Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@297
|
18 #include "AggregateWaveModel.h"
|
Chris@152
|
19
|
Chris@183
|
20 #include "base/Profiler.h"
|
Chris@275
|
21 #include "base/Pitch.h"
|
Chris@183
|
22
|
Chris@402
|
23 #include <algorithm>
|
Chris@402
|
24
|
Chris@152
|
25 #include <cassert>
|
Chris@152
|
26
|
Chris@608
|
27 #ifndef __GNUC__
|
Chris@608
|
28 #include <alloca.h>
|
Chris@608
|
29 #endif
|
Chris@608
|
30
|
Chris@152
|
31 FFTModel::FFTModel(const DenseTimeValueModel *model,
|
Chris@152
|
32 int channel,
|
Chris@152
|
33 WindowType windowType,
|
Chris@152
|
34 size_t windowSize,
|
Chris@152
|
35 size_t windowIncrement,
|
Chris@152
|
36 size_t fftSize,
|
Chris@152
|
37 bool polar,
|
Chris@334
|
38 StorageAdviser::Criteria criteria,
|
Chris@152
|
39 size_t fillFromColumn) :
|
Chris@152
|
40 //!!! ZoomConstraint!
|
Chris@152
|
41 m_server(0),
|
Chris@152
|
42 m_xshift(0),
|
Chris@152
|
43 m_yshift(0)
|
Chris@152
|
44 {
|
Chris@297
|
45 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
|
Chris@297
|
46
|
Chris@297
|
47 m_server = getServer(model,
|
Chris@297
|
48 channel,
|
Chris@297
|
49 windowType,
|
Chris@297
|
50 windowSize,
|
Chris@297
|
51 windowIncrement,
|
Chris@297
|
52 fftSize,
|
Chris@297
|
53 polar,
|
Chris@334
|
54 criteria,
|
Chris@297
|
55 fillFromColumn);
|
Chris@152
|
56
|
Chris@200
|
57 if (!m_server) return; // caller should check isOK()
|
Chris@200
|
58
|
Chris@152
|
59 size_t xratio = windowIncrement / m_server->getWindowIncrement();
|
Chris@152
|
60 size_t yratio = m_server->getFFTSize() / fftSize;
|
Chris@152
|
61
|
Chris@152
|
62 while (xratio > 1) {
|
Chris@152
|
63 if (xratio & 0x1) {
|
Chris@843
|
64 cerr << "ERROR: FFTModel: Window increment ratio "
|
Chris@152
|
65 << windowIncrement << " / "
|
Chris@152
|
66 << m_server->getWindowIncrement()
|
Chris@843
|
67 << " must be a power of two" << endl;
|
Chris@152
|
68 assert(!(xratio & 0x1));
|
Chris@152
|
69 }
|
Chris@152
|
70 ++m_xshift;
|
Chris@152
|
71 xratio >>= 1;
|
Chris@152
|
72 }
|
Chris@152
|
73
|
Chris@152
|
74 while (yratio > 1) {
|
Chris@152
|
75 if (yratio & 0x1) {
|
Chris@843
|
76 cerr << "ERROR: FFTModel: FFT size ratio "
|
Chris@152
|
77 << m_server->getFFTSize() << " / " << fftSize
|
Chris@843
|
78 << " must be a power of two" << endl;
|
Chris@152
|
79 assert(!(yratio & 0x1));
|
Chris@152
|
80 }
|
Chris@152
|
81 ++m_yshift;
|
Chris@152
|
82 yratio >>= 1;
|
Chris@152
|
83 }
|
Chris@152
|
84 }
|
Chris@152
|
85
|
Chris@152
|
86 FFTModel::~FFTModel()
|
Chris@152
|
87 {
|
Chris@200
|
88 if (m_server) FFTDataServer::releaseInstance(m_server);
|
Chris@152
|
89 }
|
Chris@152
|
90
|
Chris@360
|
91 void
|
Chris@360
|
92 FFTModel::sourceModelAboutToBeDeleted()
|
Chris@360
|
93 {
|
Chris@360
|
94 if (m_sourceModel) {
|
Chris@843
|
95 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << endl;
|
Chris@362
|
96 if (m_server) {
|
Chris@362
|
97 FFTDataServer::releaseInstance(m_server);
|
Chris@362
|
98 m_server = 0;
|
Chris@362
|
99 }
|
Chris@360
|
100 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
|
Chris@360
|
101 }
|
Chris@360
|
102 }
|
Chris@360
|
103
|
Chris@297
|
104 FFTDataServer *
|
Chris@297
|
105 FFTModel::getServer(const DenseTimeValueModel *model,
|
Chris@297
|
106 int channel,
|
Chris@297
|
107 WindowType windowType,
|
Chris@297
|
108 size_t windowSize,
|
Chris@297
|
109 size_t windowIncrement,
|
Chris@297
|
110 size_t fftSize,
|
Chris@297
|
111 bool polar,
|
Chris@334
|
112 StorageAdviser::Criteria criteria,
|
Chris@297
|
113 size_t fillFromColumn)
|
Chris@297
|
114 {
|
Chris@297
|
115 // Obviously, an FFT model of channel C (where C != -1) of an
|
Chris@297
|
116 // aggregate model is the same as the FFT model of the appropriate
|
Chris@297
|
117 // channel of whichever model that aggregate channel is drawn
|
Chris@297
|
118 // from. We should use that model here, in case we already have
|
Chris@297
|
119 // the data for it or will be wanting the same data again later.
|
Chris@297
|
120
|
Chris@297
|
121 // If the channel is -1 (i.e. mixture of all channels), then we
|
Chris@297
|
122 // can't do this shortcut unless the aggregate model only has one
|
Chris@297
|
123 // channel or contains exactly all of the channels of a single
|
Chris@297
|
124 // other model. That isn't very likely -- if it were the case,
|
Chris@297
|
125 // why would we be using an aggregate model?
|
Chris@297
|
126
|
Chris@297
|
127 if (channel >= 0) {
|
Chris@297
|
128
|
Chris@297
|
129 const AggregateWaveModel *aggregate =
|
Chris@297
|
130 dynamic_cast<const AggregateWaveModel *>(model);
|
Chris@297
|
131
|
Chris@297
|
132 if (aggregate && channel < aggregate->getComponentCount()) {
|
Chris@297
|
133
|
Chris@297
|
134 AggregateWaveModel::ModelChannelSpec spec =
|
Chris@297
|
135 aggregate->getComponent(channel);
|
Chris@297
|
136
|
Chris@297
|
137 return getServer(spec.model,
|
Chris@297
|
138 spec.channel,
|
Chris@297
|
139 windowType,
|
Chris@297
|
140 windowSize,
|
Chris@297
|
141 windowIncrement,
|
Chris@297
|
142 fftSize,
|
Chris@297
|
143 polar,
|
Chris@334
|
144 criteria,
|
Chris@297
|
145 fillFromColumn);
|
Chris@297
|
146 }
|
Chris@297
|
147 }
|
Chris@297
|
148
|
Chris@297
|
149 // The normal case
|
Chris@297
|
150
|
Chris@297
|
151 return FFTDataServer::getFuzzyInstance(model,
|
Chris@297
|
152 channel,
|
Chris@297
|
153 windowType,
|
Chris@297
|
154 windowSize,
|
Chris@297
|
155 windowIncrement,
|
Chris@297
|
156 fftSize,
|
Chris@297
|
157 polar,
|
Chris@334
|
158 criteria,
|
Chris@297
|
159 fillFromColumn);
|
Chris@297
|
160 }
|
Chris@297
|
161
|
Chris@152
|
162 size_t
|
Chris@152
|
163 FFTModel::getSampleRate() const
|
Chris@152
|
164 {
|
Chris@152
|
165 return isOK() ? m_server->getModel()->getSampleRate() : 0;
|
Chris@152
|
166 }
|
Chris@152
|
167
|
Chris@533
|
168 FFTModel::Column
|
Chris@533
|
169 FFTModel::getColumn(size_t x) const
|
Chris@152
|
170 {
|
Chris@183
|
171 Profiler profiler("FFTModel::getColumn", false);
|
Chris@183
|
172
|
Chris@533
|
173 Column result;
|
Chris@533
|
174
|
Chris@152
|
175 result.clear();
|
Chris@408
|
176 size_t h = getHeight();
|
Chris@509
|
177 result.reserve(h);
|
Chris@408
|
178
|
Chris@608
|
179 #ifdef __GNUC__
|
Chris@408
|
180 float magnitudes[h];
|
Chris@608
|
181 #else
|
Chris@608
|
182 float *magnitudes = (float *)alloca(h * sizeof(float));
|
Chris@608
|
183 #endif
|
Chris@500
|
184
|
Chris@408
|
185 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
|
Chris@500
|
186
|
Chris@408
|
187 for (size_t y = 0; y < h; ++y) {
|
Chris@500
|
188 result.push_back(magnitudes[y]);
|
Chris@408
|
189 }
|
Chris@500
|
190
|
Chris@408
|
191 } else {
|
Chris@408
|
192 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
|
Chris@152
|
193 }
|
Chris@533
|
194
|
Chris@533
|
195 return result;
|
Chris@152
|
196 }
|
Chris@152
|
197
|
Chris@152
|
198 QString
|
Chris@152
|
199 FFTModel::getBinName(size_t n) const
|
Chris@152
|
200 {
|
Chris@152
|
201 size_t sr = getSampleRate();
|
Chris@152
|
202 if (!sr) return "";
|
Chris@204
|
203 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
|
Chris@152
|
204 return name;
|
Chris@152
|
205 }
|
Chris@152
|
206
|
Chris@275
|
207 bool
|
Chris@275
|
208 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
|
Chris@275
|
209 {
|
Chris@275
|
210 if (!isOK()) return false;
|
Chris@275
|
211
|
Chris@275
|
212 size_t sampleRate = m_server->getModel()->getSampleRate();
|
Chris@275
|
213
|
Chris@275
|
214 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
215 frequency = (float(y) * sampleRate) / fftSize;
|
Chris@275
|
216
|
Chris@275
|
217 if (x+1 >= getWidth()) return false;
|
Chris@275
|
218
|
Chris@275
|
219 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
220 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
221 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
222 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
223 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
224 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
225 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
226 // = 2pi * (h * b) / w.
|
Chris@275
|
227
|
Chris@275
|
228 float oldPhase = getPhaseAt(x, y);
|
Chris@275
|
229 float newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
230
|
Chris@275
|
231 size_t incr = getResolution();
|
Chris@275
|
232
|
Chris@275
|
233 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
|
Chris@275
|
234
|
Chris@275
|
235 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
236
|
Chris@275
|
237 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
|
Chris@275
|
238
|
Chris@275
|
239 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
240 // from assuming the "native" frequency of this bin
|
Chris@275
|
241
|
Chris@275
|
242 frequency =
|
Chris@275
|
243 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
|
Chris@275
|
244 (2 * M_PI * incr);
|
Chris@275
|
245
|
Chris@275
|
246 return true;
|
Chris@275
|
247 }
|
Chris@275
|
248
|
Chris@275
|
249 FFTModel::PeakLocationSet
|
Chris@275
|
250 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
|
Chris@275
|
251 {
|
Chris@551
|
252 Profiler profiler("FFTModel::getPeaks");
|
Chris@551
|
253
|
Chris@275
|
254 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
255 if (!isOK()) return peaks;
|
Chris@275
|
256
|
Chris@275
|
257 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
258 ymax = getHeight() - 1;
|
Chris@275
|
259 }
|
Chris@275
|
260
|
Chris@275
|
261 if (type == AllPeaks) {
|
Chris@551
|
262 int minbin = ymin;
|
Chris@551
|
263 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
264 int maxbin = ymax;
|
Chris@551
|
265 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
266 const int n = maxbin - minbin + 1;
|
Chris@608
|
267 #ifdef __GNUC__
|
Chris@551
|
268 float values[n];
|
Chris@608
|
269 #else
|
Chris@608
|
270 float *values = (float *)alloca(n * sizeof(float));
|
Chris@608
|
271 #endif
|
Chris@551
|
272 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@275
|
273 for (size_t bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
274 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
275 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
276 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
277 peaks.insert(bin);
|
Chris@275
|
278 }
|
Chris@275
|
279 }
|
Chris@275
|
280 return peaks;
|
Chris@275
|
281 }
|
Chris@275
|
282
|
Chris@551
|
283 Column values = getColumn(x);
|
Chris@275
|
284
|
Chris@500
|
285 float mean = 0.f;
|
Chris@551
|
286 for (int i = 0; i < values.size(); ++i) mean += values[i];
|
Chris@500
|
287 if (values.size() >0) mean /= values.size();
|
Chris@500
|
288
|
Chris@275
|
289 // For peak picking we use a moving median window, picking the
|
Chris@275
|
290 // highest value within each continuous region of values that
|
Chris@275
|
291 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
292 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
293
|
Chris@275
|
294 size_t sampleRate = getSampleRate();
|
Chris@275
|
295
|
Chris@275
|
296 std::deque<float> window;
|
Chris@275
|
297 std::vector<size_t> inrange;
|
Chris@280
|
298 float dist = 0.5;
|
Chris@500
|
299
|
Chris@280
|
300 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@275
|
301 size_t halfWin = medianWinSize/2;
|
Chris@275
|
302
|
Chris@275
|
303 size_t binmin;
|
Chris@275
|
304 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
305 else binmin = 0;
|
Chris@275
|
306
|
Chris@275
|
307 size_t binmax;
|
Chris@275
|
308 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
309 else binmax = values.size()-1;
|
Chris@275
|
310
|
Chris@500
|
311 size_t prevcentre = 0;
|
Chris@500
|
312
|
Chris@275
|
313 for (size_t bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
314
|
Chris@275
|
315 float value = values[bin];
|
Chris@275
|
316
|
Chris@275
|
317 window.push_back(value);
|
Chris@275
|
318
|
Chris@280
|
319 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
320 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
321 halfWin = medianWinSize/2;
|
Chris@275
|
322
|
Chris@500
|
323 while (window.size() > medianWinSize) {
|
Chris@500
|
324 window.pop_front();
|
Chris@500
|
325 }
|
Chris@500
|
326
|
Chris@500
|
327 size_t actualSize = window.size();
|
Chris@275
|
328
|
Chris@275
|
329 if (type == MajorPitchAdaptivePeaks) {
|
Chris@275
|
330 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
331 else binmax = values.size()-1;
|
Chris@275
|
332 }
|
Chris@275
|
333
|
Chris@275
|
334 std::deque<float> sorted(window);
|
Chris@275
|
335 std::sort(sorted.begin(), sorted.end());
|
Chris@280
|
336 float median = sorted[int(sorted.size() * dist)];
|
Chris@275
|
337
|
Chris@500
|
338 size_t centrebin = 0;
|
Chris@500
|
339 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
340
|
Chris@500
|
341 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
342
|
Chris@500
|
343 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
344
|
Chris@500
|
345 float centre = values[prevcentre];
|
Chris@500
|
346
|
Chris@500
|
347 if (centre > median) {
|
Chris@500
|
348 inrange.push_back(centrebin);
|
Chris@500
|
349 }
|
Chris@500
|
350
|
Chris@500
|
351 if (centre <= median || centrebin+1 == values.size()) {
|
Chris@500
|
352 if (!inrange.empty()) {
|
Chris@500
|
353 size_t peakbin = 0;
|
Chris@500
|
354 float peakval = 0.f;
|
Chris@500
|
355 for (size_t i = 0; i < inrange.size(); ++i) {
|
Chris@500
|
356 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
357 peakval = values[inrange[i]];
|
Chris@500
|
358 peakbin = inrange[i];
|
Chris@500
|
359 }
|
Chris@500
|
360 }
|
Chris@500
|
361 inrange.clear();
|
Chris@500
|
362 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
363 peaks.insert(peakbin);
|
Chris@275
|
364 }
|
Chris@275
|
365 }
|
Chris@275
|
366 }
|
Chris@500
|
367
|
Chris@500
|
368 if (bin == binmin) break;
|
Chris@275
|
369 }
|
Chris@275
|
370 }
|
Chris@275
|
371
|
Chris@275
|
372 return peaks;
|
Chris@275
|
373 }
|
Chris@275
|
374
|
Chris@275
|
375 size_t
|
Chris@280
|
376 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
|
Chris@280
|
377 size_t bin, float &percentile) const
|
Chris@275
|
378 {
|
Chris@280
|
379 percentile = 0.5;
|
Chris@275
|
380 if (type == MajorPeaks) return 10;
|
Chris@275
|
381 if (bin == 0) return 3;
|
Chris@280
|
382
|
Chris@275
|
383 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
384 float binfreq = (sampleRate * bin) / fftSize;
|
Chris@275
|
385 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
386
|
Chris@275
|
387 int hibin = lrintf((hifreq * fftSize) / sampleRate);
|
Chris@275
|
388 int medianWinSize = hibin - bin;
|
Chris@275
|
389 if (medianWinSize < 3) medianWinSize = 3;
|
Chris@280
|
390
|
Chris@280
|
391 percentile = 0.5 + (binfreq / sampleRate);
|
Chris@280
|
392
|
Chris@275
|
393 return medianWinSize;
|
Chris@275
|
394 }
|
Chris@275
|
395
|
Chris@275
|
396 FFTModel::PeakSet
|
Chris@275
|
397 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
|
Chris@275
|
398 size_t ymin, size_t ymax)
|
Chris@275
|
399 {
|
Chris@551
|
400 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
401
|
Chris@275
|
402 PeakSet peaks;
|
Chris@275
|
403 if (!isOK()) return peaks;
|
Chris@275
|
404 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
405
|
Chris@275
|
406 size_t sampleRate = getSampleRate();
|
Chris@275
|
407 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
408 size_t incr = getResolution();
|
Chris@275
|
409
|
Chris@275
|
410 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
411 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
412 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
413 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
414
|
Chris@275
|
415 std::vector<float> phases;
|
Chris@275
|
416 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
417 i != locations.end(); ++i) {
|
Chris@275
|
418 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
419 }
|
Chris@275
|
420
|
Chris@275
|
421 size_t phaseIndex = 0;
|
Chris@275
|
422 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
423 i != locations.end(); ++i) {
|
Chris@275
|
424 float oldPhase = phases[phaseIndex];
|
Chris@275
|
425 float newPhase = getPhaseAt(x+1, *i);
|
Chris@275
|
426 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
|
Chris@275
|
427 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
428 float frequency =
|
Chris@275
|
429 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
430 / (2 * M_PI * incr);
|
Chris@275
|
431 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
|
Chris@275
|
432 // if (stable)
|
Chris@275
|
433 peaks[*i] = frequency;
|
Chris@275
|
434 ++phaseIndex;
|
Chris@275
|
435 }
|
Chris@275
|
436
|
Chris@275
|
437 return peaks;
|
Chris@275
|
438 }
|
Chris@275
|
439
|
Chris@152
|
440 Model *
|
Chris@152
|
441 FFTModel::clone() const
|
Chris@152
|
442 {
|
Chris@152
|
443 return new FFTModel(*this);
|
Chris@152
|
444 }
|
Chris@152
|
445
|
Chris@152
|
446 FFTModel::FFTModel(const FFTModel &model) :
|
Chris@152
|
447 DenseThreeDimensionalModel(),
|
Chris@152
|
448 m_server(model.m_server),
|
Chris@152
|
449 m_xshift(model.m_xshift),
|
Chris@152
|
450 m_yshift(model.m_yshift)
|
Chris@152
|
451 {
|
Chris@152
|
452 FFTDataServer::claimInstance(m_server);
|
Chris@152
|
453 }
|
Chris@152
|
454
|