Chris@1099 67 if (abs(reals[i] - eRe) > thresh ||
Chris@1099 68 abs(imags[i] - eIm) > thresh) {
Chris@1099 69 cerr << "ERROR: output is not as expected for column "
Chris@1099 70 << i << " in channel " << ch << " (stepThrough = "
Chris@1099 71 << stepThrough << ")" << endl;
Chris@1088 72 cerr << "expected : ";
Chris@1088 73 for (int j = 0; j < hs1; ++j) {
Chris@1088 74 cerr << expectedValues[ch][j] << " ";
Chris@1088 75 }
Chris@1088 76 cerr << "\nactual : ";
Chris@1088 77 for (int j = 0; j < hs1; ++j) {
Chris@1088 78 cerr << complex<float>(reals[j], imags[j]) << " ";
Chris@1088 79 }
Chris@1088 80 cerr << endl;
Chris@1088 81 }
Chris@1110 82 COMPARE_FUZZIER_F(reals[i], eRe);
Chris@1110 83 COMPARE_FUZZIER_F(imags[i], eIm);
Chris@1088 84 }
Chris@1088 85 QCOMPARE(reals[hs1], 999.f);
Chris@1088 86 QCOMPARE(imags[hs1], 999.f);
Chris@1088 87 }
Chris@1088 88 }
Chris@1088 89 }
Chris@1089 90
Chris@1086 91 private slots:
Chris@1086 92
Chris@1088 93 // NB. FFTModel columns are centred on the sample frame, and in
Chris@1088 94 // particular this means column 0 is centred at sample 0 (i.e. it
Chris@1088 95 // contains only half the window-size worth of real samples, the
Chris@1088 96 // others are 0-valued from before the origin). Generally in
Chris@1088 97 // these tests we are padding our signal with half a window of
Chris@1088 98 // zeros, in order that the result for column 0 is all zeros
Chris@1088 99 // (rather than something with a step in it that is harder to
Chris@1088 100 // reason about the FFT of) and the results for subsequent columns
Chris@1088 101 // are those of our expected signal.
Chris@1089 102
Chris@1088 103 void dc_simple_rect() {
Chris@1088 104 MockWaveModel mwm({ DC }, 16, 4);
Chris@1088 105 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1088 106 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 107 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1088 108 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
Chris@1088 109 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1088 110 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
Chris@1088 111 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 112 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 113 }
Chris@1088 114
Chris@1088 115 void dc_simple_hann() {
Chris@1088 116 // The Hann window function is a simple sinusoid with period
Chris@1088 117 // equal to twice the window size, and it halves the DC energy
Chris@1088 118 MockWaveModel mwm({ DC }, 16, 4);
Chris@1088 119 test(&mwm, HanningWindow, 8, 8, 8, 0,
Chris@1088 120 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 121 test(&mwm, HanningWindow, 8, 8, 8, 1,
Chris@1088 122 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1088 123 test(&mwm, HanningWindow, 8, 8, 8, 2,
Chris@1088 124 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1088 125 test(&mwm, HanningWindow, 8, 8, 8, 3,
Chris@1089 126 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 127 }
Chris@1088 128
Chris@1099 129 void dc_simple_hann_halfoverlap() {
Chris@1099 130 MockWaveModel mwm({ DC }, 16, 4);
Chris@1099 131 test(&mwm, HanningWindow, 8, 4, 8, 0,
Chris@1099 132 { { {}, {}, {}, {}, {} } }, 7);
Chris@1099 133 test(&mwm, HanningWindow, 8, 4, 8, 2,
Chris@1099 134 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
Chris@1099 135 test(&mwm, HanningWindow, 8, 4, 8, 3,
Chris@1099 136 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
Chris@1099 137 test(&mwm, HanningWindow, 8, 4, 8, 6,
Chris@1099 138 { { {}, {}, {}, {}, {} } }, 7);
Chris@1099 139 }
Chris@1099 140
Chris@1089 141 void sine_simple_rect() {
Chris@1089 142 MockWaveModel mwm({ Sine }, 16, 4);
Chris@1091 143 // Sine: output is purely imaginary. Note the sign is flipped
Chris@1091 144 // (normally the first half of the output would have negative
Chris@1091 145 // sign for a sine starting at 0) because the model does an
Chris@1091 146 // FFT shift to centre the phase
Chris@1089 147 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 148 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 149 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1089 150 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
Chris@1089 151 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1089 152 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
Chris@1089 153 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 154 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 155 }
Chris@1089 156
Chris@1089 157 void cosine_simple_rect() {
Chris@1089 158 MockWaveModel mwm({ Cosine }, 16, 4);
Chris@1091 159 // Cosine: output is purely real. Note the sign is flipped
Chris@1091 160 // because the model does an FFT shift to centre the phase
Chris@1089 161 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 162 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 163 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 164 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1089 165 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 166 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1089 167 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 168 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 169 }
Chris@1089 170
Chris@1104 171 void twochan_simple_rect() {
Chris@1104 172 MockWaveModel mwm({ Sine, Cosine }, 16, 4);
Chris@1104 173 // Test that the two channels are read and converted separately
Chris@1104 174 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1104 175 {
Chris@1104 176 { {}, {}, {}, {}, {} },
Chris@1104 177 { {}, {}, {}, {}, {} }
Chris@1104 178 }, 4);
Chris@1104 179 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1104 180 {
Chris@1104 181 { {}, { 0.f, 2.f }, {}, {}, {} },
Chris@1104 182 { {}, { -2.f, 0.f }, {}, {}, {} }
Chris@1104 183 }, 4);
Chris@1104 184 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1104 185 {
Chris@1104 186 { {}, { 0.f, 2.f }, {}, {}, {} },
Chris@1104 187 { {}, { -2.f, 0.f }, {}, {}, {} }
Chris@1104 188 }, 4);
Chris@1104 189 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1104 190 {
Chris@1104 191 { {}, {}, {}, {}, {} },
Chris@1104 192 { {}, {}, {}, {}, {} }
Chris@1104 193 }, 4);
Chris@1104 194 }
Chris@1104 195
Chris@1089 196 void nyquist_simple_rect() {
Chris@1089 197 MockWaveModel mwm({ Nyquist }, 16, 4);
Chris@1091 198 // Again, the sign is flipped. This has the same amount of
Chris@1091 199 // energy as the DC example
Chris@1089 200 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 201 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 202 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 203 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
Chris@1089 204 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 205 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
Chris@1089 206 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 207 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 208 }
Chris@1089 209
Chris@1089 210 void dirac_simple_rect() {
Chris@1089 211 MockWaveModel mwm({ Dirac }, 16, 4);
Chris@1091 212 // The window scales by 0.5 and some signs are flipped. Only
Chris@1091 213 // column 1 has any data (the single impulse).
Chris@1089 214 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 215 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 216 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 217 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4);
Chris@1089 218 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 219 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 220 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 221 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 222 }
Chris@1091 223
Chris@1091 224 void dirac_simple_rect_2() {
Chris@1091 225 MockWaveModel mwm({ Dirac }, 16, 8);
Chris@1091 226 // With 8 samples padding, the FFT shift places the first
Chris@1091 227 // Dirac impulse at the start of column 1, thus giving all
Chris@1091 228 // positive values
Chris@1091 229 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1091 230 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 231 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 232 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5);
Chris@1091 233 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 234 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 235 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1091 236 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 237 test(&mwm, RectangularWindow, 8, 8, 8, 4,
Chris@1091 238 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 239 }
Chris@1089 240
Chris@1099 241 void dirac_simple_rect_halfoverlap() {
Chris@1099 242 MockWaveModel mwm({ Dirac }, 16, 4);
Chris@1099 243 test(&mwm, RectangularWindow, 8, 4, 8, 0,
Chris@1099 244 { { {}, {}, {}, {}, {} } }, 7);
Chris@1099 245 test(&mwm, RectangularWindow, 8, 4, 8, 1,
Chris@1099 246 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
Chris@1099 247 test(&mwm, RectangularWindow, 8, 4, 8, 2,
Chris@1099 248 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
Chris@1099 249 test(&mwm, RectangularWindow, 8, 4, 8, 3,
Chris@1099 250 { { {}, {}, {}, {}, {} } }, 7);
Chris@1086 251 }
Chris@1086 252
Chris@1086 253 };
Chris@1086 254
Chris@1086 255 #endif