annotate data/model/FFTModel.cpp @ 589:a03aafaacb5a

* Make SV capable of importing the signal/audiofile structure now written out by Sonic Annotator
author Chris Cannam
date Thu, 14 May 2009 14:33:40 +0000
parents 408e56d30f58
children d7f3dfe6f9a4
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@297 18 #include "AggregateWaveModel.h"
Chris@152 19
Chris@183 20 #include "base/Profiler.h"
Chris@275 21 #include "base/Pitch.h"
Chris@183 22
Chris@402 23 #include <algorithm>
Chris@402 24
Chris@152 25 #include <cassert>
Chris@152 26
Chris@152 27 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 28 int channel,
Chris@152 29 WindowType windowType,
Chris@152 30 size_t windowSize,
Chris@152 31 size_t windowIncrement,
Chris@152 32 size_t fftSize,
Chris@152 33 bool polar,
Chris@334 34 StorageAdviser::Criteria criteria,
Chris@152 35 size_t fillFromColumn) :
Chris@152 36 //!!! ZoomConstraint!
Chris@152 37 m_server(0),
Chris@152 38 m_xshift(0),
Chris@152 39 m_yshift(0)
Chris@152 40 {
Chris@297 41 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
Chris@297 42
Chris@297 43 m_server = getServer(model,
Chris@297 44 channel,
Chris@297 45 windowType,
Chris@297 46 windowSize,
Chris@297 47 windowIncrement,
Chris@297 48 fftSize,
Chris@297 49 polar,
Chris@334 50 criteria,
Chris@297 51 fillFromColumn);
Chris@152 52
Chris@200 53 if (!m_server) return; // caller should check isOK()
Chris@200 54
Chris@152 55 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 56 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 57
Chris@152 58 while (xratio > 1) {
Chris@152 59 if (xratio & 0x1) {
Chris@152 60 std::cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 61 << windowIncrement << " / "
Chris@152 62 << m_server->getWindowIncrement()
Chris@152 63 << " must be a power of two" << std::endl;
Chris@152 64 assert(!(xratio & 0x1));
Chris@152 65 }
Chris@152 66 ++m_xshift;
Chris@152 67 xratio >>= 1;
Chris@152 68 }
Chris@152 69
Chris@152 70 while (yratio > 1) {
Chris@152 71 if (yratio & 0x1) {
Chris@152 72 std::cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 73 << m_server->getFFTSize() << " / " << fftSize
Chris@152 74 << " must be a power of two" << std::endl;
Chris@152 75 assert(!(yratio & 0x1));
Chris@152 76 }
Chris@152 77 ++m_yshift;
Chris@152 78 yratio >>= 1;
Chris@152 79 }
Chris@152 80 }
Chris@152 81
Chris@152 82 FFTModel::~FFTModel()
Chris@152 83 {
Chris@200 84 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 85 }
Chris@152 86
Chris@360 87 void
Chris@360 88 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 89 {
Chris@360 90 if (m_sourceModel) {
Chris@362 91 std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl;
Chris@362 92 if (m_server) {
Chris@362 93 FFTDataServer::releaseInstance(m_server);
Chris@362 94 m_server = 0;
Chris@362 95 }
Chris@360 96 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
Chris@360 97 }
Chris@360 98 }
Chris@360 99
Chris@297 100 FFTDataServer *
Chris@297 101 FFTModel::getServer(const DenseTimeValueModel *model,
Chris@297 102 int channel,
Chris@297 103 WindowType windowType,
Chris@297 104 size_t windowSize,
Chris@297 105 size_t windowIncrement,
Chris@297 106 size_t fftSize,
Chris@297 107 bool polar,
Chris@334 108 StorageAdviser::Criteria criteria,
Chris@297 109 size_t fillFromColumn)
Chris@297 110 {
Chris@297 111 // Obviously, an FFT model of channel C (where C != -1) of an
Chris@297 112 // aggregate model is the same as the FFT model of the appropriate
Chris@297 113 // channel of whichever model that aggregate channel is drawn
Chris@297 114 // from. We should use that model here, in case we already have
Chris@297 115 // the data for it or will be wanting the same data again later.
Chris@297 116
Chris@297 117 // If the channel is -1 (i.e. mixture of all channels), then we
Chris@297 118 // can't do this shortcut unless the aggregate model only has one
Chris@297 119 // channel or contains exactly all of the channels of a single
Chris@297 120 // other model. That isn't very likely -- if it were the case,
Chris@297 121 // why would we be using an aggregate model?
Chris@297 122
Chris@297 123 if (channel >= 0) {
Chris@297 124
Chris@297 125 const AggregateWaveModel *aggregate =
Chris@297 126 dynamic_cast<const AggregateWaveModel *>(model);
Chris@297 127
Chris@297 128 if (aggregate && channel < aggregate->getComponentCount()) {
Chris@297 129
Chris@297 130 AggregateWaveModel::ModelChannelSpec spec =
Chris@297 131 aggregate->getComponent(channel);
Chris@297 132
Chris@297 133 return getServer(spec.model,
Chris@297 134 spec.channel,
Chris@297 135 windowType,
Chris@297 136 windowSize,
Chris@297 137 windowIncrement,
Chris@297 138 fftSize,
Chris@297 139 polar,
Chris@334 140 criteria,
Chris@297 141 fillFromColumn);
Chris@297 142 }
Chris@297 143 }
Chris@297 144
Chris@297 145 // The normal case
Chris@297 146
Chris@297 147 return FFTDataServer::getFuzzyInstance(model,
Chris@297 148 channel,
Chris@297 149 windowType,
Chris@297 150 windowSize,
Chris@297 151 windowIncrement,
Chris@297 152 fftSize,
Chris@297 153 polar,
Chris@334 154 criteria,
Chris@297 155 fillFromColumn);
Chris@297 156 }
Chris@297 157
Chris@152 158 size_t
Chris@152 159 FFTModel::getSampleRate() const
Chris@152 160 {
Chris@152 161 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 162 }
Chris@152 163
Chris@533 164 FFTModel::Column
Chris@533 165 FFTModel::getColumn(size_t x) const
Chris@152 166 {
Chris@183 167 Profiler profiler("FFTModel::getColumn", false);
Chris@183 168
Chris@533 169 Column result;
Chris@533 170
Chris@152 171 result.clear();
Chris@408 172 size_t h = getHeight();
Chris@509 173 result.reserve(h);
Chris@408 174
Chris@408 175 float magnitudes[h];
Chris@500 176
Chris@408 177 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
Chris@500 178
Chris@408 179 for (size_t y = 0; y < h; ++y) {
Chris@500 180 result.push_back(magnitudes[y]);
Chris@408 181 }
Chris@500 182
Chris@408 183 } else {
Chris@408 184 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
Chris@152 185 }
Chris@533 186
Chris@533 187 return result;
Chris@152 188 }
Chris@152 189
Chris@152 190 QString
Chris@152 191 FFTModel::getBinName(size_t n) const
Chris@152 192 {
Chris@152 193 size_t sr = getSampleRate();
Chris@152 194 if (!sr) return "";
Chris@204 195 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 196 return name;
Chris@152 197 }
Chris@152 198
Chris@275 199 bool
Chris@275 200 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 201 {
Chris@275 202 if (!isOK()) return false;
Chris@275 203
Chris@275 204 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 205
Chris@275 206 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 207 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 208
Chris@275 209 if (x+1 >= getWidth()) return false;
Chris@275 210
Chris@275 211 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 212 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 213 // At window size w, for bin b, f is b*sr/w.
Chris@275 214 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 215 // We need to know what phase shift we expect from h/sr sec.
Chris@275 216 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 217 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 218 // = 2pi * (h * b) / w.
Chris@275 219
Chris@275 220 float oldPhase = getPhaseAt(x, y);
Chris@275 221 float newPhase = getPhaseAt(x+1, y);
Chris@275 222
Chris@275 223 size_t incr = getResolution();
Chris@275 224
Chris@275 225 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 226
Chris@275 227 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 228
Chris@275 229 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 230
Chris@275 231 // The new frequency estimate based on the phase error resulting
Chris@275 232 // from assuming the "native" frequency of this bin
Chris@275 233
Chris@275 234 frequency =
Chris@275 235 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 236 (2 * M_PI * incr);
Chris@275 237
Chris@275 238 return true;
Chris@275 239 }
Chris@275 240
Chris@275 241 FFTModel::PeakLocationSet
Chris@275 242 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 243 {
Chris@551 244 Profiler profiler("FFTModel::getPeaks");
Chris@551 245
Chris@275 246 FFTModel::PeakLocationSet peaks;
Chris@275 247 if (!isOK()) return peaks;
Chris@275 248
Chris@275 249 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 250 ymax = getHeight() - 1;
Chris@275 251 }
Chris@275 252
Chris@275 253 if (type == AllPeaks) {
Chris@551 254 int minbin = ymin;
Chris@551 255 if (minbin > 0) minbin = minbin - 1;
Chris@551 256 int maxbin = ymax;
Chris@551 257 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 258 const int n = maxbin - minbin + 1;
Chris@551 259 float values[n];
Chris@551 260 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@275 261 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@551 262 if (bin == minbin || bin == maxbin) continue;
Chris@551 263 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 264 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 265 peaks.insert(bin);
Chris@275 266 }
Chris@275 267 }
Chris@275 268 return peaks;
Chris@275 269 }
Chris@275 270
Chris@551 271 Column values = getColumn(x);
Chris@275 272
Chris@500 273 float mean = 0.f;
Chris@551 274 for (int i = 0; i < values.size(); ++i) mean += values[i];
Chris@500 275 if (values.size() >0) mean /= values.size();
Chris@500 276
Chris@275 277 // For peak picking we use a moving median window, picking the
Chris@275 278 // highest value within each continuous region of values that
Chris@275 279 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 280 // size to a roughly constant pitch range (about four tones).
Chris@275 281
Chris@275 282 size_t sampleRate = getSampleRate();
Chris@275 283
Chris@275 284 std::deque<float> window;
Chris@275 285 std::vector<size_t> inrange;
Chris@280 286 float dist = 0.5;
Chris@500 287
Chris@280 288 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 289 size_t halfWin = medianWinSize/2;
Chris@275 290
Chris@275 291 size_t binmin;
Chris@275 292 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 293 else binmin = 0;
Chris@275 294
Chris@275 295 size_t binmax;
Chris@275 296 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 297 else binmax = values.size()-1;
Chris@275 298
Chris@500 299 size_t prevcentre = 0;
Chris@500 300
Chris@275 301 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 302
Chris@275 303 float value = values[bin];
Chris@275 304
Chris@275 305 window.push_back(value);
Chris@275 306
Chris@280 307 // so-called median will actually be the dist*100'th percentile
Chris@280 308 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 309 halfWin = medianWinSize/2;
Chris@275 310
Chris@500 311 while (window.size() > medianWinSize) {
Chris@500 312 window.pop_front();
Chris@500 313 }
Chris@500 314
Chris@500 315 size_t actualSize = window.size();
Chris@275 316
Chris@275 317 if (type == MajorPitchAdaptivePeaks) {
Chris@275 318 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 319 else binmax = values.size()-1;
Chris@275 320 }
Chris@275 321
Chris@275 322 std::deque<float> sorted(window);
Chris@275 323 std::sort(sorted.begin(), sorted.end());
Chris@280 324 float median = sorted[int(sorted.size() * dist)];
Chris@275 325
Chris@500 326 size_t centrebin = 0;
Chris@500 327 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 328
Chris@500 329 while (centrebin > prevcentre || bin == binmin) {
Chris@275 330
Chris@500 331 if (centrebin > prevcentre) ++prevcentre;
Chris@500 332
Chris@500 333 float centre = values[prevcentre];
Chris@500 334
Chris@500 335 if (centre > median) {
Chris@500 336 inrange.push_back(centrebin);
Chris@500 337 }
Chris@500 338
Chris@500 339 if (centre <= median || centrebin+1 == values.size()) {
Chris@500 340 if (!inrange.empty()) {
Chris@500 341 size_t peakbin = 0;
Chris@500 342 float peakval = 0.f;
Chris@500 343 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@500 344 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 345 peakval = values[inrange[i]];
Chris@500 346 peakbin = inrange[i];
Chris@500 347 }
Chris@500 348 }
Chris@500 349 inrange.clear();
Chris@500 350 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 351 peaks.insert(peakbin);
Chris@275 352 }
Chris@275 353 }
Chris@275 354 }
Chris@500 355
Chris@500 356 if (bin == binmin) break;
Chris@275 357 }
Chris@275 358 }
Chris@275 359
Chris@275 360 return peaks;
Chris@275 361 }
Chris@275 362
Chris@275 363 size_t
Chris@280 364 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 365 size_t bin, float &percentile) const
Chris@275 366 {
Chris@280 367 percentile = 0.5;
Chris@275 368 if (type == MajorPeaks) return 10;
Chris@275 369 if (bin == 0) return 3;
Chris@280 370
Chris@275 371 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 372 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 373 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 374
Chris@275 375 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 376 int medianWinSize = hibin - bin;
Chris@275 377 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 378
Chris@280 379 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 380
Chris@275 381 return medianWinSize;
Chris@275 382 }
Chris@275 383
Chris@275 384 FFTModel::PeakSet
Chris@275 385 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 386 size_t ymin, size_t ymax)
Chris@275 387 {
Chris@551 388 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 389
Chris@275 390 PeakSet peaks;
Chris@275 391 if (!isOK()) return peaks;
Chris@275 392 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 393
Chris@275 394 size_t sampleRate = getSampleRate();
Chris@275 395 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 396 size_t incr = getResolution();
Chris@275 397
Chris@275 398 // This duplicates some of the work of estimateStableFrequency to
Chris@275 399 // allow us to retrieve the phases in two separate vertical
Chris@275 400 // columns, instead of jumping back and forth between columns x and
Chris@275 401 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 402
Chris@275 403 std::vector<float> phases;
Chris@275 404 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 405 i != locations.end(); ++i) {
Chris@275 406 phases.push_back(getPhaseAt(x, *i));
Chris@275 407 }
Chris@275 408
Chris@275 409 size_t phaseIndex = 0;
Chris@275 410 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 411 i != locations.end(); ++i) {
Chris@275 412 float oldPhase = phases[phaseIndex];
Chris@275 413 float newPhase = getPhaseAt(x+1, *i);
Chris@275 414 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 415 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 416 float frequency =
Chris@275 417 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 418 / (2 * M_PI * incr);
Chris@275 419 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 420 // if (stable)
Chris@275 421 peaks[*i] = frequency;
Chris@275 422 ++phaseIndex;
Chris@275 423 }
Chris@275 424
Chris@275 425 return peaks;
Chris@275 426 }
Chris@275 427
Chris@152 428 Model *
Chris@152 429 FFTModel::clone() const
Chris@152 430 {
Chris@152 431 return new FFTModel(*this);
Chris@152 432 }
Chris@152 433
Chris@152 434 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 435 DenseThreeDimensionalModel(),
Chris@152 436 m_server(model.m_server),
Chris@152 437 m_xshift(model.m_xshift),
Chris@152 438 m_yshift(model.m_yshift)
Chris@152 439 {
Chris@152 440 FFTDataServer::claimInstance(m_server);
Chris@152 441 }
Chris@152 442