annotate data/model/FFTModel.cpp @ 401:d030801113b6

* Add ability to load playlists from a FileSource (used by runner)
author Chris Cannam
date Mon, 07 Apr 2008 16:55:21 +0000
parents cc4eb32efc6c
children 7e1b7fcb6c00
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@297 18 #include "AggregateWaveModel.h"
Chris@152 19
Chris@183 20 #include "base/Profiler.h"
Chris@275 21 #include "base/Pitch.h"
Chris@183 22
Chris@152 23 #include <cassert>
Chris@152 24
Chris@152 25 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 26 int channel,
Chris@152 27 WindowType windowType,
Chris@152 28 size_t windowSize,
Chris@152 29 size_t windowIncrement,
Chris@152 30 size_t fftSize,
Chris@152 31 bool polar,
Chris@334 32 StorageAdviser::Criteria criteria,
Chris@152 33 size_t fillFromColumn) :
Chris@152 34 //!!! ZoomConstraint!
Chris@152 35 m_server(0),
Chris@152 36 m_xshift(0),
Chris@152 37 m_yshift(0)
Chris@152 38 {
Chris@297 39 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
Chris@297 40
Chris@297 41 m_server = getServer(model,
Chris@297 42 channel,
Chris@297 43 windowType,
Chris@297 44 windowSize,
Chris@297 45 windowIncrement,
Chris@297 46 fftSize,
Chris@297 47 polar,
Chris@334 48 criteria,
Chris@297 49 fillFromColumn);
Chris@152 50
Chris@200 51 if (!m_server) return; // caller should check isOK()
Chris@200 52
Chris@152 53 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 54 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 55
Chris@152 56 while (xratio > 1) {
Chris@152 57 if (xratio & 0x1) {
Chris@152 58 std::cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 59 << windowIncrement << " / "
Chris@152 60 << m_server->getWindowIncrement()
Chris@152 61 << " must be a power of two" << std::endl;
Chris@152 62 assert(!(xratio & 0x1));
Chris@152 63 }
Chris@152 64 ++m_xshift;
Chris@152 65 xratio >>= 1;
Chris@152 66 }
Chris@152 67
Chris@152 68 while (yratio > 1) {
Chris@152 69 if (yratio & 0x1) {
Chris@152 70 std::cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 71 << m_server->getFFTSize() << " / " << fftSize
Chris@152 72 << " must be a power of two" << std::endl;
Chris@152 73 assert(!(yratio & 0x1));
Chris@152 74 }
Chris@152 75 ++m_yshift;
Chris@152 76 yratio >>= 1;
Chris@152 77 }
Chris@152 78 }
Chris@152 79
Chris@152 80 FFTModel::~FFTModel()
Chris@152 81 {
Chris@200 82 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 83 }
Chris@152 84
Chris@360 85 void
Chris@360 86 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 87 {
Chris@360 88 if (m_sourceModel) {
Chris@362 89 std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl;
Chris@362 90 if (m_server) {
Chris@362 91 FFTDataServer::releaseInstance(m_server);
Chris@362 92 m_server = 0;
Chris@362 93 }
Chris@360 94 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
Chris@360 95 }
Chris@360 96 }
Chris@360 97
Chris@297 98 FFTDataServer *
Chris@297 99 FFTModel::getServer(const DenseTimeValueModel *model,
Chris@297 100 int channel,
Chris@297 101 WindowType windowType,
Chris@297 102 size_t windowSize,
Chris@297 103 size_t windowIncrement,
Chris@297 104 size_t fftSize,
Chris@297 105 bool polar,
Chris@334 106 StorageAdviser::Criteria criteria,
Chris@297 107 size_t fillFromColumn)
Chris@297 108 {
Chris@297 109 // Obviously, an FFT model of channel C (where C != -1) of an
Chris@297 110 // aggregate model is the same as the FFT model of the appropriate
Chris@297 111 // channel of whichever model that aggregate channel is drawn
Chris@297 112 // from. We should use that model here, in case we already have
Chris@297 113 // the data for it or will be wanting the same data again later.
Chris@297 114
Chris@297 115 // If the channel is -1 (i.e. mixture of all channels), then we
Chris@297 116 // can't do this shortcut unless the aggregate model only has one
Chris@297 117 // channel or contains exactly all of the channels of a single
Chris@297 118 // other model. That isn't very likely -- if it were the case,
Chris@297 119 // why would we be using an aggregate model?
Chris@297 120
Chris@297 121 if (channel >= 0) {
Chris@297 122
Chris@297 123 const AggregateWaveModel *aggregate =
Chris@297 124 dynamic_cast<const AggregateWaveModel *>(model);
Chris@297 125
Chris@297 126 if (aggregate && channel < aggregate->getComponentCount()) {
Chris@297 127
Chris@297 128 AggregateWaveModel::ModelChannelSpec spec =
Chris@297 129 aggregate->getComponent(channel);
Chris@297 130
Chris@297 131 return getServer(spec.model,
Chris@297 132 spec.channel,
Chris@297 133 windowType,
Chris@297 134 windowSize,
Chris@297 135 windowIncrement,
Chris@297 136 fftSize,
Chris@297 137 polar,
Chris@334 138 criteria,
Chris@297 139 fillFromColumn);
Chris@297 140 }
Chris@297 141 }
Chris@297 142
Chris@297 143 // The normal case
Chris@297 144
Chris@297 145 return FFTDataServer::getFuzzyInstance(model,
Chris@297 146 channel,
Chris@297 147 windowType,
Chris@297 148 windowSize,
Chris@297 149 windowIncrement,
Chris@297 150 fftSize,
Chris@297 151 polar,
Chris@334 152 criteria,
Chris@297 153 fillFromColumn);
Chris@297 154 }
Chris@297 155
Chris@152 156 size_t
Chris@152 157 FFTModel::getSampleRate() const
Chris@152 158 {
Chris@152 159 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 160 }
Chris@152 161
Chris@152 162 void
Chris@182 163 FFTModel::getColumn(size_t x, Column &result) const
Chris@152 164 {
Chris@183 165 Profiler profiler("FFTModel::getColumn", false);
Chris@183 166
Chris@152 167 result.clear();
Chris@152 168 size_t height(getHeight());
Chris@152 169 for (size_t y = 0; y < height; ++y) {
Chris@152 170 result.push_back(const_cast<FFTModel *>(this)->getMagnitudeAt(x, y));
Chris@152 171 }
Chris@152 172 }
Chris@152 173
Chris@152 174 QString
Chris@152 175 FFTModel::getBinName(size_t n) const
Chris@152 176 {
Chris@152 177 size_t sr = getSampleRate();
Chris@152 178 if (!sr) return "";
Chris@204 179 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 180 return name;
Chris@152 181 }
Chris@152 182
Chris@275 183 bool
Chris@275 184 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 185 {
Chris@275 186 if (!isOK()) return false;
Chris@275 187
Chris@275 188 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 189
Chris@275 190 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 191 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 192
Chris@275 193 if (x+1 >= getWidth()) return false;
Chris@275 194
Chris@275 195 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 196 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 197 // At window size w, for bin b, f is b*sr/w.
Chris@275 198 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 199 // We need to know what phase shift we expect from h/sr sec.
Chris@275 200 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 201 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 202 // = 2pi * (h * b) / w.
Chris@275 203
Chris@275 204 float oldPhase = getPhaseAt(x, y);
Chris@275 205 float newPhase = getPhaseAt(x+1, y);
Chris@275 206
Chris@275 207 size_t incr = getResolution();
Chris@275 208
Chris@275 209 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 210
Chris@275 211 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 212
Chris@275 213 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 214
Chris@275 215 // The new frequency estimate based on the phase error resulting
Chris@275 216 // from assuming the "native" frequency of this bin
Chris@275 217
Chris@275 218 frequency =
Chris@275 219 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 220 (2 * M_PI * incr);
Chris@275 221
Chris@275 222 return true;
Chris@275 223 }
Chris@275 224
Chris@275 225 FFTModel::PeakLocationSet
Chris@275 226 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 227 {
Chris@275 228 FFTModel::PeakLocationSet peaks;
Chris@275 229 if (!isOK()) return peaks;
Chris@275 230
Chris@275 231 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 232 ymax = getHeight() - 1;
Chris@275 233 }
Chris@275 234
Chris@275 235 Column values;
Chris@275 236
Chris@275 237 if (type == AllPeaks) {
Chris@275 238 for (size_t y = ymin; y <= ymax; ++y) {
Chris@275 239 values.push_back(getMagnitudeAt(x, y));
Chris@275 240 }
Chris@275 241 size_t i = 0;
Chris@275 242 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@275 243 if ((i == 0 || values[i] > values[i-1]) &&
Chris@275 244 (i == values.size()-1 || values[i] >= values[i+1])) {
Chris@275 245 peaks.insert(bin);
Chris@275 246 }
Chris@275 247 ++i;
Chris@275 248 }
Chris@275 249 return peaks;
Chris@275 250 }
Chris@275 251
Chris@275 252 getColumn(x, values);
Chris@275 253
Chris@275 254 // For peak picking we use a moving median window, picking the
Chris@275 255 // highest value within each continuous region of values that
Chris@275 256 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 257 // size to a roughly constant pitch range (about four tones).
Chris@275 258
Chris@275 259 size_t sampleRate = getSampleRate();
Chris@275 260
Chris@275 261 std::deque<float> window;
Chris@275 262 std::vector<size_t> inrange;
Chris@280 263 float dist = 0.5;
Chris@280 264 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 265 size_t halfWin = medianWinSize/2;
Chris@275 266
Chris@275 267 size_t binmin;
Chris@275 268 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 269 else binmin = 0;
Chris@275 270
Chris@275 271 size_t binmax;
Chris@275 272 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 273 else binmax = values.size()-1;
Chris@275 274
Chris@275 275 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 276
Chris@275 277 float value = values[bin];
Chris@275 278
Chris@275 279 window.push_back(value);
Chris@275 280
Chris@280 281 // so-called median will actually be the dist*100'th percentile
Chris@280 282 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 283 halfWin = medianWinSize/2;
Chris@275 284
Chris@275 285 while (window.size() > medianWinSize) window.pop_front();
Chris@275 286
Chris@275 287 if (type == MajorPitchAdaptivePeaks) {
Chris@275 288 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 289 else binmax = values.size()-1;
Chris@275 290 }
Chris@275 291
Chris@275 292 std::deque<float> sorted(window);
Chris@275 293 std::sort(sorted.begin(), sorted.end());
Chris@280 294 float median = sorted[int(sorted.size() * dist)];
Chris@275 295
Chris@275 296 if (value > median) {
Chris@275 297 inrange.push_back(bin);
Chris@275 298 }
Chris@275 299
Chris@275 300 if (value <= median || bin+1 == values.size()) {
Chris@275 301 size_t peakbin = 0;
Chris@275 302 float peakval = 0.f;
Chris@275 303 if (!inrange.empty()) {
Chris@275 304 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@275 305 if (i == 0 || values[inrange[i]] > peakval) {
Chris@275 306 peakval = values[inrange[i]];
Chris@275 307 peakbin = inrange[i];
Chris@275 308 }
Chris@275 309 }
Chris@275 310 inrange.clear();
Chris@275 311 if (peakbin >= ymin && peakbin <= ymax) {
Chris@275 312 peaks.insert(peakbin);
Chris@275 313 }
Chris@275 314 }
Chris@275 315 }
Chris@275 316 }
Chris@275 317
Chris@275 318 return peaks;
Chris@275 319 }
Chris@275 320
Chris@275 321 size_t
Chris@280 322 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 323 size_t bin, float &percentile) const
Chris@275 324 {
Chris@280 325 percentile = 0.5;
Chris@275 326 if (type == MajorPeaks) return 10;
Chris@275 327 if (bin == 0) return 3;
Chris@280 328
Chris@275 329 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 330 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 331 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 332
Chris@275 333 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 334 int medianWinSize = hibin - bin;
Chris@275 335 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 336
Chris@280 337 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 338
Chris@275 339 return medianWinSize;
Chris@275 340 }
Chris@275 341
Chris@275 342 FFTModel::PeakSet
Chris@275 343 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 344 size_t ymin, size_t ymax)
Chris@275 345 {
Chris@275 346 PeakSet peaks;
Chris@275 347 if (!isOK()) return peaks;
Chris@275 348 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 349
Chris@275 350 size_t sampleRate = getSampleRate();
Chris@275 351 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 352 size_t incr = getResolution();
Chris@275 353
Chris@275 354 // This duplicates some of the work of estimateStableFrequency to
Chris@275 355 // allow us to retrieve the phases in two separate vertical
Chris@275 356 // columns, instead of jumping back and forth between columns x and
Chris@275 357 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 358
Chris@275 359 std::vector<float> phases;
Chris@275 360 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 361 i != locations.end(); ++i) {
Chris@275 362 phases.push_back(getPhaseAt(x, *i));
Chris@275 363 }
Chris@275 364
Chris@275 365 size_t phaseIndex = 0;
Chris@275 366 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 367 i != locations.end(); ++i) {
Chris@275 368 float oldPhase = phases[phaseIndex];
Chris@275 369 float newPhase = getPhaseAt(x+1, *i);
Chris@275 370 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 371 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 372 float frequency =
Chris@275 373 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 374 / (2 * M_PI * incr);
Chris@275 375 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 376 // if (stable)
Chris@275 377 peaks[*i] = frequency;
Chris@275 378 ++phaseIndex;
Chris@275 379 }
Chris@275 380
Chris@275 381 return peaks;
Chris@275 382 }
Chris@275 383
Chris@152 384 Model *
Chris@152 385 FFTModel::clone() const
Chris@152 386 {
Chris@152 387 return new FFTModel(*this);
Chris@152 388 }
Chris@152 389
Chris@152 390 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 391 DenseThreeDimensionalModel(),
Chris@152 392 m_server(model.m_server),
Chris@152 393 m_xshift(model.m_xshift),
Chris@152 394 m_yshift(model.m_yshift)
Chris@152 395 {
Chris@152 396 FFTDataServer::claimInstance(m_server);
Chris@152 397 }
Chris@152 398