annotate data/model/test/TestFFTModel.h @ 1091:bdebff3265ae simple-fft-model

Simplest naive FFTModel implementation (+ fill in tests)
author Chris Cannam
date Fri, 12 Jun 2015 18:08:57 +0100
parents 655cd4e68e9a
children 0c351e061945
rev   line source
Chris@1086 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@1086 2
Chris@1086 3 /*
Chris@1086 4 Sonic Visualiser
Chris@1086 5 An audio file viewer and annotation editor.
Chris@1086 6 Centre for Digital Music, Queen Mary, University of London.
Chris@1086 7
Chris@1086 8 This program is free software; you can redistribute it and/or
Chris@1086 9 modify it under the terms of the GNU General Public License as
Chris@1086 10 published by the Free Software Foundation; either version 2 of the
Chris@1086 11 License, or (at your option) any later version. See the file
Chris@1086 12 COPYING included with this distribution for more information.
Chris@1086 13 */
Chris@1086 14
Chris@1086 15 #ifndef TEST_FFT_MODEL_H
Chris@1086 16 #define TEST_FFT_MODEL_H
Chris@1086 17
Chris@1086 18 #include "../FFTModel.h"
Chris@1086 19
Chris@1086 20 #include "MockWaveModel.h"
Chris@1086 21
Chris@1086 22 #include "Compares.h"
Chris@1086 23
Chris@1086 24 #include <QObject>
Chris@1086 25 #include <QtTest>
Chris@1086 26 #include <QDir>
Chris@1086 27
Chris@1086 28 #include <iostream>
Chris@1088 29 #include <complex>
Chris@1086 30
Chris@1086 31 using namespace std;
Chris@1086 32
Chris@1086 33 class TestFFTModel : public QObject
Chris@1086 34 {
Chris@1086 35 Q_OBJECT
Chris@1086 36
Chris@1088 37 private:
Chris@1088 38 void test(DenseTimeValueModel *model,
Chris@1088 39 WindowType window, int windowSize, int windowIncrement, int fftSize,
Chris@1088 40 int columnNo, vector<vector<complex<float>>> expectedValues,
Chris@1088 41 int expectedWidth) {
Chris@1088 42 for (int ch = 0; in_range_for(expectedValues, ch); ++ch) {
Chris@1091 43 FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize);
Chris@1091 44 QCOMPARE(fftm.getWidth(), expectedWidth);
Chris@1091 45 int hs1 = fftSize/2 + 1;
Chris@1091 46 QCOMPARE(fftm.getHeight(), hs1);
Chris@1091 47 vector<float> reals(hs1 + 1, 0.f);
Chris@1091 48 vector<float> imags(hs1 + 1, 0.f);
Chris@1091 49 reals[hs1] = 999.f; // overrun guards
Chris@1091 50 imags[hs1] = 999.f;
Chris@1091 51 fftm.getValuesAt(columnNo, &reals[0], &imags[0]);
Chris@1091 52 for (int i = 0; i < hs1; ++i) {
Chris@1091 53 float eRe = expectedValues[ch][i].real();
Chris@1091 54 float eIm = expectedValues[ch][i].imag();
Chris@1091 55 float thresh = 1e-5f;
Chris@1091 56 if (abs(reals[i] - eRe) > thresh ||
Chris@1091 57 abs(imags[i] - eIm) > thresh) {
Chris@1091 58 cerr << "ERROR: output is not as expected for column "
Chris@1091 59 << i << " in channel " << ch << endl;
Chris@1091 60 cerr << "expected : ";
Chris@1091 61 for (int j = 0; j < hs1; ++j) {
Chris@1091 62 cerr << expectedValues[ch][j] << " ";
Chris@1088 63 }
Chris@1091 64 cerr << "\nactual : ";
Chris@1091 65 for (int j = 0; j < hs1; ++j) {
Chris@1091 66 cerr << complex<float>(reals[j], imags[j]) << " ";
Chris@1091 67 }
Chris@1091 68 cerr << endl;
Chris@1088 69 }
Chris@1091 70 COMPARE_FUZZIER_F(reals[i], eRe);
Chris@1091 71 COMPARE_FUZZIER_F(imags[i], eIm);
Chris@1088 72 }
Chris@1091 73 QCOMPARE(reals[hs1], 999.f);
Chris@1091 74 QCOMPARE(imags[hs1], 999.f);
Chris@1088 75 }
Chris@1088 76 }
Chris@1089 77
Chris@1086 78 private slots:
Chris@1086 79
Chris@1088 80 // NB. FFTModel columns are centred on the sample frame, and in
Chris@1088 81 // particular this means column 0 is centred at sample 0 (i.e. it
Chris@1088 82 // contains only half the window-size worth of real samples, the
Chris@1088 83 // others are 0-valued from before the origin). Generally in
Chris@1088 84 // these tests we are padding our signal with half a window of
Chris@1088 85 // zeros, in order that the result for column 0 is all zeros
Chris@1088 86 // (rather than something with a step in it that is harder to
Chris@1088 87 // reason about the FFT of) and the results for subsequent columns
Chris@1088 88 // are those of our expected signal.
Chris@1089 89
Chris@1088 90 void dc_simple_rect() {
Chris@1088 91 MockWaveModel mwm({ DC }, 16, 4);
Chris@1088 92 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1088 93 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 94 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1088 95 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
Chris@1088 96 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1088 97 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
Chris@1088 98 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 99 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 100 }
Chris@1088 101
Chris@1088 102 void dc_simple_hann() {
Chris@1088 103 // The Hann window function is a simple sinusoid with period
Chris@1088 104 // equal to twice the window size, and it halves the DC energy
Chris@1088 105 MockWaveModel mwm({ DC }, 16, 4);
Chris@1088 106 test(&mwm, HanningWindow, 8, 8, 8, 0,
Chris@1088 107 { { {}, {}, {}, {}, {} } }, 4);
Chris@1088 108 test(&mwm, HanningWindow, 8, 8, 8, 1,
Chris@1088 109 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1088 110 test(&mwm, HanningWindow, 8, 8, 8, 2,
Chris@1088 111 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1088 112 test(&mwm, HanningWindow, 8, 8, 8, 3,
Chris@1089 113 { { {}, {}, {}, {}, {} } }, 4);
Chris@1086 114 }
Chris@1086 115
Chris@1089 116 void sine_simple_rect() {
Chris@1089 117 MockWaveModel mwm({ Sine }, 16, 4);
Chris@1091 118 // Sine: output is purely imaginary. Note the sign is flipped
Chris@1091 119 // (normally the first half of the output would have negative
Chris@1091 120 // sign for a sine starting at 0) because the model does an
Chris@1091 121 // FFT shift to centre the phase
Chris@1089 122 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 123 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 124 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1089 125 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
Chris@1089 126 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1089 127 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
Chris@1089 128 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 129 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 130 }
Chris@1089 131
Chris@1089 132 void cosine_simple_rect() {
Chris@1089 133 MockWaveModel mwm({ Cosine }, 16, 4);
Chris@1091 134 // Cosine: output is purely real. Note the sign is flipped
Chris@1091 135 // because the model does an FFT shift to centre the phase
Chris@1089 136 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 137 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 138 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 139 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1089 140 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 141 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
Chris@1089 142 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 143 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 144 }
Chris@1089 145
Chris@1089 146 void nyquist_simple_rect() {
Chris@1089 147 MockWaveModel mwm({ Nyquist }, 16, 4);
Chris@1091 148 // Again, the sign is flipped. This has the same amount of
Chris@1091 149 // energy as the DC example
Chris@1089 150 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 151 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 152 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 153 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
Chris@1089 154 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 155 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
Chris@1089 156 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 157 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 158 }
Chris@1089 159
Chris@1089 160 void dirac_simple_rect() {
Chris@1089 161 MockWaveModel mwm({ Dirac }, 16, 4);
Chris@1091 162 // The window scales by 0.5 and some signs are flipped. Only
Chris@1091 163 // column 1 has any data (the single impulse).
Chris@1089 164 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1089 165 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 166 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 167 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4);
Chris@1089 168 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 169 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 170 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1089 171 { { {}, {}, {}, {}, {} } }, 4);
Chris@1089 172 }
Chris@1091 173
Chris@1091 174 void dirac_simple_rect_2() {
Chris@1091 175 MockWaveModel mwm({ Dirac }, 16, 8);
Chris@1091 176 // With 8 samples padding, the FFT shift places the first
Chris@1091 177 // Dirac impulse at the start of column 1, thus giving all
Chris@1091 178 // positive values
Chris@1091 179 test(&mwm, RectangularWindow, 8, 8, 8, 0,
Chris@1091 180 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 181 test(&mwm, RectangularWindow, 8, 8, 8, 1,
Chris@1091 182 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5);
Chris@1091 183 test(&mwm, RectangularWindow, 8, 8, 8, 2,
Chris@1091 184 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 185 test(&mwm, RectangularWindow, 8, 8, 8, 3,
Chris@1091 186 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 187 test(&mwm, RectangularWindow, 8, 8, 8, 4,
Chris@1091 188 { { {}, {}, {}, {}, {} } }, 5);
Chris@1091 189 }
Chris@1089 190
Chris@1086 191 };
Chris@1086 192
Chris@1086 193 #endif