Chris@1086
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@1086
|
2
|
Chris@1086
|
3 /*
|
Chris@1086
|
4 Sonic Visualiser
|
Chris@1086
|
5 An audio file viewer and annotation editor.
|
Chris@1086
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@1086
|
7
|
Chris@1086
|
8 This program is free software; you can redistribute it and/or
|
Chris@1086
|
9 modify it under the terms of the GNU General Public License as
|
Chris@1086
|
10 published by the Free Software Foundation; either version 2 of the
|
Chris@1086
|
11 License, or (at your option) any later version. See the file
|
Chris@1086
|
12 COPYING included with this distribution for more information.
|
Chris@1086
|
13 */
|
Chris@1086
|
14
|
Chris@1086
|
15 #ifndef TEST_FFT_MODEL_H
|
Chris@1086
|
16 #define TEST_FFT_MODEL_H
|
Chris@1086
|
17
|
Chris@1086
|
18 #include "../FFTModel.h"
|
Chris@1086
|
19
|
Chris@1086
|
20 #include "MockWaveModel.h"
|
Chris@1086
|
21
|
Chris@1086
|
22 #include "Compares.h"
|
Chris@1086
|
23
|
Chris@1086
|
24 #include <QObject>
|
Chris@1086
|
25 #include <QtTest>
|
Chris@1086
|
26 #include <QDir>
|
Chris@1086
|
27
|
Chris@1086
|
28 #include <iostream>
|
Chris@1088
|
29 #include <complex>
|
Chris@1086
|
30
|
Chris@1086
|
31 using namespace std;
|
Chris@1086
|
32
|
Chris@1086
|
33 class TestFFTModel : public QObject
|
Chris@1086
|
34 {
|
Chris@1086
|
35 Q_OBJECT
|
Chris@1086
|
36
|
Chris@1088
|
37 private:
|
Chris@1088
|
38 void test(DenseTimeValueModel *model,
|
Chris@1088
|
39 WindowType window, int windowSize, int windowIncrement, int fftSize,
|
Chris@1088
|
40 int columnNo, vector<vector<complex<float>>> expectedValues,
|
Chris@1088
|
41 int expectedWidth) {
|
Chris@1088
|
42 for (int ch = 0; in_range_for(expectedValues, ch); ++ch) {
|
Chris@1091
|
43 FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize);
|
Chris@1091
|
44 QCOMPARE(fftm.getWidth(), expectedWidth);
|
Chris@1091
|
45 int hs1 = fftSize/2 + 1;
|
Chris@1091
|
46 QCOMPARE(fftm.getHeight(), hs1);
|
Chris@1091
|
47 vector<float> reals(hs1 + 1, 0.f);
|
Chris@1091
|
48 vector<float> imags(hs1 + 1, 0.f);
|
Chris@1091
|
49 reals[hs1] = 999.f; // overrun guards
|
Chris@1091
|
50 imags[hs1] = 999.f;
|
Chris@1091
|
51 fftm.getValuesAt(columnNo, &reals[0], &imags[0]);
|
Chris@1091
|
52 for (int i = 0; i < hs1; ++i) {
|
Chris@1091
|
53 float eRe = expectedValues[ch][i].real();
|
Chris@1091
|
54 float eIm = expectedValues[ch][i].imag();
|
Chris@1091
|
55 float thresh = 1e-5f;
|
Chris@1091
|
56 if (abs(reals[i] - eRe) > thresh ||
|
Chris@1091
|
57 abs(imags[i] - eIm) > thresh) {
|
Chris@1091
|
58 cerr << "ERROR: output is not as expected for column "
|
Chris@1091
|
59 << i << " in channel " << ch << endl;
|
Chris@1091
|
60 cerr << "expected : ";
|
Chris@1091
|
61 for (int j = 0; j < hs1; ++j) {
|
Chris@1091
|
62 cerr << expectedValues[ch][j] << " ";
|
Chris@1088
|
63 }
|
Chris@1091
|
64 cerr << "\nactual : ";
|
Chris@1091
|
65 for (int j = 0; j < hs1; ++j) {
|
Chris@1091
|
66 cerr << complex<float>(reals[j], imags[j]) << " ";
|
Chris@1091
|
67 }
|
Chris@1091
|
68 cerr << endl;
|
Chris@1088
|
69 }
|
Chris@1091
|
70 COMPARE_FUZZIER_F(reals[i], eRe);
|
Chris@1091
|
71 COMPARE_FUZZIER_F(imags[i], eIm);
|
Chris@1088
|
72 }
|
Chris@1091
|
73 QCOMPARE(reals[hs1], 999.f);
|
Chris@1091
|
74 QCOMPARE(imags[hs1], 999.f);
|
Chris@1088
|
75 }
|
Chris@1088
|
76 }
|
Chris@1089
|
77
|
Chris@1086
|
78 private slots:
|
Chris@1086
|
79
|
Chris@1088
|
80 // NB. FFTModel columns are centred on the sample frame, and in
|
Chris@1088
|
81 // particular this means column 0 is centred at sample 0 (i.e. it
|
Chris@1088
|
82 // contains only half the window-size worth of real samples, the
|
Chris@1088
|
83 // others are 0-valued from before the origin). Generally in
|
Chris@1088
|
84 // these tests we are padding our signal with half a window of
|
Chris@1088
|
85 // zeros, in order that the result for column 0 is all zeros
|
Chris@1088
|
86 // (rather than something with a step in it that is harder to
|
Chris@1088
|
87 // reason about the FFT of) and the results for subsequent columns
|
Chris@1088
|
88 // are those of our expected signal.
|
Chris@1089
|
89
|
Chris@1088
|
90 void dc_simple_rect() {
|
Chris@1088
|
91 MockWaveModel mwm({ DC }, 16, 4);
|
Chris@1088
|
92 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1088
|
93 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
94 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1088
|
95 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
96 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1088
|
97 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
98 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
99 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
100 }
|
Chris@1088
|
101
|
Chris@1088
|
102 void dc_simple_hann() {
|
Chris@1088
|
103 // The Hann window function is a simple sinusoid with period
|
Chris@1088
|
104 // equal to twice the window size, and it halves the DC energy
|
Chris@1088
|
105 MockWaveModel mwm({ DC }, 16, 4);
|
Chris@1088
|
106 test(&mwm, HanningWindow, 8, 8, 8, 0,
|
Chris@1088
|
107 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
108 test(&mwm, HanningWindow, 8, 8, 8, 1,
|
Chris@1088
|
109 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1088
|
110 test(&mwm, HanningWindow, 8, 8, 8, 2,
|
Chris@1088
|
111 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1088
|
112 test(&mwm, HanningWindow, 8, 8, 8, 3,
|
Chris@1089
|
113 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1086
|
114 }
|
Chris@1086
|
115
|
Chris@1089
|
116 void sine_simple_rect() {
|
Chris@1089
|
117 MockWaveModel mwm({ Sine }, 16, 4);
|
Chris@1091
|
118 // Sine: output is purely imaginary. Note the sign is flipped
|
Chris@1091
|
119 // (normally the first half of the output would have negative
|
Chris@1091
|
120 // sign for a sine starting at 0) because the model does an
|
Chris@1091
|
121 // FFT shift to centre the phase
|
Chris@1089
|
122 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
123 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
124 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1089
|
125 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
126 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1089
|
127 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
128 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
129 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
130 }
|
Chris@1089
|
131
|
Chris@1089
|
132 void cosine_simple_rect() {
|
Chris@1089
|
133 MockWaveModel mwm({ Cosine }, 16, 4);
|
Chris@1091
|
134 // Cosine: output is purely real. Note the sign is flipped
|
Chris@1091
|
135 // because the model does an FFT shift to centre the phase
|
Chris@1089
|
136 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
137 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
138 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
139 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
140 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
141 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
142 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
143 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
144 }
|
Chris@1089
|
145
|
Chris@1089
|
146 void nyquist_simple_rect() {
|
Chris@1089
|
147 MockWaveModel mwm({ Nyquist }, 16, 4);
|
Chris@1091
|
148 // Again, the sign is flipped. This has the same amount of
|
Chris@1091
|
149 // energy as the DC example
|
Chris@1089
|
150 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
151 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
152 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
153 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1089
|
154 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
155 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1089
|
156 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
157 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
158 }
|
Chris@1089
|
159
|
Chris@1089
|
160 void dirac_simple_rect() {
|
Chris@1089
|
161 MockWaveModel mwm({ Dirac }, 16, 4);
|
Chris@1091
|
162 // The window scales by 0.5 and some signs are flipped. Only
|
Chris@1091
|
163 // column 1 has any data (the single impulse).
|
Chris@1089
|
164 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
165 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
166 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
167 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4);
|
Chris@1089
|
168 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
169 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
170 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
171 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
172 }
|
Chris@1091
|
173
|
Chris@1091
|
174 void dirac_simple_rect_2() {
|
Chris@1091
|
175 MockWaveModel mwm({ Dirac }, 16, 8);
|
Chris@1091
|
176 // With 8 samples padding, the FFT shift places the first
|
Chris@1091
|
177 // Dirac impulse at the start of column 1, thus giving all
|
Chris@1091
|
178 // positive values
|
Chris@1091
|
179 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1091
|
180 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
181 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
182 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5);
|
Chris@1091
|
183 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
184 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
185 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1091
|
186 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
187 test(&mwm, RectangularWindow, 8, 8, 8, 4,
|
Chris@1091
|
188 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
189 }
|
Chris@1089
|
190
|
Chris@1086
|
191 };
|
Chris@1086
|
192
|
Chris@1086
|
193 #endif
|