Chris@1086
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@1086
|
2
|
Chris@1086
|
3 /*
|
Chris@1086
|
4 Sonic Visualiser
|
Chris@1086
|
5 An audio file viewer and annotation editor.
|
Chris@1086
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@1086
|
7
|
Chris@1086
|
8 This program is free software; you can redistribute it and/or
|
Chris@1086
|
9 modify it under the terms of the GNU General Public License as
|
Chris@1086
|
10 published by the Free Software Foundation; either version 2 of the
|
Chris@1086
|
11 License, or (at your option) any later version. See the file
|
Chris@1086
|
12 COPYING included with this distribution for more information.
|
Chris@1086
|
13 */
|
Chris@1086
|
14
|
Chris@1086
|
15 #ifndef TEST_FFT_MODEL_H
|
Chris@1086
|
16 #define TEST_FFT_MODEL_H
|
Chris@1086
|
17
|
Chris@1086
|
18 #include "../FFTModel.h"
|
Chris@1086
|
19
|
Chris@1086
|
20 #include "MockWaveModel.h"
|
Chris@1086
|
21
|
Chris@1086
|
22 #include "Compares.h"
|
Chris@1086
|
23
|
Chris@1086
|
24 #include <QObject>
|
Chris@1086
|
25 #include <QtTest>
|
Chris@1086
|
26 #include <QDir>
|
Chris@1086
|
27
|
Chris@1086
|
28 #include <iostream>
|
Chris@1088
|
29 #include <complex>
|
Chris@1086
|
30
|
Chris@1086
|
31 using namespace std;
|
Chris@1086
|
32
|
Chris@1086
|
33 class TestFFTModel : public QObject
|
Chris@1086
|
34 {
|
Chris@1086
|
35 Q_OBJECT
|
Chris@1086
|
36
|
Chris@1088
|
37 private:
|
Chris@1744
|
38 void test(ModelId model, // a DenseTimeValueModel
|
Chris@1088
|
39 WindowType window, int windowSize, int windowIncrement, int fftSize,
|
Chris@1088
|
40 int columnNo, vector<vector<complex<float>>> expectedValues,
|
Chris@1088
|
41 int expectedWidth) {
|
Chris@1088
|
42 for (int ch = 0; in_range_for(expectedValues, ch); ++ch) {
|
Chris@1091
|
43 FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize);
|
Chris@1091
|
44 QCOMPARE(fftm.getWidth(), expectedWidth);
|
Chris@1091
|
45 int hs1 = fftSize/2 + 1;
|
Chris@1091
|
46 QCOMPARE(fftm.getHeight(), hs1);
|
Chris@1091
|
47 vector<float> reals(hs1 + 1, 0.f);
|
Chris@1091
|
48 vector<float> imags(hs1 + 1, 0.f);
|
Chris@1091
|
49 reals[hs1] = 999.f; // overrun guards
|
Chris@1091
|
50 imags[hs1] = 999.f;
|
Chris@1099
|
51 for (int stepThrough = 0; stepThrough <= 1; ++stepThrough) {
|
Chris@1099
|
52 if (stepThrough) {
|
Chris@1099
|
53 // Read through the columns in order instead of
|
Chris@1099
|
54 // randomly accessing the one we want. This is to
|
Chris@1099
|
55 // exercise the case where the FFT model saves
|
Chris@1099
|
56 // part of each input frame and moves along by
|
Chris@1099
|
57 // only the non-overlapping distance
|
Chris@1099
|
58 for (int sc = 0; sc < columnNo; ++sc) {
|
Chris@1099
|
59 fftm.getValuesAt(sc, &reals[0], &imags[0]);
|
Chris@1088
|
60 }
|
Chris@1099
|
61 }
|
Chris@1088
|
62 fftm.getValuesAt(columnNo, &reals[0], &imags[0]);
|
Chris@1088
|
63 for (int i = 0; i < hs1; ++i) {
|
Chris@1088
|
64 float eRe = expectedValues[ch][i].real();
|
Chris@1088
|
65 float eIm = expectedValues[ch][i].imag();
|
Chris@1099
|
66 float thresh = 1e-5f;
|
Chris@1099
|
67 if (abs(reals[i] - eRe) > thresh ||
|
Chris@1099
|
68 abs(imags[i] - eIm) > thresh) {
|
Chris@1428
|
69 SVCERR << "ERROR: output is not as expected for column "
|
Chris@1099
|
70 << i << " in channel " << ch << " (stepThrough = "
|
Chris@1099
|
71 << stepThrough << ")" << endl;
|
Chris@1428
|
72 SVCERR << "expected : ";
|
Chris@1088
|
73 for (int j = 0; j < hs1; ++j) {
|
Chris@1428
|
74 SVCERR << expectedValues[ch][j] << " ";
|
Chris@1088
|
75 }
|
Chris@1428
|
76 SVCERR << "\nactual : ";
|
Chris@1088
|
77 for (int j = 0; j < hs1; ++j) {
|
Chris@1428
|
78 SVCERR << complex<float>(reals[j], imags[j]) << " ";
|
Chris@1088
|
79 }
|
Chris@1428
|
80 SVCERR << endl;
|
Chris@1088
|
81 }
|
Chris@1110
|
82 COMPARE_FUZZIER_F(reals[i], eRe);
|
Chris@1110
|
83 COMPARE_FUZZIER_F(imags[i], eIm);
|
Chris@1088
|
84 }
|
Chris@1088
|
85 QCOMPARE(reals[hs1], 999.f);
|
Chris@1088
|
86 QCOMPARE(imags[hs1], 999.f);
|
Chris@1088
|
87 }
|
Chris@1088
|
88 }
|
Chris@1088
|
89 }
|
Chris@1089
|
90
|
Chris@1744
|
91 ModelId makeMock(std::vector<Sort> sorts, int length, int pad) {
|
Chris@1744
|
92 auto mwm = std::make_shared<MockWaveModel>(sorts, length, pad);
|
Chris@1744
|
93 ModelById::add(mwm);
|
Chris@1744
|
94 return mwm->getId();
|
Chris@1744
|
95 }
|
Chris@1744
|
96
|
Chris@1744
|
97 void releaseMock(ModelId id) {
|
Chris@1744
|
98 ModelById::release(id);
|
Chris@1744
|
99 }
|
Chris@1744
|
100
|
Chris@1086
|
101 private slots:
|
Chris@1086
|
102
|
Chris@1088
|
103 // NB. FFTModel columns are centred on the sample frame, and in
|
Chris@1088
|
104 // particular this means column 0 is centred at sample 0 (i.e. it
|
Chris@1088
|
105 // contains only half the window-size worth of real samples, the
|
Chris@1088
|
106 // others are 0-valued from before the origin). Generally in
|
Chris@1088
|
107 // these tests we are padding our signal with half a window of
|
Chris@1088
|
108 // zeros, in order that the result for column 0 is all zeros
|
Chris@1088
|
109 // (rather than something with a step in it that is harder to
|
Chris@1088
|
110 // reason about the FFT of) and the results for subsequent columns
|
Chris@1088
|
111 // are those of our expected signal.
|
Chris@1089
|
112
|
Chris@1088
|
113 void dc_simple_rect() {
|
Chris@1744
|
114 auto mwm = makeMock({ DC }, 16, 4);
|
Chris@1744
|
115 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1088
|
116 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
117 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1088
|
118 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
119 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1088
|
120 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
121 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
122 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
123 releaseMock(mwm);
|
Chris@1088
|
124 }
|
Chris@1088
|
125
|
Chris@1088
|
126 void dc_simple_hann() {
|
Chris@1088
|
127 // The Hann window function is a simple sinusoid with period
|
Chris@1088
|
128 // equal to twice the window size, and it halves the DC energy
|
Chris@1744
|
129 auto mwm = makeMock({ DC }, 16, 4);
|
Chris@1744
|
130 test(mwm, HanningWindow, 8, 8, 8, 0,
|
Chris@1088
|
131 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
132 test(mwm, HanningWindow, 8, 8, 8, 1,
|
Chris@1088
|
133 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
134 test(mwm, HanningWindow, 8, 8, 8, 2,
|
Chris@1088
|
135 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
136 test(mwm, HanningWindow, 8, 8, 8, 3,
|
Chris@1089
|
137 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
138 releaseMock(mwm);
|
Chris@1088
|
139 }
|
Chris@1088
|
140
|
Chris@1099
|
141 void dc_simple_hann_halfoverlap() {
|
Chris@1744
|
142 auto mwm = makeMock({ DC }, 16, 4);
|
Chris@1744
|
143 test(mwm, HanningWindow, 8, 4, 8, 0,
|
Chris@1099
|
144 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1744
|
145 test(mwm, HanningWindow, 8, 4, 8, 2,
|
Chris@1099
|
146 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
|
Chris@1744
|
147 test(mwm, HanningWindow, 8, 4, 8, 3,
|
Chris@1099
|
148 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
|
Chris@1744
|
149 test(mwm, HanningWindow, 8, 4, 8, 6,
|
Chris@1099
|
150 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1744
|
151 releaseMock(mwm);
|
Chris@1099
|
152 }
|
Chris@1099
|
153
|
Chris@1089
|
154 void sine_simple_rect() {
|
Chris@1744
|
155 auto mwm = makeMock({ Sine }, 16, 4);
|
Chris@1091
|
156 // Sine: output is purely imaginary. Note the sign is flipped
|
Chris@1091
|
157 // (normally the first half of the output would have negative
|
Chris@1091
|
158 // sign for a sine starting at 0) because the model does an
|
Chris@1091
|
159 // FFT shift to centre the phase
|
Chris@1744
|
160 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
161 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
162 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1089
|
163 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
164 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1089
|
165 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
166 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
167 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
168 releaseMock(mwm);
|
Chris@1089
|
169 }
|
Chris@1089
|
170
|
Chris@1089
|
171 void cosine_simple_rect() {
|
Chris@1744
|
172 auto mwm = makeMock({ Cosine }, 16, 4);
|
Chris@1091
|
173 // Cosine: output is purely real. Note the sign is flipped
|
Chris@1091
|
174 // because the model does an FFT shift to centre the phase
|
Chris@1744
|
175 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
176 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
177 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
178 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
179 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
180 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1744
|
181 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
182 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
183 releaseMock(mwm);
|
Chris@1089
|
184 }
|
Chris@1089
|
185
|
Chris@1104
|
186 void twochan_simple_rect() {
|
Chris@1744
|
187 auto mwm = makeMock({ Sine, Cosine }, 16, 4);
|
Chris@1104
|
188 // Test that the two channels are read and converted separately
|
Chris@1744
|
189 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1104
|
190 {
|
Chris@1104
|
191 { {}, {}, {}, {}, {} },
|
Chris@1104
|
192 { {}, {}, {}, {}, {} }
|
Chris@1104
|
193 }, 4);
|
Chris@1744
|
194 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1104
|
195 {
|
Chris@1104
|
196 { {}, { 0.f, 2.f }, {}, {}, {} },
|
Chris@1104
|
197 { {}, { -2.f, 0.f }, {}, {}, {} }
|
Chris@1104
|
198 }, 4);
|
Chris@1744
|
199 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1104
|
200 {
|
Chris@1104
|
201 { {}, { 0.f, 2.f }, {}, {}, {} },
|
Chris@1104
|
202 { {}, { -2.f, 0.f }, {}, {}, {} }
|
Chris@1104
|
203 }, 4);
|
Chris@1744
|
204 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1104
|
205 {
|
Chris@1104
|
206 { {}, {}, {}, {}, {} },
|
Chris@1104
|
207 { {}, {}, {}, {}, {} }
|
Chris@1104
|
208 }, 4);
|
Chris@1744
|
209 releaseMock(mwm);
|
Chris@1104
|
210 }
|
Chris@1104
|
211
|
Chris@1089
|
212 void nyquist_simple_rect() {
|
Chris@1744
|
213 auto mwm = makeMock({ Nyquist }, 16, 4);
|
Chris@1091
|
214 // Again, the sign is flipped. This has the same amount of
|
Chris@1091
|
215 // energy as the DC example
|
Chris@1744
|
216 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
217 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
218 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
219 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1744
|
220 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
221 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1744
|
222 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
223 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
224 releaseMock(mwm);
|
Chris@1089
|
225 }
|
Chris@1089
|
226
|
Chris@1089
|
227 void dirac_simple_rect() {
|
Chris@1744
|
228 auto mwm = makeMock({ Dirac }, 16, 4);
|
Chris@1091
|
229 // The window scales by 0.5 and some signs are flipped. Only
|
Chris@1091
|
230 // column 1 has any data (the single impulse).
|
Chris@1744
|
231 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
232 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
233 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
234 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4);
|
Chris@1744
|
235 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
236 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
237 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
238 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1744
|
239 releaseMock(mwm);
|
Chris@1089
|
240 }
|
Chris@1091
|
241
|
Chris@1091
|
242 void dirac_simple_rect_2() {
|
Chris@1744
|
243 auto mwm = makeMock({ Dirac }, 16, 8);
|
Chris@1091
|
244 // With 8 samples padding, the FFT shift places the first
|
Chris@1091
|
245 // Dirac impulse at the start of column 1, thus giving all
|
Chris@1091
|
246 // positive values
|
Chris@1744
|
247 test(mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1091
|
248 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1744
|
249 test(mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
250 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5);
|
Chris@1744
|
251 test(mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
252 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1744
|
253 test(mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1091
|
254 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1744
|
255 test(mwm, RectangularWindow, 8, 8, 8, 4,
|
Chris@1091
|
256 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1744
|
257 releaseMock(mwm);
|
Chris@1091
|
258 }
|
Chris@1089
|
259
|
Chris@1099
|
260 void dirac_simple_rect_halfoverlap() {
|
Chris@1744
|
261 auto mwm = makeMock({ Dirac }, 16, 4);
|
Chris@1744
|
262 test(mwm, RectangularWindow, 8, 4, 8, 0,
|
Chris@1099
|
263 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1744
|
264 test(mwm, RectangularWindow, 8, 4, 8, 1,
|
Chris@1099
|
265 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
|
Chris@1744
|
266 test(mwm, RectangularWindow, 8, 4, 8, 2,
|
Chris@1099
|
267 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
|
Chris@1744
|
268 test(mwm, RectangularWindow, 8, 4, 8, 3,
|
Chris@1099
|
269 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1744
|
270 releaseMock(mwm);
|
Chris@1086
|
271 }
|
Chris@1086
|
272
|
Chris@1086
|
273 };
|
Chris@1086
|
274
|
Chris@1086
|
275 #endif
|